封面
市场调查报告书
商品编码
1681557

宇宙用极低温市场:现状分析与未来预测 (2024年~2032年)

Space Cryogenics Market: Current Analysis and Forecast (2024-2032)

出版日期: | 出版商: UnivDatos Market Insights Pvt Ltd | 英文 138 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

预计预测期内(2024-2032 年),空间低温市场将大幅成长约 7.14%。由于航太推进和燃料储存应用对低温技术的需求不断增加,以及太空探索和科学任务领域的不断进步,全球航太低温市场正经历强劲成长。随着航太机构和私人公司将大量投资集中在深空探索上,小行星和彗星逐渐进入人类技术可及的范围内,卫星不断发射,商业太空计画也开始启动,很明显,低温技术将成为未来太空发展的基础技术。冷却设备、储存液氢和液态氧等推进剂以及以高精度和高效率执行复杂任务是空间低温系统提供的一些服务。其中包括望远镜和行星探索、地球观测和卫星通讯等太空科学。这些领域通常需要具有特殊能力的高度复杂的系统才能在太空的极端条件下发挥作用。那些考虑此类发展的人专注于私人项目,而不是政府资助的任务,后者是太空低温技术投资的主要贡献者。北美、欧洲和亚太地区是太空低温技术应用的关键地区,这些地区越来越关注太空旅游、卫星星座和深空任务。

最近的趋势是开启低温系统的新时代,预计这将推动其应用。例如,2025 年,Cryoport Inc. 宣布将推出 Cryoport Express(R) 低温 HV3 运输系统( "HV3" ),这是一种用于运输救生生物製剂和温度敏感治疗剂的最先进的低温运输系统。

太空低温技术对于促进向清洁能源的转变至关重要,因为它为专注于提高能源效率和永续性的太空任务提供动力。低温系统用于冷却关键的太空仪器以及火箭发射和卫星系统所需的推进系统中的推进剂储存,最终为太空发射基础设施做出贡献。因此,我们可能会看到航太机构和私人公司在具有商业应用的任务中越来越多地使用低温技术,例如追踪和监测气候变迁的地球观测卫星、地球上的可再生能源基础设施以及低温技术在其他任务中的潜在应用。

考虑到这些变化,预计 2024 年至 2032 年间对空间低温技术的需求将进一步增长。

根据冷却类型,全球空间低温学市场分为高温冷却装置和低温冷却装置。其中,低温冷却设备占有相当大的市场占有率。低温冷却系统在提高温度范围降至相当低的太空任务效率方面发挥着至关重要的作用。低温冷却系统对于冷却天文任务、太空望远镜和卫星系统中使用的敏感科学仪器、侦测器和感测器至关重要。它也是火箭推进系统中储存和管理液态氢、液态氧等低温推进剂的必备冷却装置。对太空探索和詹姆斯韦伯太空望远镜等先进望远镜的需求不断增长,继续推动可靠、高性能低温冷却解决方案的发展。

全球空间低温学市场依应用分为太空科学任务、地球观测、电信应用、技术展示任务及低温电子应用。其中,太空科学任务领域占有很大占有率。推动太空科学任务领域变革的因素包括对深空研究的投资、需要先进低温系统的任务的长期性以及低温技术在冷却空间望远镜和探测器上的科学仪器方面的重要性。火星和月球等高调目标任务严重依赖尖端低温技术来储存和管理推进剂,以及依靠低温技术来确保极端太空环境下仪器的功能。行星科学,加上詹姆斯韦伯太空望远镜等太空望远镜,正在推动人们对该领域的进一步兴趣,进而加速该科学研究领域对低温解决方案的需求。

为了更了解空间低温技术的市场应用情况,我们根据北美(美国、加拿大和欧洲其他地区)、欧洲(德国、法国、英国、西班牙、义大利和欧洲其他地区)、亚太地区(中国、日本、印度和亚太其他地区)和世界其他地区的全球影响力对市场进行了分析。欧洲占据空间低温学市场的大部分占有率,预计在预测期内将保持稳定的成长率。该地区的创新、永续性和可重复使用的火箭技术正在推动市场成长。随着欧洲太空任务(包括月球和火星任务)的不断增加,对尖端低温系统的需求将会增加。低温技术的商业化也将显着提升欧洲在全球航太领域的影响力。

市场的主要参与者包括泰雷兹、Absolut System、住友重工有限公司、液化空气集团、牛津仪器、派克汉尼汾公司、霍尼韦尔国际公司、RICOR、Creare 和诺斯罗普·格鲁曼公司。

目录

第1章 市场概要

  • 市场定义
  • 主要目的
  • 相关利益者
  • 限制事项

第2章 分析方法或前提条件

  • 分析流程
  • 分析方法
  • 受访者简介

第3章 摘要整理

  • 产业摘要
  • 各市场区隔预测
    • 市场成长的强度
  • 地区展望

第4章 市场动态

  • 促进因素
  • 机会
  • 阻碍因素
  • 趋势
  • PESTEL分析
  • 需求面分析
  • 供给面分析
    • 企业合併·收购 (M&A)
    • 投资情势
    • 产业洞察:领先的新创公司及其独特的策略

第5章 价格分析

  • 价格分析:各地区
  • 价格的影响因素

第6章 全球宇宙用极低温的市场收益 (2022~2032年)

第7章 市场分析:冷却类别

  • 高温冷却设备
  • 低温冷却设备

第8章 市场分析:各用途

  • 宇宙科学任务
  • 地球观测
  • 通讯用途
  • 技术演示任务
  • 低温电子应用

第9章 市场分析:温度

  • 120k以下
  • 120~150k
  • 150k以上

第10章 市场分析:各地区

  • 北美
    • 美国
    • 加拿大
    • 其他北美地区
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 其他欧洲地区
  • 亚太地区
    • 中国
    • 日本
    • 印度
    • 其他亚太地区
  • 全球其他地区

第11章 价值链分析

  • 限制分析
  • 市场参与企业的一览

第12章 竞争情形

  • 竞争仪表板
  • 企业的市场定位分析
  • 波特的五力分析

第13章 企业简介

  • Thales
    • 企业概要
    • 主要的财务指标
    • SWOT分析
    • 产品系列
    • 近几年趋势
  • Absolut System
  • Sumitomo Heavy Industries Ltd
  • Air Liquide
  • Oxford Instrument
  • Parker Hannifin Corporation
  • Honeywell International Inc.
  • Ricor
  • Creare
  • Northrop Grumman Corporation

第14章 缩写与前提条件

第15章 附录

简介目录
Product Code: UMAD213200

The space cryogenic industry is a fast-growing sector of the aerospace industry, where cryogenic technology is used to sustain missions to space. Cryogenic is the science of producing and working with materials at very low temperatures, generally below -150°C. Eventually, Space cryogenics becomes integral to rocket propulsion, utilizing liquid oxygen and liquid hydrogen as the propellants with the highest energy density. These cryogens are the propellants to put the spacecraft into orbit and beyond. The drivers for this market are an increase in space exploration and satellite launches, coupled with a demand for efficient propulsion systems. Moreover, the improvements in cryogenic storage, insulation materials, and liquefaction technology are supportive of the growth of this market. With an increase in investments by government space agencies and private players, the space cryogenic market is anticipated to flourish and contribute to the future of space exploration and travel.

The Space Cryogenic Market is expected to grow at a significant rate of around 7.14% during the forecast period (2024-2032). The market for Space Cryogenics on a global scale is witnessing robust growth owing to ongoing advancements in the areas of space exploration and scientific missions in addition to the increasing requirements of cryogenic technology for space propulsion and fuel storage applications. As much of the investment is focused on deep space exploration by space agencies and private players alike, as asteroids and comets come within reach of human technology, launching satellites, and beginning commercial space ventures, it seems clear that cryogenics is the future cornerstone technology for space development. Cooling of instruments, storage of propellants such as liquid hydrogen and liquid oxygen, and enabling complex missions with very high precision and efficiency are some of the services provided by space cryogenic systems. The maximum thrust comes from the following areas in terms of their cryogenic applications: space science, such as telescopes and planetary exploration; earth observation; and satellite communication as these sectors generally require very soliciting systems with special capabilities to function at the extreme conditions of space. Those looking into such developments have contributed a major share to the investments that are being put in for space cryogenics, more tied toward private-sector projects than government-sponsored missions. North America, Europe, and Asia-Pacific are the leading regions in the adoption of space cryogenics, with an increasing emphasis on space tourism, satellite constellations, and missions to deep space.

Some of the recent developments that are anticipated to drive the adoption are the launch of new-age cryogenic systems. For instance, in 2025, Cryoport Inc. announced to launch State-of-the-Art Cryoport Express(R) Cryogenic HV3 Shipping System ("HV3") a Cryogenic Shipping System for Transporting Lifesaving Biologics and Temperature-Sensitive Therapies.

Space Cryogenics is vital in facilitating a shift towards clean energy because it powers space missions focused on improving energy efficiency and sustainability. Cryogenic systems use cooling technology for critical space instruments and propellant storage for propulsion systems required during rocket launches and satellite systems, which ultimately contribute towards space-based launch infrastructure. Cryogenics will, therefore, be used increasingly by space agencies and private companies for missions that tend to be of commercial application, such as Earth observation satellites that track and monitor climate change, renewable energy infrastructures on Earth, as well as potential use of cryogenics on other possible missions.

Considering all the changes, the market is anticipated to rise further promoting the demand for Space Cryogenic during 2024-2032.

Based on Cooling Type, the Global Space cryogenic market is bifurcated into high-temperature coolers and low-temperature coolers. Of these low-temperature coolers have held a remarkable market share. Low-temperature coolers play a very important role in enhancing the efficiency of space missions, where temperature ranges can drop to levels quite low. The low-temperature coolers are crucial to the cooling of sensitive scientific instruments, detectors, and sensors that are employed in astronomic missions, space telescopes, and satellite systems. They also provide essential cooling for the storage and management of cryogenic propellants like liquid hydrogen and liquid oxygen in the rocket propulsion systems. Increased demand for space exploration and advanced telescopes such as the James Webb Space Telescope will always be a factor driving the growth of reliable, high-performance low-temperature cooling solutions.

Based on application the global space cryogenic market is segmented into space science missions, earth observations, telecom applications, technology demonstration missions, and cryo-electronic applications. Of these space science missions segment has held the major market share. Some of the factors causing increasing changes in the Space Science Missions segment are deep space research investments; a requirement for advanced cryogenic systems due to the nature of long-duration missions; and the critical importance of cryogenics in cooling scientific instruments for space telescopes and detectors. High-profile missions, targeting Mars, the Moon, etc., depend extensively on state-of-the-art cryogenic technology to store or manage propellants, as well as on cryogenic technologies to deliver instrumentation functionality under extreme space environments. Planetary science coupled with space telescopes like the James Webb Space Telescope have furthered interest in the area and, thus, accelerated demand for cryogenic solutions in this line of scientific research.

For a better understanding of the market adoption of the Space Cryogenic market, the market is analyzed based on its worldwide presence in countries such as North America (U.S., Canada, and the Rest of North America), Europe (Germany, France, U.K., Spain, Italy, Rest of Europe), Asia-Pacific (China, Japan, India, Rest of Asia-Pacific), Rest of World. Europe holds a significant share of the Space Cryogenic market and is anticipated to maintain a steady growth rate over the forecast period. Innovation, sustainability, and reusable rocket technology for the region are driving the growth of the market. With the continued proliferation of European space missions, such as to the Moon and Mars, the demand for cutting-edge cryogenic systems will increase. Cryogenic technology commercialization will also significantly enhance Europe's presence in the global space sector.

Some of the major players operating in the market include Thales, Absolut System, Sumitomo Heavy Industries Ltd, Air Liquide, Oxford Instrument, Parker Hannifin Corporation, Honeywell International Inc., RICOR, Creare, and Northrop Grumman Corporation.

TABLE OF CONTENTS

1.Market Introduction

  • 1.1. Market Definitions
  • 1.2. Main Objective
  • 1.3. Stakeholders
  • 1.4. Limitation

2.Research Methodology Or Assumption

  • 2.1. Research Process Of The Space Cryogenic Market
  • 2.2. Research Methodology Of The Space Cryogenic Market
  • 2.3. Respondent Profile

3.Executive Summary

  • 3.1. Industry Synopsis
  • 3.2. Segmental Outlook
    • 3.2.1. Market Growth Intensity
  • 3.3. Regional Outlook

4.Market Dynamics

  • 4.1. Drivers
  • 4.2. Opportunity
  • 4.3. Restraints
  • 4.4. Trends
  • 4.5. Pestel Analysis
  • 4.6. Demand Side Analysis
  • 4.7. Supply Side Analysis
    • 4.7.1. Merger & Acquisition
    • 4.7.2. Investment Scenario
    • 4.7.3. Industry Insights: Leading Startups And Their Unique Strategies

5.Pricing Analysis

  • 5.1. Regional Pricing Analysis
  • 5.2. Price Influencing Factors

6.Global Space Cryogenic Market Revenue (USD Mn), 2022-2032F

7.Market Insights By Cooling Type

  • 7.1. High Temperature Coolers
  • 7.2. Low-Temperature Coolers

8.Market Insights By Application

  • 8.1. Space Science Missions
  • 8.2. Earth Observation
  • 8.3. Telecom Application
  • 8.4. Technology Demonstration Mission
  • 8.5. Cryo-Electronic Application

9.Market Insights By Temperature

  • 9.1. Less Than 120 K
  • 9.2. 120-150 K
  • 9.3. More Than 150 K

10.Market Insights By Region

  • 10.1. North America
    • 10.1.1. U.S.
    • 10.1.2. Canada
    • 10.1.3. Rest Of North America
  • 10.2. Europe
    • 10.2.1. Germany
    • 10.2.2. U.K.
    • 10.2.3. France
    • 10.2.4. Italy
    • 10.2.5. Spain
    • 10.2.6. Rest Of Europe
  • 10.3. Asia-Pacific
    • 10.3.1. China
    • 10.3.2. Japan
    • 10.3.3. India
    • 10.3.4. Rest Of Asia-Pacific
  • 10.4. Rest Of World

11.Value Chain Analysis

  • 11.1. Marginal Analysis
  • 11.2. List Of Market Participants

12.Competitive Landscape

  • 12.1. Competition Dashboard
  • 12.2. Competitor Market Positioning Analysis
  • 12.3. Porter Five Forces Analysis

13.Company Profiled

  • 13.1. Thales
    • 13.1.1. Company Overview
    • 13.1.2. Key Financials
    • 13.1.3. Swot Analysis
    • 13.1.4. Product Portfolio
    • 13.1.5. Recent Developments
  • 13.2. Absolut System
  • 13.3. Sumitomo Heavy Industries Ltd
  • 13.4. Air Liquide
  • 13.5. Oxford Instrument
  • 13.6. Parker Hannifin Corporation
  • 13.7. Honeywell International Inc.
  • 13.8. Ricor
  • 13.9. Creare
  • 13.10. Northrop Grumman Corporation

14.Acronyms & Assumption

15.Annexure