封面
市场调查报告书
商品编码
1747343

放射线遮蔽玻璃市场:现状分析与预测(2025-2033年)

Radiation Shielding Glass Market: Current Analysis and Forecast (2025-2033)

出版日期: | 出版商: UnivDatos Market Insights Pvt Ltd | 英文 138 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

预计在预测期内(2025-2033),辐射屏蔽玻璃市场将以5.91%的强劲速度成长。辐射屏蔽玻璃的出现是安全工程材料进步和现代化过程中的巨大飞跃。这些材料不仅主要关注功能安全需求,还兼顾建筑整合和美观。这种玻璃最初是为医疗和核环境开发的,如今已在影像室、核反应器和工业X光机等高辐射区域提供智慧安全保护。现代辐射屏蔽玻璃采用各种铅和无铅配方,以确保光学透明度,同时平衡可见度和辐射衰减。这些玻璃配方含有钡、铋和稀土氧化物等元素,可阻挡X射线、γ射线和其他电离辐射,同时保持透明度。 STERIS宣布,将于2024年4月扩建位于泰国春武里府一号工厂,提升其X射线处理能力。此次扩建将升级其目前在春武里府一号和春武里府二号工厂提供的伽马辐照服务,并提升这些工厂安全可靠地处理X射线製程和X射线设备的能力,预计这将创造对辐射屏蔽玻璃的需求。

辐射屏蔽玻璃市场按类型细分为铅玻璃和无铅玻璃。预计到2024年,无铅玻璃市场将占据主导地位,并在整个预测期内保持领先地位。转向无铅解决方案的模式是由于各国不断加强的环境法规和永续发展举措,此类玻璃被宣传为更环保的解决方案。无铅辐射屏蔽玻璃含有钡、铋和其他重金属氧化物等化合物,可提供相同的屏蔽效果,但不含有毒的铅元素。这些变革,加上诊断影像、核医和清洁能源研究的快速发展,正在推动对更高层级屏蔽解决方案的需求,这些解决方案需要兼顾安全性、光学性能和建筑结构。在模组化、透明医疗基础设施的新时代,屏蔽玻璃不仅因其功能性,还因其设计而成为透明屏蔽解决方案。此外,随着医疗和核子领域安全法规的不断加强,製造商正在投资轻质、可自订且高度透明的屏蔽材料。因此,辐射屏蔽玻璃正成为医院、实验室、控制室和工业设施的理想解决方案,体现了安全性、永续性和灵活的设计。

依辐射类型划分,辐射屏蔽玻璃市场分为X射线屏蔽、伽玛射线屏蔽和中子屏蔽。 X射线屏蔽领域在2024年占据了最大的市场占有率,预计在预测期内将保持不变。这种主导地位是由医疗诊断、牙科和工业检测中的X光成像应用所推动的。用于X射线防护的辐射屏蔽玻璃具有高透明度和光学清晰度,以及强大的衰减特性,使其成为医院、实验室和控制室观察窗的理想材料。随着安全标准日益严格,以及全球诊断影像需求的不断增长,製造商已开始使用更先进的辐射屏蔽材料,例如无铅铋和钡基玻璃。此类玻璃不仅能提供更佳的辐射防护,而且环保。这些玻璃重量轻、抗衝击且易于成型,非常适合现代医疗设施的设计,在这些设施中,可视性、卫生性和模组化设计同样重要。便携式和小型机器的日益普及,带来了对客製化屏蔽玻璃需求的重大变化,以满足各种需求。目前,这些材料的演变带来了更多的设计选择,融入了永续的建筑技术,并降低了安装的复杂性。这进一步增强了这些产品在公共和私人医疗基础设施中的应用。

辐射屏蔽玻璃市场按应用细分为医疗、工业和核能领域。 2024年,医疗领域占据市场主导地位,预计在预测期内仍将维持领先地位。这主要得益于医院和诊断中心影像诊断技术(例如X光、CT和透视检查)的持续发展。辐射屏蔽玻璃在医疗领域发挥积极作用,它能够确保安全观察,并为护理人员和患者提供最高水准的辐射防护。辐射屏蔽玻璃的现代应用包括成为开放透明医疗设施布局中的美学元素和积极的建筑特征,当然,这不会损害安全性。随着医疗保健系统向精准诊断和微创手术发展,对超白、无铅和无铅屏蔽玻璃的需求显着增长。同时,临床环境中辐射安全法规的日益严格,促使公共和私人医疗基础设施中辐射屏蔽玻璃的安装数量不断增加。随着全球医疗基础设施建设的蓬勃发展,对模组化和行动诊断设备的关注度日益提高,市场也获得了进一步的推动。随着已开发经济体和新兴经济体的医学影像技术日益复杂,辐射屏蔽玻璃在诊断套件中占据核心地位,确保其安全性、合规性和患者友善性。 2023年12月,锐珂医疗公司 (Carestream Health) 推出了先进的数位影像解决方案-DRX-Rise 行动X射线系统。

为了更深入了解辐射屏蔽玻璃市场,我们根据其在北美(美国、加拿大和其他北美地区)、欧洲(德国、英国、法国、义大利、西班牙和其他欧洲地区)、亚太地区(中国、日本、印度、韩国和其他亚太地区)以及世界其他地区的全球分布情况对其进行了分析。预计北美辐射屏蔽玻璃市场将在2024年占据全球辐射屏蔽玻璃市场的主导地位,并在预测期内保持这一地位。这种主导地位主要归功于该地区先进的医疗基础设施、丰富的成像程序以及严格的辐射安全法规合规性。在美国,政府持续投入资金升级医院设施并整合辐射安全建筑材料,使辐射屏蔽玻璃成为医学和牙科影像实验室、肿瘤科、移动诊断单元等的标准配置。此外,高度发展的核电厂和众多需要高技术辐射防护材料的研究中心的存在,也进一步刺激了辐射屏蔽玻璃的需求。此外,医疗保健和国防领域对环保无铅屏蔽解决方案和模组化建筑方法的日益青睐,也促进了市场的成长。北美地区主要製造商的持续技术创新以及政府旨在促进健康和安全的政策,也使北美成为一个成熟且重要的辐射屏蔽玻璃市场。

市场主要参与者包括康宁公司、萧特股份公司、日本电气硝子株式会社、RAY-BAR ENGINEERING CORP、Nuclear Lead Co.Ltd.、Radiation Protection Products, Inc.、Lead Glass Pro.、MAVIG GmbH、Midland Lead、MarShieldus Custom Radiation ing 等。

目录

第1章 市场简介

  • 市场定义
  • 主要目的
  • 相关利益者
  • 限制事项

第2章 调查手法或前提条件

  • 调查流程
  • 调查手法
  • 受访者简介

第3章 摘要整理

  • 产业摘要
  • 各市场区隔预测
    • 市场成长的强度
  • 地区展望

第4章 市场动态

  • 促进因素
  • 机会
  • 阻碍因素
  • 趋势
  • PESTEL分析
  • 需求面分析
  • 供给方面分析
    • 合併和收购
    • 投资情势
    • 产业洞察:关键新创公司及其独特策略

第5章 价格分析

  • 地区价格分析
  • 价格的影响因素

第6章 全球放射线遮蔽玻璃市场收益,2023-2033年

第7章 市场洞察:类别

  • 铅玻璃
  • 无铅玻璃

第8章 市场洞察:放射线类别

  • X光遮蔽
  • 伽马射线遮蔽
  • 中子遮蔽

第9章 市场洞察:各用途

  • 医疗
  • 产业
  • 核能

第10章 市场洞察:各地区

  • 北美
    • 美国
    • 加拿大
    • 其他北美地区
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 其他欧洲地区
  • 亚太地区
    • 中国
    • 日本
    • 印度
    • 韩国
    • 其他亚太地区
  • 全球其他地区

第11章 价值链分析

  • 限制分析
  • 市场参与企业清单

第12章 竞争情形

  • 竞争仪表板
  • 竞争的市场定位分析
  • 波特五力分析

第13章 企业简介

  • Corning Incorporated
  • SCHOTT AG
  • Nippon Electric Glass Co., Ltd.
  • RAY-BAR ENGINEERING CORP
  • Nuclear Lead Co. Inc.
  • Radiation Protection Products, Inc.
  • Lead Glass Pro.
  • MAVIG GmbH
  • Midland Lead
  • MarShield Custom Radiation Shielding

第14章 缩写与前提条件

第15章 附录

简介目录
Product Code: UMCH213309

The Radiation Shielding Glass Market is witnessing a robust growth rate of 5.91% within the forecast period (2025- 2033F). Radiation shielding glass was indeed a giant leap in the advancement and modernization of safety-engineered materials. These materials have not only functional security needs as the primary concern, but also architectural integration and aestheticization. Originally developed for medical and nuclear environments, this type of glass has now become an intelligent safety enabler in high-radiation areas such as diagnostic imaging rooms, nuclear reactors, and industrial radiography units. Modern radiation shielding glass weighs various lead and lead-free formulations for optical clarity while balancing visibility vs. radiation attenuation. The concoction of such glasses containing elements like barium, bismuth, and rare earth oxides would reject X-rays, gamma rays, and other ionizing radiation while remaining transparent. STERIS announced an expansion of its Chonburi I facility in Thailand, which is capable of X-ray processing, in April 2024. This expansion will upgrade the gamma irradiation services currently available at the Chonburi I and Chonburi II facilities and is expected to create demand for radiation shielding glass as these facilities develop their capacity for the safe and secure handling of X-ray processes and apparatus.

Based on type, the radiation shielding glass market is segmented into Lead Glass and Lead-Free Glass. In 2024, the lead-free glass market dominated and is expected to maintain its leading position throughout the forecast period. The paradigm shift toward lead-free solutions is due to the growing environmental regulations and sustainability efforts across countries, and such glass is marketed as a greener solution. In this spectrum, lead-free radiation shielding glass includes barium, bismuth, and other heavy metal oxides, which offer comparable shielding but lack the toxic lead element. This transformation and the rapid expansion of diagnostic imaging, nuclear medicine, and clean-energy research have increased the demand for higher shielding solutions that merge safety, optical performance, and architecture. With the new world of modular and transparent healthcare infrastructure, shielding glass is used not just for function but for design-transparent shielding solutions. Furthermore, manufacturers, amid a tightening regulatory environment around safety in medical and nuclear arenas, invest in lighter, customizable, and highly transparent shielding materials. From this perspective, radiation shielding glass is becoming the solution for hospitals, laboratories, control rooms, and industrial facilities, embodying safety, sustainability, and flexible design.

Based on radiation type, the radiation shielding glass market is segmented into X-Ray Shielding, Gamma Ray Shielding, and Neutron Shielding. The X-Ray shielding segment held the largest market share in 2024 and is expected to behave in the same fashion in the forecast period. This dominance is driven by X-ray imaging applications in medical diagnostics, dentistry, and industrial inspections. Radiation shielding glass for X-ray protection has high transparency and optical clarity, apart from a strong attenuation property that makes it an appropriate material for observation windows in hospitals, laboratories, and control rooms. With safety standards becoming stringent and the need for imaging being ever-expanding across the world, manufacturers have started using more sophisticated materials such as lead-free bismuth or barium-based glass for radiation shielding. Such glass provides good radiation protection and is environmentally friendly. These glasses are light, impact-resistant, and can be shaped easily, making them suitable for the design of modern medical facilities where the elements of visibility, hygiene, and modularity are given equal importance. The elevated use of portable and small-sized machines has brought tremendous changes in increasing demand for shielding glass solutions customized to requirements. At present, the evolution of these materials is allowing for more design options, incorporating sustainable building technologies, and reduced complexities in installation. This has further enhanced the use of these products in both public and private healthcare infrastructure.

Based on applications, the radiation shielding glass market is segmented into Medical, Industrial, and Nuclear Energy. In 2024, the medical segment dominated the market and is expected to maintain its leading position throughout the forecast period. This is mainly attributable to the persistent development of the hospital and diagnostic center-based diagnostic imaging technologies such as X-ray, CT, and fluoroscopy. Radiation shielding glass works in medical environments by permitting safe observation and providing the highest level of radiation protection to nurses and patients. Modern purposes of radiation shielding glass can include being an aesthetic element and an active architectural feature in open and transparent medical facility layouts without compromising on safety, of course. With the healthcare system devolving into precision diagnostics and minimally invasive procedures, the demand for super-clear, lead, and lead-free shielding glass has seen tremendous growth; on the other hand, with the rise in radiological safety regulations across clinical settings, installations have witnessed a growing number across both public and private health infrastructures. The market finds additional impetus in the increasing thrust laid on modular, mobile diagnostic units, along with the concurrent global thrust on healthcare infrastructure development. With medical imaging soaring higher and farther between developed and developing economies, radiation shielding glass sits at the core of the diagnostic set-up, making it safe, compliant, and friendly to patients. In December 2023, Carestream Health launched the DRX-Rise Mobile X-Ray System advanced digital imaging solution-imparting a cost-effective pathway for customers to either choose or increase their digital X-ray capabilities.

For a better understanding of the market of the radiation shielding glass market, the market is analyzed based on its worldwide presence in countries such as North America (The US, Canada, and Rest of North America), Europe (Germany, The UK, France, Italy, Spain, Rest of Europe), Asia-Pacific (China, Japan, India, South Korea, Rest of Asia-Pacific), Rest of World. The North America radiation shielding glass market dominated the global radiation shielding glass market in 2024 and is forecasted to remain in this position in the forecast period. This dominance is primarily led by the region's advanced healthcare infrastructure, a large number of diagnostic imaging procedures, and stringent regulatory compliance concerning radiation safety. In the United States, investments have been made consistently to upgrade hospitals, integrate radiation-safe construction materials, wherein the radiation shielding glass has become a standard option across medical and dental imaging rooms, oncology departments, and mobile diagnostic units. Further, the presence of highly developed nuclear power and several research centers that require highly technical radiation protection materials enhances a rather high demand. Growth in the market is further supplemented by increased preference for environmentally friendly lead-free shielding solutions and the modular construction approach adopted in the healthcare and defense sectors. Also, continuous technological innovation undertaken by key manufacturers in the region and health as well and safety-promoting government policies make North America a mature and crucial market for radiation shielding glass.

Some of the major players operating in the market include Corning Incorporated, SCHOTT AG, Nippon Electric Glass Co., Ltd., RAY-BAR ENGINEERING CORP, Nuclear Lead Co. Inc., Radiation Protection Products, Inc., Lead Glass Pro., MAVIG GmbH, Midland Lead, and MarShield Custom Radiation Shielding.

TABLE OF CONTENTS

1.Market Introduction

  • 1.1. Market Definitions
  • 1.2. Main Objective
  • 1.3. Stakeholders
  • 1.4. Limitation

2.Research Methodology Or Assumption

  • 2.1. Research Process of the Radiation Shielding Glass Market
  • 2.2. Research Methodology of the Radiation Shielding Glass Market
  • 2.3. Respondent Profile

3.Executive Summary

  • 3.1. Industry Synopsis
  • 3.2. Segmental Outlook
    • 3.2.1. Market Growth Intensity
  • 3.3. Regional Outlook

4.Market Dynamics

  • 4.1. Drivers
  • 4.2. Opportunity
  • 4.3. Restraints
  • 4.4. Trends
  • 4.5. PESTEL Analysis
  • 4.6. Demand Side Analysis
  • 4.7. Supply Side Analysis
    • 4.7.1. Merger & Acquisition
    • 4.7.2. Investment Scenario
    • 4.7.3. Industry Insights: Leading Startups and Their Unique Strategies

5.Pricing Analysis

  • 5.1. Regional Pricing Analysis
  • 5.2. Price Influencing Factors

6.Global Radiation Shielding Glass Market Revenue (USD Bn), 2023-2033F

7.Market Insights By Type

  • 7.1. Lead Glass
  • 7.2. Lead-Free Glass

8.Market Insights By Radiation Type

  • 8.1. X-Ray Shielding
  • 8.2. Gamma Ray Shielding
  • 8.3. Neutron Shielding

9.Market Insights By Application

  • 9.1. Medical
  • 9.2. Industrial
  • 9.3. Nuclear Energy

10.Market Insights By Region

  • 10.1. North America
    • 10.1.1. The US
    • 10.1.2. Canada
    • 10.1.3. Rest of North America
  • 10.2. Europe
    • 10.2.1. Germany
    • 10.2.2. The UK
    • 10.2.3. France
    • 10.2.4. Italy
    • 10.2.5. Spain
    • 10.2.6. Rest of Europe
  • 10.3. Asia-Pacific
    • 10.3.1. China
    • 10.3.2. Japan
    • 10.3.3. India
    • 10.3.4. South Korea
    • 10.3.5. Rest of Asia-Pacific
  • 10.4. Rest of World

11.Value Chain Analysis

  • 11.1. Marginal Analysis
  • 11.2. List of Market Participants

12.Competitive Landscape

  • 12.1 Competition Dashboard
  • 12.2. Competitor Market Positioning Analysis
  • 12.3. Porter Five Forces Analysis

13.Company Profiles

  • 13.1. Corning Incorporated
    • 13.1.1. Company Overview
    • 13.1.2. Key Financials
    • 13.1.3. SWOT Analysis
    • 13.1.4. Product Portfolio
    • 13.1.5. Recent Developments
  • 13.2. SCHOTT AG
  • 13.3. Nippon Electric Glass Co., Ltd.
  • 13.4. RAY-BAR ENGINEERING CORP
  • 13.5. Nuclear Lead Co. Inc.
  • 13.6. Radiation Protection Products, Inc.
  • 13.7. Lead Glass Pro.
  • 13.8. MAVIG GmbH
  • 13.9. Midland Lead
  • 13.10. MarShield Custom Radiation Shielding

14.Acronyms & Assumption

15.Annexure