长期储能 (LDES) 现实:材料与设备市场(共 35 个)、技术路线图、製造商、赢家/输家、替代技术(2024-2044 年)
市场调查报告书
商品编码
1396214

长期储能 (LDES) 现实:材料与设备市场(共 35 个)、技术路线图、製造商、赢家/输家、替代技术(2024-2044 年)

Long Duration Energy Storage LDES Reality: Materials, Equipment Markets in 35 Lines, Technology Roadmaps, Manufacturers, Winners, Losers, Alternatives 2024-2044

出版日期: | 出版商: Zhar Research | 英文 492 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

本报告分析了全球LDES(长期储能)技术和市场,并对各种LDES技术进行了概述、市场规模展望、未来技术进步和市场成长潜力以及竞争状况。我们正在调查。

概述

技术评估(共17项) 6 个结果章节架构 第 11 章SWOT评估 20 个结果主要结论 22 个结果预测分析(2024-2044) 35 个结果公司 104家公司新资讯图表 143 个结果
报告结构

目录

第 1 章执行摘要/结论

  • 本报告的目的和范围
  • 本报告分析方法
  • 定义和需求
  • 网格 LDES 与超越网格 LDES 之间的需求截然不同(2024-2044 年)
  • LDES 的基本技术选项
  • 透过技术和位置实现的放电时间
  • 相关投资的经验教训:依技术和地点分类
  • 主要结论:市场
  • 主要结论:技术
  • 超越网格 LDES 强者:RFB 的成功及其市场差距
  • LDES(长期储能)路线图:2023-2044
  • 市场预测:总计 35 个(2024-2044 年)
    • LDES 市场整体规模(超过 8 小时,所有 11 个技术类别)(单位:十亿美元,2023-2044 年),图表
    • 按地区划分的 LDES 市占率(基于价值,所有 4 个地区,2024-2044 年)
    • 世界市场细分:依排放时间划分(2024/2044)
    • LDES 全球市场:累计太瓦时(2024-2044 年)
    • LDES 全球市场:平均放电时段(2024-2044 年)
    • LDES 全球市场:累计 TW(2024-2044 年)
    • 超越电网 LDES 市场:按类别(共 8 种,单位:十亿美元,2023-2044 年)、图表
    • 全球 RFB 市场:网格/超越网格(价值基础,2023-2044 年)、图表和概述
    • 世界 RFB 市场:短期/LDES(金额基础,2023-2044 年)、图表和概述
    • 钒、铁和其他 RFB 市场(单位:%,2024-2044)、图表和概述
    • 常规/混合 RFB 的销售额和份额(单位:%,2024-2044 年)

第 2 章简介

  • 概述:能源储存和缓解
    • 什么是储能?
    • 为什么固定式储能会取代便携式储能
    • LDES(长期储能)的定义、新技术的需求、替代技术
    • 可选可用性,很少/不需要风能、太阳能和 LDES
    • LDES 的结构以及为什么仍然需要它
  • 电力扩散、氢气替代和 9 种萃取选项
  • 太阳能发电的大趋势
  • 世界各地风能和太阳能的成长
  • 超越网格大趋势
  • LCOS(平准化储存成本)的概述、定义和实用性
  • 各类储能的时间参数
  • 先进太阳能发电的进展及其对储存的影响
    • 迄今的进展
    • 先进的太阳能发电
  • 先进的风力发电减少了对 LDES 的需求
    • 更高的涡轮机
    • 比较 AWE(机载风能)和海上电力以减少 LDES 的需求
  • 常规水力发电

第3章LDES设计原理、参数比较、趋势、材料

  • 概述:网格 LDES 与超越网格 LDES 的定义、各种设计要求
  • 12 个 LDES 技术选项:7 个比较
  • 9 个主要 LDES 技术系列和 17 个其他标准
  • 延长 LDES 放电时间的竞争性进展:依技术分类
  • RFB 和其他选项:等效效率和储存时间
  • LDES 技术可用性与空间效率
  • LCOS $/kWh 趋势与储存/放电时间之间的关係
  • LDES功率(GW)趋势与储存/放电时间之间的关係
  • LDES技术储存天数和额定功率返回(MW)
  • LDES技术储存天数与容量(MWh)
  • LDES 在各种延迟后提供峰值功率的潜力:透过技术
  • 用于 LDES 的加值金属、化合物和薄膜
    • 摘要
    • 膜难度和使用/建议的材料
    • RFB 膜的难度等级以及使用/建议的材料

第 4 章 LDES 电池:氧化还原液流电池(RFB)

  • 摘要
  • RFB技术
    • 常规/混合及其化学特性(包含 2 项 SWOT 评估)
    • 依材料具体设计:钒、铁及其变体、其他金属配体、HBr、有机物、锰
  • SWOT评估:电力储存用固定式/RFB
  • SWOT 评估:LDES 的 RFB 储能
  • 参数评估:LDES 的 RFB
  • 56家RFB公司比较(8项):名称、品牌、技术、技术支援状况、追踪Beyond Grid、追踪LDES、评论
  • RFB製造商及预计製造商简介(共48家)
  • 调查分析

第 5 章 LDES 电池:ACCB(高级/传统结构电池)

  • 摘要
  • LDES 的 ACCB:SWOT 评估
  • LDES 的 ACCB:参数评估
  • 7家ACCB製造商比较(8项):名称、品牌、技术、技术支援状况、追踪Beyond Grid、追踪LDES、评论
  • 铁空气电池:Form Energy(美国)(含SWOT评估)
  • 缪斯钙锑电池:Ambri(美国)(含SWOT评估)
  • 镍氢电池:EnerVenue(美国)(含SWOT评估)
  • 许多公司正在进入钠离子市场,但 Beyond Grid LDES 的潜力有限。
  • 硫钠:NGK/BASF(日本/德国),其他(含SWOT评估)
  • 锌空气电池:eZinc(加拿大)(含SWOT评估)
  • 卤化锌电池:EOS Energy Enterprises(美国)(含SWOT评估)

第 6 章 LDES(压缩空气储能)CAES

  • 摘要
  • 供应不足吸引克隆
  • CAES 市场定位
  • 参数评估:CAES 与 LAES
  • CAES 技术选项
    • 热力学
    • 等容/等压存储
    • 绝热冷却选择
  • CAES 製造商/专案/研究
    • 摘要
    • Siemens Energy (德国)
    • MAN Energy Solutions (德国)
    • 延长CAES储存时间与放电期
    • 在英国/欧盟进行的研究
  • 系统设计者和供应商的 CAES 概况和评估
    • ALCAES(瑞士)
    • APEX CAES(美国)
    • Augwind Energy(以色列)
    • Cheesecake Energy(英国)
    • Corre Energy(荷兰)
    • Gaelectric(爱尔兰):失败与经验教训
    • Huaneng Group(中国)
    • Hydrostor(加拿大)
    • LiGE Pty(南非)
    • Storelectric(英国)
    • Terrastor Energy Corporation (美国)
  • LDES 的 CAES 的 SWOT 评估

第 7 章化学中间体,氢气、氨、甲烷 LDES

  • 摘要
  • LDES 中氢气、甲烷和氨的比较
  • 关注既得利益
  • 氢经济与电力的比较
  • 化学中间体LDES的最佳点
  • 根据有问题的假设来计算成功
  • 大型矿业公司谨慎支持多种选择
  • 对于建筑物而言,所有选项加起来可能会非常昂贵。
  • 储氢技术
    • 摘要
    • 氢气地下储存选项
    • 用于电能传输和储存的氢互连器
    • 电力系统用氢储能专案回顾(共15个)
  • LDES储氢参数评估
  • LDES 的氢气、甲烷和氨的 SWOT 评估

第 8 章 LDES 液化气:空气 LAES 或或二氧化碳

  • 摘要
  • LAES(液态空气储能)系统原理
  • 能量密度较高,但 LCOS 通常比 CAES 高
  • 混合 LAES
  • LDES 的 LAES 参数评估
  • 延长LAES储能/放电週期
  • Highview Power(英国):Zhar Research 的评估
  • Highview Power 以及澳洲、西班牙、智利和澳洲的合作伙伴
  • Phelas(德国)
  • LAES 分析:Mitsubishi, Hitachi, Linde, European Union等
  • LAES 与 LDES:SWOT 评估
  • 液化二氧化碳储能:Energy Dome(义大利)
    • 概述与流程
    • Energy Dome的液化二氧化碳LDES:SWOT评估

第 9 章抽水蓄能水力发电 (PHES):传统 PHES 与先进 APHES

  • 传统 PHES
    • 概述:功能和可用位置
    • 三项基本技术
    • 世界各地的项目和意图
    • 经济
    • 参数评估
    • PHES 的 SWOT 评估
  • APHES(高级 PHES)- 无需山脉
    • 摘要
    • 地下增压:Quidnet Energy(美国)
    • StEnSea(海底储能)和 Ocean Grazer:与其他水下 LDES 的比较
    • 盐洞盐水:Cavern Energy(美国)
    • Mine storage(瑞典)
    • 重水的兴起:RheEnergise(英国)
    • APHES SWOT 评估

第 10 章 SGES(固态重力储能)

  • 摘要
  • LDES 的 SGES:参数评估
  • ARES(美国)
  • Energy Vault(瑞士)
  • Gravitricity(英国)
  • SinkFloat Solutions(法国)

第 11 章 ETES(热能储存)用于延迟供电

  • 摘要
  • LDES 的 ETES 参数评估
  • 特例:用于聚光太阳能发电的熔盐存储
  • 从 Azelio(瑞典)、Siemens Gamesa(德国)和 Stiesdal(丹麦)的失败中学到的教训
  • Antora(美国)
  • Malta Inc (德国)
  • LDES ETES 的 SWOT 评估
简介目录

Summary

REPORT STATISTICS
17-parameter technology appraisals:6
Chapters:11
SWOT appraisals:20
Key conclusions:22
Forecast lines 2024-2044:35
Companies:104
New infograms:143

At last, a report estimating what will happen with LDES not what special interest groups want to happen. A report that estimates winners and losers when research groups and trade associations must back their members. Such independent information is essential to those seeking to invest in LDES, supply materials, devices or otherwise participate in the LDES supply chain. Yes, this report even takes a close look at your value-added materials opportunities. Uniquely, it surfaces alternatives and impediments to LDES and all on the 20-year timescale necessary to really understand where we are headed. Alternatives include less-intermittent forms of solar and wave power, arriving tidal stream and other green generation with no long duration intermittency and grids spanning weather and time zones but there is more. This data-driven analysis still comes up with a large figure for the LDES market. It has the detail and information to correctly position your creation of a $10 billion LDES business, avoiding the traps, knowing the lessons of past failures. The author has already created several successful businesses and he has a Physics PhD in the subject.

The Executive summary and conclusions at 40 pages is sufficient in itself, giving definitions, background, success so far, infograms, technology and market roadmaps and 35 forecasts 2024-2044. Absorb lessons from recent investment in the LDES companies, technology toolkit, different needs for grid vs beyond-grid, gaps in the market, even projected technology and company winners and losers on current evidence.

The introduction, at 49 pages, gives the background including the solar and beyond-grid megatrends, many LDES alternatives that will limit, not eliminate the opportunity. Indeed, learn why these realistic LDES forecasts will make stationary storage become a larger value market that mobile storage. Understand Levelised Cost of Storage LCOS and many time-related parameters for storage. Here are the LDES alternatives in detail with appraisal.

The 18 pages of Chapter 2 "LDES design principles, parameter comparisons, trends and materials" open with the very different needs of grid and beyond grid LDES then it presents graphics describing how the technology options compare in appropriate graphed parameters. For example, the first three graphics present 12 LDES technology choices compared in 7 columns, nine primary LDES technology families, vs 17 other criteria then detailed progress competing for increasing LDES duration by technology. It ends with graphics analysing membrane materials and needs for many forms of LDES such as advanced conventional construction and redox flow batteries plus hydrogen fuel cells and electrolysers.

The rest of the report consists of drill-down chapters with many SWOT appraisals on each LDES technology in alphabetical order starting with 133 pages of Chapter 4, "Batteries for LDES: Redox flow batteries RFB". Technologies of the different chemistries and structures are explained with pros and cons including regular vs hybrid and the different chemistries. 56 RFB companies are compared in 8 columns: name, brand, technology, tech. readiness, beyond grid focus, LDES focus, comment the see profiles of 48 RFB manufacturers and putative manufacturers followed by research pipeline analysis.

The 51 pages of Chapter 5, "Batteries for LDES: Advanced conventional construction batteries ACCB" use many graphics to present such things as a parameter appraisal of ACCB for LDES then seven ACCB manufacturers compared in 8 columns: name, brand, technology, tech. readiness, focus, LDES focus, comment. Subsections dive into iron-air: Form Energy USA with SWOT appraisal, molten calcium antimony: Ambri USA with SWOT appraisal, nickel hydrogen: EnerVenue USA with SWOT, sodium-ion with limited LDES potential, Sodium sulfur: NGK/ BASF Japan/ Germany and others with SWOT, zinc-air: eZinc Canada with SWOT, zinc halide EOS Energy Enterprises USA with SWOT.

Chapter 6. "Compressed air CAES" (51 pages) covers the basics, including physics, the global situation, activities of 13 key players, analysis of the research pipeline and ending with a SWOT. Then Chapter 7. "Chemical intermediary hydrogen, ammonia, methane LDES" (28 pages) explains this world of massive inefficiency but massive potential storage capacity under-ground. Hydrogen is compared to methane and ammonia for LDES delayed electricity and proposed hydrogen economy is compared to pure electrification. The sweet spot for chemical intermediary LDES is estimated but you are warned about calculating success based on dubious assumptions. Learn how mining giants prudently back many options but, for buildings, all chemical options are unimpressive. See technologies for hydrogen storage, hydrogen interconnectors for electrical energy transmission and storage and a review of 15 projects that use hydrogen for energy storage in a power system. The chapter ends with a parameter appraisal of hydrogen storage for LDES and SWOT appraisal of hydrogen, methane, ammonia for LDES.

Chapter 8. "Liquefied gas energy storage: Liquid air LAES or CO2" (23 pages) explains these intriguing options for grid storage without the massive earthworks of hydro, compressed air or hydrogen. Understand their higher energy density but often higher LCOS than CAES, hybrid LAES, parameter appraisal of LAES for LDES and scope for increasing the LAES storage time and discharge duration. Six company activities assessed, the research pipeline and two SWOT appraisals end this chapter.

Chapter 9. "Pumped hydro: conventional PHES and advanced APHES" (38 pages) is the world where about 95% of grid storage is of this type and maybe 99% of the electricity stored. Although some meets an LDES specification, it has been rarely used for this but now things change. Environmental objections and other siting limitations drive the need for advanced forms, mainly out of sight and not needing mountains, so more widely deployable. Learn conventional pumped hydro PHES with projects and intentions across the world, the economics, parameter appraisal and see a SWOT appraisal of PHES but more detailed is the analysis of advanced pumped hydro APHES. That means pressurised underground by Quidnet Energy USA, sea floor StEnSea Germany and Ocean Grazer Netherlands compared to other underwater LDES, brine in salt caverns Cavern Energy USA, mine storage Sweden, liquid heavier than concrete invisibly-pumped up mere hills by RheEnergise UK. There is a SWOT appraisal of APHES.

The 25 pages of Chapter 10. "Solid gravity energy storage SGES" cover the one with no self-leakage even for seasonal storage but many moving parts. See the overview and the IIASA, Austria proposal in 2023, the parameter appraisal of SGES for LDES, activity of four companies then SWOT appraisal. Much space is given to leaders Energy Vault with giant partners and huge units proceeding in China initially for short-term storage and Gravitricity, using mines in partnership with ABB and others.

The report closes by assessing the technology that has suffered the most exits. Deserving only 14 pages, Chapter 11. "Thermal energy storage for delayed electricity ETES" contrasts the great success of delayed heat with the inefficiency and limited parameters of thermally-delayed electricity. There is a parameter appraisal of ETES for LDES, the successful special case of molten salt storage for concentrated solar and the lessons of failure of Azelio Sweden, Siemens Gamesa Germany and Stiesdal Denmark. Learn why Antora USA and Malta Inc Germany hope to succeed by using different approaches and see a SWOT appraisal of ETES for LDES.

Report, “Long Duration Energy Storage LDES Reality: Materials, Equipment Markets in 35 Lines, Technology Roadmaps, Manufacturers, Winners, Losers, Alternatives 2024-2044 ” is up-to-date, realistic and detailed.

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose and scope of this report
  • 1.2. Methodology of this analysis
  • 1.3. Definition and need
  • 1.4. The very different needs for grid vs beyond-grid LDES 2024-2044
  • 1.5. Basic technology choices for LDES
  • 1.6. Duration being achieved by technology and location
  • 1.7. Lesson from relative investment by technology and location
  • 1.8. Key conclusions: markets
  • 1.9. Key conclusions: technology
  • 1.10. Probable winner for beyond grid LDES: RFB success and gaps in its markets
  • 1.11. Long Duration Energy Storage LDES roadmap 2023-2044
  • 1.12. Market forecasts 2024-2044 in 35 lines
    • 1.12.1. Total LDES market 8 hours and above in 11 technology categories $ billion 2023-2044 table, graphs
    • 1.12.2. Regional share of LDES value market in four regions 2024-2044
    • 1.12.3. Global market split by duration 2024 and 2044
    • 1.12.4. Possible LDES global scenario TWh cumulative 2024-2044
    • 1.12.5. Possible LDES global scenario average duration 2024-2044
    • 1.12.6. Possible LDES global scenario TW cumulative 2024-2044
    • 1.12.7. Beyond-grid LDES market in 8 categories $ billion 2023-2044: table and line graphs
    • 1.12.8. RFB global value market grid vs beyond-grid 2023-2044 table, graph, explanation
    • 1.12.9. RFB global value market short term and LDES 2023-2044 table, graph, explanation
    • 1.12.10. Vanadium vs iron vs other RFB market % 2024-2044 table, graph, explanation
    • 1.12.11. Regular vs hybrid RFB % value sales 2024-2044

2. Introduction

  • 2.1. Overview: energy storage and its mitigation
    • 2.1.1. What is energy storage?
    • 2.1.2. Why stationary electricity storage will overtake mobile storage
    • 2.1.3. Long Duration Energy Storage definition, need for new technology and alternatives
    • 2.1.4. Capacity factor of wind, solar and options that need little or no LDES
    • 2.1.5. Anatomy of LDES and why it is still needed
  • 2.2. Going electric and the place of hydrogen and nine harvesting options
  • 2.3. The solar megatrend
  • 2.4. Growth of wind and solar energy sources across the world
  • 2.5. The beyond-grid megatrend
  • 2.6. Overview, definition and usefulness of Levelised Cost of Storage LCOS
  • 2.7. Many different time parameters for storage
  • 2.8. Progress to advanced photovoltaics and storage implications
    • 2.8.1. Progress so far
    • 2.8.2. Advanced photovoltaics
  • 2.9. Advanced wind power to reduce need for LDES
    • 2.9.1. Taller turbines
    • 2.9.2. Airborne Wind Energy AWE vs ocean power to reduce need for LDES
  • 2.10. Conventional hydropower

3. LDES design principles, parameter comparisons, trends and materials

  • 3.1. Overview: definition, different design requirements for grid vs beyond-grid LDES
  • 3.2. The 12 LDES technology choices compared in 7 columns
  • 3.3. Nine primary LDES technology families, vs 17 other criteria
  • 3.4. Progress competing for increasing LDES duration by technology
  • 3.5. Equivalent efficiency vs storage hours for RFB and other options
  • 3.6. Available sites vs space-efficiency for LDES technologies
  • 3.7. LCOS $/kWh trend vs storage and discharge time
  • 3.8. LDES power GW trend vs storage and discharge time
  • 3.9. Days storage vs rated power return MW for LDES technologies
  • 3.10. Days storage vs capacity MWh for LDES technologies
  • 3.11. Potential by technology to supply LDES at peak power after various delays
  • 3.12. Added value metals, compounds and membranes for LDES
    • 3.12.1. Overview
    • 3.12.2. Membrane difficulty levels and materials used and proposed
    • 3.12.3. RFB membrane difficulty levels and materials used and proposed

4. Batteries for LDES: Redox flow batteries RFB

  • 4.1. Overview
  • 4.2. RFB technologies
    • 4.2.1. Regular or hybrid and their chemistries with two SWOT appraisals
    • 4.2.2. Specific designs by material: vanadium, iron and variants, other metal ligand, HBr, organic, manganese
  • 4.3. SWOT appraisal of RFB for stationary storage
  • 4.4. SWOT appraisal of RFB energy storage for LDES
  • 4.5. Parameter appraisal of RFB for LDES
  • 4.6. 56. RFB companies compared in 8 columns: name, brand, technology, tech. readiness, beyond grid focus, LDES focus, comment
  • 4.7. Profiles of 48 RFB manufacturers and putative manufacturers
  • 4.8. Research analysis

5. Batteries for LDES: Advanced conventional construction batteries ACCB

  • 5.1. Overview
  • 5.2. SWOT appraisal of ACCB for LDES
  • 5.3. Parameter appraisal of ACCB for LDES
  • 5.4. Seven ACCB manufacturers compared: 8 columns: name, brand, technology, tech. readiness, beyond-grid focus, LDES focus, comment
  • 5.5. Iron-air: Form Energy USA with SWOT appraisal
  • 5.6. Molten calcium antimony: Ambri USA with SWOT appraisal
  • 5.7. Nickel hydrogen: EnerVenue USA with SWOT
  • 5.8. Sodium-ion many companies but limited beyond-grid LDES potential
  • 5.9. Sodium sulfur: NGK/ BASF Japan/ Germany and others with SWOT
  • 5.10. Zinc-air: eZinc Canada with SWOT
  • 5.11. Zinc halide EOS Energy Enterprises USA with SWOT

6. Compressed air CAES for LDES

  • 6.1. Overview
  • 6.2. Undersupply attracts clones
  • 6.3. Market positioning of CAES
  • 6.4. Parameter appraisal of CAES vs LAES
  • 6.5. CAES technology options
    • 6.5.1. Thermodynamic
    • 6.4.2. Isochoric or isobaric storage
    • 6.4.3. Adiabatic choice of cooling
  • 6.6. CAES manufacturers, projects, research
    • 6.6.1. Overview
    • 6.6.2. Siemens Energy Germany
    • 6.6.3. MAN Energy Solutions Germany
    • 6.6.4. Increasing the CAES storage time and discharge duration
    • 6.6.5. Research in UK and European Union
  • 6.7. CAES profiles and appraisal of system designers and suppliers
    • 6.7.1. ALCAES Switzerland
    • 6.7.2. APEX CAES USA
    • 6.7.3. Augwind Energy Israel
    • 6.7.4. Cheesecake Energy UK
    • 6.7.5. Corre Energy Netherlands
    • 6.7.6. Gaelectric failure Ireland - lessons
    • 6.7.7. Huaneng Group China
    • 6.7.8. Hydrostor Canada
    • 6.7.9. LiGE Pty South Africa
    • 6.7.10. Storelectric UK
    • 6.7.11. Terrastor Energy Corporation USA
  • 6.8. SWOT appraisal of CAES for LDES

7. Chemical intermediary hydrogen, ammonia, methane LDES

  • 7.1. Overview
  • 7.2. Hydrogen compared to methane and ammonia for LDES
  • 7.3. Beware vested interests
  • 7.4. The hydrogen economy vs electricity
  • 7.5. Sweet spot for chemical intermediary LDES
  • 7.6. Calculating success based on dubious assumptions
  • 7.7. Mining giants prudently back many options
  • 7.8. For buildings, all options together would be too expensive
  • 7.9. Technologies for hydrogen storage
    • 7.9.1. Overview
    • 7.9.2. Choices of underground storage for hydrogen
    • 7.9.3. Hydrogen interconnectors for electrical energy transmission and storage
    • 7.9.4. Review of 15 projects that use hydrogen for energy storage in a power system
  • 7.10. Parameter appraisal of hydrogen storage for LDES
  • 7.11. SWOT appraisal of hydrogen, methane, ammonia for LDES

8. Liquefied gas for LDES- air LAES or carbon dioxide

  • 8.1. Overview
  • 8.2. Principle of liquid air energy storage system
  • 8.3. Higher energy density but often higher LCOS than CAES
  • 8.4. Hybrid LAES
  • 8.5. Parameter appraisal of LAES for LDES
  • 8.6. Increasing the LAES storage time and discharge duration
  • 8.7. Highview Power UK with Zhar research appraisal
  • 8.8. Highview Power and partners in Australia, Spain, Chile, Australia
  • 8.9. Phelas Germany
  • 8.10. LAES research: Mitsubishi, Hitachi, Linde, European Union, Others
  • 8.11. SWOT appraisal of LAES for LDES
  • 8.12. Liquid carbon dioxide energy storage: Energy Dome Italy
    • 8.12.1. Overview and process
    • 8.12.2. SWOT appraisal of Energy Dome liquid carbon dioxide LDES.

9. Pumped hydro: conventional PHES and advanced APHES

  • 9.1. Conventional pumped hydro PHES
    • 9.1.1. Overview: capability and available sites
    • 9.1.2. Three basic technologies
    • 9.1.3. Projects and intentions across the world
    • 9.1.4. Economics
    • 9.1.5. Parameter appraisal
    • 9.1.6. SWOT appraisal of PHES
  • 9.2. Advanced pumped hydro APHES does not need mountains
    • 9.2.1. Overview
    • 9.2.2. Pressurised underground: Quidnet Energy USA
    • 9.2.3. Sea floor StEnSea and Ocean Grazer compared to other underwater LDES
    • 9.2.4. Brine in salt caverns Cavern Energy USA
    • 9.2.5. Mine storage Sweden
    • 9.2.6. Heavy water up hills RheEnergise UK
    • 9.2.7. SWOT appraisal of APHES

10. Solid gravity energy storage SGES

  • 10.1. Overview
  • 10.2. Parameter appraisal of SGES for LDES
  • 10.3. ARES USA
  • 10.4. Energy Vault Switzerland
  • 10.5. Gravitricity UK
  • 10.6. SinkFloat Solutions France

11. Thermal energy storage for delayed electricity ETES

  • 11.1. Overview
  • 11.2. Parameter appraisal of ETES for LDES
  • 11.3. Special case: molten salt storage for concentrated solar
  • 10.4. Lessons from failure of Azelio Sweden, Siemens Gamesa Germany and Stiesdal Denmark
  • 11.5. Antora USA
  • 11.6. Malta Inc Germany
  • 11.7. SWOT appraisal of ETES for LDES