市场调查报告书
商品编码
1563423
固体冷却材料及系统 (PDRC、热、热电等) 的市场与技术 (2025-2045年)Solid State Cooling Materials and Systems PDRC, Caloric, Thermoelectric, Other: Markets, Technology 2025-2045 |
处于主导地位的蒸汽压缩冷却未来将不可避免地经历S形曲线,预计20年内其市场占有率将大幅下降。未来十年,许多固态冷却新创公司预计将扩大市场占有率,并被冷却巨头收购,为投资者提供主要退出途径。
固态冷却为冷却带来了许多新的创新,包括引入1kW 微晶片、更高温度的6G 通讯基础设施计划、下一代柔性太阳能电池板,甚至是即使在50°C 的夏季也能保持凉爽的衣服前景是满足需求的。固态冷却是多功能智慧材料(包括结构电子产品)趋势的一部分。
本报告提供固体冷却材料及系统的市场调查,彙整新的固体冷却技术概要,主要材料的R&D趋势,技术蓝图,主要材料的市场规模的转变·预测,案例研究,进入经营者,事业机会分析等资料。
Solid state cooling is now a superb investment with impressive research advances through 2024. Uniquely, the new Zhar Research report, "Solid State Cooling Materials and Systems PDRC, Caloric, Thermoelectric, Other: Markets, Technology 2025-2045" gives that new picture with PhD level analysis.
Nothing is forever and the dominant vapor compression cooling will be subject to the inevitable S curve, sharply losing share within 20 years. Long before that, within ten years, many solid-state cooling startups starting to take share will be bought by the cooling giants playing catch-up, this providing an excellent exit for investors.
Solid-state cooling will serve the many new needs for cooling such as 1kW microchips arriving, planned hotter 6G Communications infrastructure, next generation flexible solar panels and even apparel that cools well in the lethal 50C summers arriving. Solid-state cooling is part of the trend to multifunctional smart materials including structural electronics: vapor compression is not.
This commercially-oriented 339-page report has 292 research advances assessed from 2024 and 2023, 102 companies mentioned, ten SWOT appraisals, 33 new infograms, 17 forecast lines 2025-2045. The primary focus is on the technologies judged to have the largest commercial potential 2025-2045 - radiative cooling into the atmospheric window, notably the variant called passive daytime radiative cooling, the many forms of caloric cooling and thermoelectric cooling being reinvented. Multi-mode and multifunctional forms are revealed and new enabling technologies such as metamaterial cooling explained.
The 30-page Executive Summary and Conclusions is sufficient in itself, presenting roadmaps 2025-2045, those 17 forecast lines, many new pie charts, comparisons, SWOTs, radical new needs. See projections such as best cooling temperature differences and cooling power achievements likely 2025-2045 by technology. Which two caloric cooling technologies win? See the most promising materials for each technology ranked from research and latest company initiatives and some toxigen issues that are an opportunity for you.
The 26-page Introduction puts it in context such as emerging countries such as Saudi Arabia and India being in hotter locations just as global warning is added. See the new cooling needs from ever hotter microchips graphed, telecommunications base station and data center power escalation graphed. Here are the allied technologies such as thermal conductors shown in maturity curves 2025, 2035, 2045 and the solid-state cooling options they support. See how the need for vapor compression will be eased by adding some of the new technologies. However, this is an unbiassed report, so the chapter ends with detail on two examples of competition for solid state cooling that emerged in 2024. The rest of the report is much more detailed with two chapters on different forms of radiative cooling, one on the enabling metamaterials, one on caloric cooling and one on emerging new forms of thermoelectric cooling.
Chapter 3 "Passive Daylight Radiative Cooling" takes 98 pages, massively important because, taking no power, it is easily integrated into apparel and buildings. This technology combines radiative cooling into the atmospheric window with reflection of heat. Exactly how does it work in structures and fabrics? Smart windows, invisible facades and remarkable other applications being progressed? See how ten companies commercialising PDRC. The materials involved are very closely examined. Can it be coloured without compromise? Transparent, aerogel, porous, ceramic and meta-material forms? Overall, the 13 most important formulations of material for PDRC are prioritised, particularly incorporating the research breakthroughs in 2024.
Chapter 4 (30 pages) takes you into allied technologies and advanced functionalities of PDRC with, "Self-adaptive, switchable, tuned, Janus and anti-Stokes solid state cooling". This includes two-way radiative cooling, use of fluorescence and different materials such as vanadium salts and liquid crystal. As with all the other chapters, enjoy SWOT appraisals, diagrams and analysis, not rambling text.
Chapter 5, "Phase change and particularly caloric cooling" compares the cooling obtained by phase changes between solid, liquid and gas and the feeble cooling between different solid crystalline states. However, this chapter then almost entirely focuses on the exciting solid-state one - caloric cooling by alteration of ferroic state. See magnetocaloric, elastocaloric, twistocaloric, barocaloric and electrocaloric compared and why an additional liquid option is not promising. Learn how latest research leads us to look particularly closely at the complementary technologies electrocaloric and elastocaloric, the winning materials from latest research and the issues to overcome before successful commercialisation such as sometimes toxigen intermediaries, moving parts or high voltages. Nonetheless, the potential on a 20-year view is shown to be considerable.
In a report on solid state cooling, thermoelectrics might seem the dullest option - mature yet only achieving a market size of around one billion dollars. However, the closer look in this report reveals that this huge and precise cooling capacity even on a tiny scale is badly needed for some new needs. Learn how it can be boosted by using some of the other solid state cooling options on the hot side. In addition, see how wide area, low-cost thermoelectrics is a real, though not immediate, possibility when latest research is appraised in detail. This chapter 7, "Future thermoelectric cooling and thermoelectric harvesting as a user of and power provider for other solid-state cooling" (72 pages) ends with 82 manufacturers listed.
Zhar Research report, "Solid State Cooling Materials and Systems PDRC, Caloric, Thermoelectric, Other: Markets, Technology 2025-2045" is essential reading for those seeking to make or use the next generation of cooling technology and all in added value materials that seek large new opportunities.
CAPTION: Some reasons for the escalating need for cooling. Source, Zhar Research report, "Solid State Cooling Materials and Systems PDRC, Caloric, Thermoelectric, Other: Markets, Technology 2025-2045".