热超材料:市场·技术 (2025-2045年)
市场调查报告书
商品编码
1615495

热超材料:市场·技术 (2025-2045年)

Thermal Metamaterials: Markets, Technology 2025-2045

出版日期: | 出版商: Zhar Research | 英文 279 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

热超材料的市场规模预计将超过 130 亿美元,应用范围从军事热屏蔽和感官错觉到改进的能量收集、冷却和热电设备、电力电子设备的热管理等。

本报告提供热超材料的市场及技术,与技术的概要与案例调查,彙整重要功能,製造技术材料,终端用户产业与用途,研究开发趋势,市场成长预测等资讯。

目录

第1章 摘要整理·结论

  • 本报告的目的
  • 此分析的研究方法
  • 热超材料
  • 主要结论:市场定位
  • 主要结论:关键配置、功能与製造技术
  • 132个最新热超材料研究案例的受欢迎程度:依成分分类
  • 使用超材料进行静态到动态的热传递
  • 静态辐射冷却材料:超材料是众多选择之一
  • 被动日间辐射冷却 PDRC:SWOT 评估
  • 热超材料和冷却路线图:按市场和技术划分
  • 市场预测
  • 背景预测

第2章 简介

  • 摘要
  • 超材料热管理材料的类型
  • 三个超材料系列重迭
  • 因各种原因对冷却的需求增加
  • 冷却技术将如何过渡到智慧材料
  • 冷却是热超材料的最大潜力
  • 超导热超材料的可能性
  • 广泛使用和提议的不良材料

第3章 与热超材料的原理功能

  • 摘要
  • 物理学基础
  • 新理论方法带来新应用的范例
  • 目前商业化程度最高的超材料热管理材料类型
  • 三个超材料系列如何重迭
  • 2024 年正在进行的热超材料结构范例
  • 热超材料与超表面:SWOT 评估
  • 具有重要商业意义的功能
  • 热斗篷、伪装、聚光灯、二极体、扩展器、旋转超材料
  • 多功能热超材料以及 2024 年 5 月的范例
  • 热超材料选项:未来将继续扩大

第4章 下个阶段:主动、动态与可调谐热超材料

  • 概要
  • 热超材料的4D印刷和多联轴器
  • 电化学的利用
  • 进展和对象用途范例
  • 热机器超材料

第5章 热超材料的製造技术和材料

  • 摘要
  • 积层製造的设计、製造、特性与应用
  • 热元设备的 3D 列印
  • 红外线光驱动的层状热超材料列印技术:2024 年范例

第6章 热超材料的一些目标应用及其研究进展

  • 概述:从感测器到手术机器人再到太空船的应用
  • 紧凑型偏振光发射器
  • 从电脑到航空航天工程:传热
  • 温室和窗户
  • 工业热量收集
  • Metalens- 热
  • 微晶片冷却
  • 太阳能冷却
  • 卫星热控制
  • 电子设备的热包装
  • 冷纤维
  • 采用热超材料增强的热电发电机和冷却装置
  • 恆温器 节能恆温器及负能量多温维持容器
  • 车辆冷却漆

第7章 使用超材料的被动日间辐射冷却 (PDRC)

  • 摘要:SWOT 评估
  • 基于热超材料的辐射冷却与替代方案的比较
  • 使用半透明热超材质的方法:图案化 PDMS
  • 使用热超材料的透明 PDRC,用于外墙、太阳能板和窗户
  • 纤维素发电和其他辐射冷却穿戴超织物:SWOT 评估
  • 超材料PDRC的冷面提高了热电发电机的功率
  • 其他超材料辐射冷却研究
  • 超材料方法的商业化
  • PDRC 超越超材料选项
简介目录

Summary

A new Zhar Research report reveals the large commercial opportunities arising from emerging thermal metamaterials. "Thermal Metamaterials: Markets, Technology 2025-2045" explains how they have a unique thermal performance based on physical structure and patterning, rather than chemical composition, but future forms will also leverage advanced materials. These artificial structures manipulate the direction and magnitude of heat flow often in a manner opposite to that typically encountered in nature. Headed to become a market of over $13 billion, applications include thermal cloaking and illusion for the military and improved energy harvesting, cooling, thermoelectric devices, and thermal management of power electronic devices for the rest of us.

Greenhouse magic

The report shows how incorporating smart materials can create a greenhouse that cools in a hot country but also one that is hotter in a cold country. Metamaterial apparel that strongly cools without power is already on sale: cooling paint for vehicles is under development. Planned powered metamaterials will be reconfigurable, even self-adjusting during use. Can they reduce the need for vapor compression cooling that heats our cities? It is all here in a 279 page commercially-oriented report with seven chapters and 27 forecast lines 2025-2045.

Commercial opportunities in detail

The Executive Summary and Conclusions is sufficient in itself, with 38 pages including 10 key conclusions, those forecasts as tables and graphs with explanations, easily absorbed comparisons, roadmaps 2025-2045 and new infograms.

The 37-page Introduction explains the technology, displays many examples. It then spells out global warming, hotter electronics and other challenges that will be addressed by thermal metamaterials. Cooling is identified as the most important target market.

Chapter 3. "Thermal metamaterial principles and functions" (42 pages) explains these from the commercial point of view. Important functions are shown to include thermally radiative metamaterials, advanced photonic cooling and prevention of heating, ultra-conductive thermal metamaterials, thermal convection in liquids enhanced by metamaterials, thermal cloak, camouflage, concentrator, diode, expander and rotator but with more to come. However, it is found that there is strong competition in many of these cases so the next phase will be important where thermal metamaterials will advance to performing functions largely impossible in any other way.

Chapter 4. covers these under the title, "The next stage: Active, dynamic and tunable thermal metamaterials" (18 pages). See examples of progress and target applications that include tunable liquid-solid hybrid, unified static and dynamic, sensing and responding to ambient temperatures, advanced thermal radiation devices: stealth with thermal management, active remote sensing and thermal camouflage, dynamic control of heat flux and heat flow direction possibly for electric vehicle batteries, adaptive radiative cooling, passive thermoregulation and thermal-mechanical metamaterials. This is all supported by detail on the latest research advances in 2024-5.

Chapter 5. Manufacturing technologies and materials for thermal metamaterials takes 21 pages to illustrate how 3D printing and later 4D printing are important for bulk meshes acting as thermal metamaterials but reel-to-reel manufacture will be important for laminar formats such as those manipulating infrared radiation. Plenty of latest examples and opportunities are revealed and quantified, including the next stage of functionally graded and metal with non-metal structures emerge.

The 53 pages of Chapter 6. "Some targetted applications of thermal metamaterials and their research advances 2024-5" brings it all alive with applications from sensors to surgical robots and spacecraft. Explore latest progress with compact polarised light emitters, smarter greenhouses, smart windows and satellite thermal control, harvesting industrial heat, thermal metalens, microchip and photovoltaics cooling, thermal packaging of electronics, textiles that cool and thermoelectric harvesters and coolers enhanced by thermal metamaterials. Add energy-free thermostats, negative-energy and multi-temperature maintenance containers and vehicle cooling paint.

The report closes with a long chapter on what may become the largest market for thermal metamaterials. Chapter 7. "Passive daytime radiative cooling (PDRC) using metamaterials" uses 59 pages to fully explain this technology and the likely place of thermal metamaterials in it, with SWOT appraisals and a detailed look at research breakthroughs and company initiatives 2024-5.

Essential reading

The Zhar Research report, "Thermal Metamaterials : Markets, Technology 2025-2045" is essential reading for those wishing to make or use these exciting new added-value materials. Those involved in the following materials will find many business opportunities.

CAPTION: Primary mentions of materials used in thermal metamaterials in latest research advances 2024-5. Source: "Thermal Metamaterials : Markets, Technology 2025-2045" Zhar Research.

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose of this report
    • 1.1.1. General
    • 1.1.2. Types of metamaterial thermal management materials by function
    • 1.1.3. Applications analysed from sensors to surgical robots and spacecraft
    • 1.1.4. Three families of metamaterials overlap
  • 1.2. Methodology of this analysis
  • 1.3. Thermal metamaterials
    • 1.3.1. Some of the drivers of commercialisation of thermal metamaterials
    • 1.3.2. Cooling toolkit, 7 metamaterial-enabled options in blue text, trend to multifunctionality
    • 1.3.3. Examples of thermal metamaterials in 2024 advances
  • 1.4. Primary conclusions; market positioning
  • 1.5. Primary conclusions: leading formulations, functionality and manufacturing technologies
  • 1.6. Popularity by formulation in 132 examples of latest thermal metamaterial research
  • 1.7. Static to dynamic heat transfer using metamaterials
  • 1.8. Static radiative cooling materials showing metamaterials as one of many options
  • 1.9. SWOT appraisal of Passive Daytime Radiative Cooling PDRC
  • 1.10. Thermal metamaterial and cooling roadmap by market and by technology 2025-2045
  • 1.11. Market forecasts 2025-2045
    • 1.11.1. Cooling module global market by seven technologies $ billion 2025-2045
    • 1.11.2. Thermal meta-device market $ billion 2025-2045 by application segment
    • 1.11.3. Electromagnetic meta-device market $ billion 2025-2045
    • 1.11.4. Electromagnetic meta-device market $ billion 2025-2045 by application segment
    • 1.11.5. Meta-device market electromagnetic vs thermal $ billion 2025-2045
    • 1.11.6. Terrestrial radiative cooling performance in commercial products W/sq. m 2025-2045
    • 1.11.7 Typical best reported temperature drop achieved by technology 2000-2045 extrapolated
  • 1.12. Background forecasts
    • 1.12.1. Air conditioner value market $ billion 2025-2045 and by region
    • 1.12.2. Global market for HVAC, refrigerators, freezers, other cooling $ billion 2025-2045
    • 1.12.3. Refrigerator and freezer value market $ billion 2025-2045
    • 1.12.4. Stationary battery market $ billion and cooling needs 2025-2045
    • 1.12.5. Market for 6G vs 5G in 2 categories base stations units millions yearly 2025-2045

2. Introduction

  • 2.1. Overview
  • 2.2. Types of metamaterial thermal management materials
  • 2.3. Three families of metamaterials overlap
  • 2.4. Cooling needs increase for many reasons 2025-2045
    • 2.4.1. Escalation of demand for air conditioning and forthcoming changes in requirement
    • 2.4.2. Problems of traditional vapor compression cooling and progress to solid state cooling
    • 2.4.3. Desire to eliminate liquid cooling for electric vehicles and other needs
    • 2.4.4. Severe new microchip cooling requirements arriving
    • 2.4.5. Much greater need for thermal materials in 6G Communications
    • 2.4.6. Other cooling problems and opportunities emerging in electronics and ICT
  • 2.5. How cooling technology will trend to smart materials 2025-2045
  • 2.6. Cooling is the largest potential for thermal metamaterials
  • 2.7. The potential for ultra-conductive thermal metamaterials
  • 2.8. Undesirable materials widely used and proposed: this is an opportunity for you

3. Thermal metamaterial principles and functions

  • 3.1. Overview
  • 3.2. Basis in physics
  • 3.3. Examples of new theoretical approaches in 2024-5 leading to new applications
  • 3.4. Types of metamaterial thermal management materials with the currently most commercialised sectors
  • 3.5. How three families of metamaterials overlap
  • 3.6. Examples of thermal metamaterial structures in 2024 advances
  • 3.7. SWOT assessment for thermal metamaterials and metasurfaces
  • 3.8. Commercially important functions
    • 3.8.1. Thermally radiative metamaterials, advanced photonic cooling and prevention of heating
    • 3.8.2. Ultra-conductive thermal metamaterials
    • 3.8.3. Thermal convective metamaterials
  • 3.9. Thermal cloak, camouflage, concentrator, diode, expander, rotator metamaterials
    • 3.9.1. Introduction
    • 3.9.2. Thermal cloaks and camouflage
    • 3.9.3. Thermal concentrators
    • 3.9.4. Thermal diodes
    • 3.9.5. Thermal expanders
    • 3.9.6. Thermal rotators
  • 3.10. Multifunctional thermal metamaterials with examples from 2024-5
  • 3.11. Far more options for thermal metamaterials ahead

4. The next stage: Active, dynamic and tunable thermal metamaterials

  • 4.1. Overview
  • 4.2 4D printing and multi-coupling of thermal metamaterials
  • 4.3. Use of electrochemistry
  • 4.4. Examples of progress and target applications
    • 4.4.1. Tunable liquid-solid hybrid thermal metamaterials
    • 4.4.2. Unified static and dynamic thermal metamaterials
    • 4.4.3. Sensing and responding to ambient temperatures
    • 4.4.4. Advanced thermal radiation devices: stealth with thermal management
    • 4.4.5. Active remote sensing and thermal camouflage
    • 4.4.6. Dynamic control of heat flux and heat flow direction possibly for electric vehicle batteries
    • 4.4.7. Adaptive radiative cooling and passive thermoregulation
  • 4.5. Thermal-mechanical metamaterials
    • 4.5.1. Overview
    • 4.5.2. Programmable mechanical-thermal metamaterials

5. Manufacturing technologies and materials for thermal metamaterials

  • 5.1. Overview
  • 5.2. Additive manufacturing design, fabrication, property and application
  • 5.3 3D printing of thermal meta-devices
    • 5.3.1. Metal 3D printing of thermal meta-devices
    • 5.3.2. Metal polymer and metal graphene 3D printing of thermal meta-devices
    • 5.3.3. Functionally graded materials in thermal meta-structures
    • 5.3.4. Other materials options
  • 5.4. Printing technologies for laminar thermal metamaterials manipulating infrared radiation with 2024 example

6. Some targeted applications of thermal metamaterials and their research advances 2024-5

  • 6.1. Overview: applications from sensors to surgical robots and spacecraft
  • 6.2. Compact polarised light emitters
  • 6.3. Computers to aerospace engineering: heat transfer
  • 6.4. Greenhouses and windows
  • 6.5. Harvesting industrial heat
  • 6.6. Metalens - thermal
  • 6.7. Microchip cooling
  • 6.8. Photovoltaics cooling
  • 6.9. Satellite thermal control
  • 6.10. Thermal packaging of electronics
  • 6.11. Textiles that cool
  • 6.12. Thermoelectric harvesters and coolers enhanced by thermal metamaterials
  • 6.13. Thermostats energy-free thermostat and negative-energy and multi-temperature maintenance container
  • 6.14. Vehicle cooling paint

7. Passive daytime radiative cooling (PDRC) using metamaterials

  • 7.1. Overview with SWOT appraisal
  • 7.2. Radiative cooling based on thermal metamaterials compared to alternatives
  • 7.3. Approach using translucent thermal metamaterials in 2024: patterned PDMS
  • 7.4. Transparent PDRC for facades, solar panels and windows using thermal metamaterials
  • 7.5. Cellulosic power generating and other radiative cooling wearable meta-fabrics with SWOT appraisal
  • 7.6. Metamaterial PDRC cold side boosting power of thermoelectric generators in 2024
  • 7.7. Other metamaterial radiative cooling research 2024 and 2023
  • 7.8. Commercialisation of the metamaterial approach
    • 7.8.1. Radi-Cool Japan, Malaysia
    • 7.8.2. SRI USA
  • 7.9. PDRC beyond the metamaterial options