封面
市场调查报告书
商品编码
1804260

三结构等向性(TRISO)燃料的全球市场:各类型,各反应器类型,不同形状,各终端用户,各地区-市场规模,产业动态,机会分析,预测(2025年~2033年)

Global Tri-structural Isotropic (TRISO) Fuel Market: Type, Reactor Type, Form Type, End Users, Region-Market Size, Industry Dynamics, Opportunity Analysis and Forecast for 2025-2033

出版日期: | 出版商: Astute Analytica | 英文 215 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

三结构各向同性 (TRISO) 燃料市场正在经历显着的成长和转型。 2024 年,其市场规模约为 3.8249 亿美元,预计到 2033 年将达到 5.5428 亿美元。在 2025 年至 2033 年的预测期内,此成长的复合年增长率为 4.28%。这一势头主要归功于先进反应器开发商成功地将监管部门的批准和资金里程碑转化为 TRISO 燃料的具体确认订单,标誌着 TRISO 燃料从探索性研究向商业规模研发的过渡。

如今,TRISO 燃料已成为全球推动先进核能解决方案的重要基础。其卓越的安全性能使其成为新型反应器设计的首选。这主要归功于其多层包壳结构,即使在高温和高辐射等极端运行条件下也能有效限制裂变产物。这项特性显着提高了使用TRISO燃料的反应器的安全性,使其成为监管机构和营运商都青睐的选择。

值得关注的市场发展

三结构各向同性 (TRISO) 燃料市场中,BWX Technologies、X-Energy 和 Framatome 三家公司占了超过 70% 的市场占有率。每家公司都拥有独特的优势和能力,在巩固自身领导地位的同时,推动产业创新和规模化发展。

BWX Technologies 凭藉其在核燃料製造和整合生产流程方面的深厚专业知识,巩固了其市场领导地位。 BWX 在全美多个工厂运作高产能生产线,每年生产超过 1,000 公斤的 TRISO 燃料粒。该公司的生产流程注重品质控制和效率,始终保持 90% 以上的良品率。

X-Energy 是 TRISO 燃料市场的活力创新者,其特色在于开发了整合式生产设施并结合了专有控制协议。该公司的高通量 TRISO 涂层生产线每年可处理超过 1,500 公斤玉米粒,规模超过许多竞争对手。 X-Energy 的突出之处在于其采用了精细的数位孪生类比和即时频谱监测技术。

成长动力

联邦和各州的激励措施正在显着改变三结构各向同性 (TRISO) 燃料市场的需求动态,将曾经主要是理论性的兴趣转化为具体的、获得资助的试点项目。这项转变的关键驱动力是 "通膨削减法案" 第45Y条生产税收抵免,该法案于2024年2月最终确定。这项税收抵免保证为发电容量低于300兆瓦(MWe)的先进核反应器提供每兆瓦时最高43美元的补贴。值得注意的是,这笔资金将直接惠及Xe-100、eVinci和BWXT等先进核反应器设计。

除了税收抵免外,美国能源部(DOE)还在2024财年加大了对先进反应器的支持力度,并拨付了大量资金。在先进反应器示范计画(ARDP)下,DOE拨款4.2亿美元,用于支持旨在加速先进反应器研发的各种措施。其中38%的资金专门用于推进TRISO燃料发展的关键活动,包括燃料鑑定、高纯度低浓缩铀(HALEU)采购和包覆颗粒製造。

新的机会趋势

推动三结构各向同性(TRISO)燃料市场成长的关键趋势是製造商投资于更大的生产线以提高产量。随着各公司竞相提高产能和降低单位成本,扩大规模将成为2024年的首要任务。这种对扩张和效率提升的关注反映了市场对TRISO燃料日益增长的需求,以及在不牺牲品质的情况下满足紧张的生产计划的需求。

BWX Technologies就是这一趋势的一个显着例子,该公司于2024年3月完成了其林奇堡工厂扩建的第二阶段。这项进展显着提高了该公司的内核烧结能力,使其达到每年12吨。燃料核烧结是TRISO燃料製造的关键步骤,需要对铀核进行处理以达到所需的密度和微观结构。透过提升这项产能,BWX Technologies将能够在相同的时间内生产更多的燃料核,并支援更大规模的生产工作。

优化的障碍

儘管政策大力支持三结构各向同性(TRISO)燃料的发展,但碳化硅(SiC)涂层材料的供应链仍然分散,对维持市场专案进度构成重大风险。碳化硅涂层是TRISO燃料颗粒的关键组成部分,它提供必要的结构完整性,并充当屏障以控制裂变产物。然而,全球仅有少数几家合格供应商能够提供杂质含量极低(百万分之几或更低)的核级α-SiC粉末。

截至2024年8月,仅有三家供应商获得生产这种高纯度粉末的认证:英国的摩根先进材料公司 (Morgan Advanced Materials)、美国的华盛顿米尔斯公司 (Washington Mills) 和日本的东海碳素公司 (Tokai Carbon)。这些供应商的年总产能约为900吨。虽然这看起来似乎是一个相当大的数字,但美国电力研究院 (EPRI) 预测,用于TRISO燃料应用的SiC粉末需求将激增,到2028年将达到每年1,250吨。

市场区隔详情

依类型划分,铀基TRISO燃料在三各向同性(TRISO)燃料市场占主导地位,占有85.56%的占有率。这种强烈的偏好很大程度上源于其与现有核燃料基础设施的兼容性,包括已优化用于处理浓度高达19.75%的高纯度低浓缩铀 (HALEU) 的浓缩、转化和反硝化设施。由于这些设施已建成并广泛可用,铀基TRISO燃料受益于规模经济和精简的加工流程,从而显着减少了对新资本投资的需求。

按反应器类型划分,高温气冷器 (HTGR) 占三各向同性 (TRISO) 燃料市场的主导地位,占 50.48% 的市场占有率。这项优势源自于反应器能够利用 TRISO 燃料卓越的耐热性,使其能够在接近 750°C 的出口温度下运行,而无需依赖主动式水冷系统。 TRISO 颗粒固有的坚固性使反应器安全地维持这些高温,这与严重依赖水冷却的传统反应器设计相比具有显着优势。

按形状划分,小型球形燃料元件在三结构各向同性 (TRISO) 燃料市场占主导地位,占市场占有率的 61%。其球形形状对这一领先地位至关重要,显着简化了製造吞吐量和核心操作。与其他形状的燃料相比,圆形燃料元件更易于处理和加工,有助于提高效率并降低生产线的复杂性。

按最终用户划分,核电厂在三结构各向同性 (TRISO) 燃料市场中占有 49.18% 的占有率,这反映了其在受监管的基于费率的资产框架内充分利用 TRISO 燃料先进特性的独特能力。这些公用事业公司完全有能力将 TRISO 燃料的优势(包括更高的安全性、更高的效率和更长的使用寿命)纳入由州监管委员会监管的营运和财务模型中。

各市场区隔明细

各类型

  • 铀为基础的TRISO燃料
  • 钍为基础的TRISO燃料
  • 混合氧化物(MOX)TRISO燃料

各反应器类型

  • 高温反应炉(HTGR)
    • 角型炉
    • 球床型反应炉
  • 小型模组炉(SMR)
  • 微反应器
  • 熔融盐原子反应堆(MSR)
  • 其他

不同形状

  • 圆柱型颗粒
  • 小石子

各终端用户

  • 核能发电经营者
  • 政府研究机关
  • 民间核子反应炉开发企业
  • 防卫·航太机关
  • 大学及学术机构

各地区

  • 北美
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 西欧
      • 英国
      • 德国
      • 法国
      • 义大利
      • 西班牙
      • 其他
    • 东欧
      • 波兰
      • 俄罗斯
      • 其他
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲·纽西兰
    • 韩国
    • ASEAN
    • 其他
  • 中东·非洲(MEA)
    • 沙乌地阿拉伯
    • 南非
    • 阿拉伯联合大公国
    • 其他
  • 南美
    • 阿根廷
    • 巴西
    • 其他

各地区明细

北美在三结构各向同性 (TRISO) 燃料市场占主导地位,占全球市场占有率的 37.57% 以上。这一主导地位是多种因素共同作用的结果,包括强有力的联邦激励措施、完善的浓缩基础设施以及强劲的公用事业主导的购买行为,这些因素共同构成了一个自我强化的需求週期。

2024年2月最终确定的 "通货膨胀控制法案" 抵免额为先进反应器提供了43美元/兆瓦时(MWh)的补贴,这为先进反应器的发展提供了重大推动力。这项财政激励措施立即增强了一些重要项目的燃料合同,包括X-Energy公司在华盛顿州的Xe-100模组和陶氏公司在德克萨斯州的工艺热装置。

除了直接激励措施外,政府的平行资金也进一步支持了这一成长轨迹。美国能源部(DOE)已承诺向先进反应器示范计画额外拨款4.2亿美元,其中38%将用于TRISO燃料鑑定和高纯度低浓缩铀(HALEU)采购。这项重点投资对于推进TRISO燃料技术准备和供应链发展至关重要。

主要市场参与企业

  • X Energy, LLC
  • Ultra Safe Nuclear Corporation (USNC)
  • JAEA (Japan Atomic Energy Agency)
  • BWX Technologies, Inc.
  • Framatome
  • Oak Ridge National Laboratory (ORNL)
  • Global Nuclear Fuel
  • 其他

目录

第1章 调查架构

第2章 调查手法

第3章 摘要整理全球三结构等向性(TRISO)燃料市场

第4章 全球三结构等向性(TRISO)燃料市场概要

  • 产业价值链分析
    • 材料供应商
    • 厂商
    • 批发商
    • 终端用户
  • 产业展望
    • 2023年的各国核能发展概要
  • 大环境分析
  • 波特的五力分析
  • 市场动态和趋势
  • 市场成长与展望
  • 竞争仪表板
  • 实用的洞察(分析师的推荐事项)

第5章 全球三结构等向性燃料(TRISO)市场分析(各类型)

  • 重要的洞察
  • 市场规模与预测,2020年~2033年(100万美元)
    • 铀为基础的TRISO燃料
    • 钍为基础的TRISO燃料
    • 混合氧化物(MOX)TRISO燃料

第6章 全球三结构等向性燃料(TRISO)市场分析(各反应器类型)

  • 重要的洞察
  • 市场规模与预测,2020年~2033年(100万美元)
    • 高温气冷式反应炉(HTGR)
    • 小型模组炉(SMR)
    • 微反应器
    • 熔融盐原子反应堆(MSR)
    • 其他

第7章 全球三结构等向性燃料(TRISO)市场分析(不同形状)

  • 重要的洞察
  • 市场规模与预测,2020年~2033年(100万美元)
    • 圆柱型颗粒
    • 小石子

第8章 全球三结构等向性(TRISO)燃料市场分析(各终端用户)

  • 重要的洞察
  • 市场规模与预测,2020年~2033年(100万美元)
    • 核能发电厂
    • 政府研究机关
    • 民间的新型打开地炉煎茶出发业者
    • 防卫·航太组织
    • 大学及学术机构

第9章 全球三结构等向性(TRISO)燃料市场分析(各地区)

  • 重要的洞察
  • 市场规模与预测,2020年~2033年(100万美元)
    • 北美
    • 欧洲
    • 亚太地区
    • 中东·非洲
    • 南美

第10章 北美的三结构等向性(TRISO)燃料市场分析

第11章 欧洲的三结构等向性(TRISO)燃料市场分析

第12章 亚洲的太平洋三结构等向性(TRISO)燃料市场分析

第13章 中东·非洲的三结构等向性(TRISO)燃料市场分析

第14章 南美的三结构等向性(TRISO)燃料市场分析

第15章 企业简介

  • X Energy, LLC
  • Ultra Safe Nuclear Corporation(USNC)
  • JAEA(Japan Atomic Energy Agency)
  • BWX Technologies, Inc.
  • Framatome
  • Oak Ridge National Laboratory(ORNL)
  • Global Nuclear Fuel

第16章 附录

简介目录
Product Code: AA05251304

The Tri-structural Isotropic (TRISO) fuel market is undergoing a period of remarkable growth and transformation. Valued at approximately US$ 382.49 million in 2024, the market is projected to reach a valuation of US$ 554.28 million by 2033. This growth corresponds to a compound annual growth rate (CAGR) of 4.28% over the forecast period from 2025 to 2033. The increasing momentum is largely driven by advanced reactor developers who have successfully converted regulatory approvals and funding milestones into concrete, firm orders for TRISO fuel, signaling a transition from exploratory research to commercial-scale deployment.

Today, TRISO fuel has become a fundamental element in the global push toward advanced nuclear energy solutions. Its reputation for exceptional safety performance positions it as a preferred choice for new reactor designs. This is largely due to its multi-layered coating structure, which effectively traps fission products even under extreme operating conditions such as high temperatures and radiation flux. This capability significantly enhances the safety profile of reactors utilizing TRISO fuel, making it an attractive option for both regulators and operators.

Noteworthy Market Developments

In the Tri-structural Isotropic (TRISO) fuel market, BWX Technologies, X-Energy, and Framatome collectively dominate, capturing over 70% of the market share. Each company brings unique strengths and capabilities that reinforce its leadership position while driving innovation and scale within the industry.

BWX Technologies has firmly established itself as a market leader by leveraging its deep expertise in nuclear fuel manufacturing and integrated production processes. Operating high-capacity fabrication lines at several facilities across the United States, BWX produces more than 1,000 kilograms of TRISO kernels annually. The company's manufacturing processes consistently achieve yield rates exceeding 90%, reflecting a strong focus on quality control and efficiency.

X-Energy stands out as a dynamic innovator within the TRISO fuel market, distinguished by its development of an integrated fabrication facility combined with proprietary control protocols. Its high-throughput TRISO coating line processes over 1,500 kilograms of kernels annually, surpassing many competitors in scale. What sets X-Energy apart is its use of granular digital-twin simulations alongside real-time spectral monitoring techniques.

Core Growth Drivers

Federal and state incentives are significantly reshaping demand dynamics in the Tri-structural Isotropic (TRISO) Fuel Market, transforming what was once mainly theoretical interest into concrete, funded pilot projects. A key driver of this shift is the Inflation Reduction Act's Section 45Y production tax credit, which was finalized in February 2024. This tax credit guarantees payments of up to USD 43 per megawatt-hour for advanced reactors with capacities under 300 megawatts electric (MWe). Notably, this financial support directly benefits reactor designs such as Xe-100, eVinci, and BWXT Advanced Nuclear Reactors, all of which specify the use of TRISO fuel as a core component of their technology.

In addition to the tax credit, the U.S. Department of Energy (DOE) has bolstered support through substantial funding allocations in fiscal year 2024. Under the Advanced Reactor Demonstration Program (ARDP), the DOE has committed USD 420 million to support various initiatives aimed at accelerating advanced reactor development. A significant portion of this funding-38%-is specifically designated for activities critical to TRISO fuel advancement, including fuel qualification, procurement of high assay low-enriched uranium (HALEU), and coated-particle fabrication.

Emerging Opportunity Trends

A major trend driving growth in the Tri-structural Isotropic (TRISO) Fuel Market is the investment by manufacturers in larger fabrication lines aimed at improving throughput yields. In 2024, scaling initiatives have taken center stage as companies compete to increase production capacity while simultaneously reducing unit costs. This focus on expansion and efficiency enhancement reflects the increasing demand for TRISO fuel and the need to meet tight production schedules without sacrificing quality.

One notable example of this trend is BWX Technologies, which completed Phase 2 of its Lynchburg facility expansion in March 2024. This development significantly boosted the company's kernel sintering capacity, raising it to 12 metric tons per year. Kernel sintering is a critical step in TRISO fuel fabrication, where uranium kernels are processed to achieve the desired density and microstructure. Enhancing this capacity enables BWX Technologies to produce more fuel kernels within the same timeframe, supporting larger-scale manufacturing efforts.

Barriers to Optimization

Despite strong policy support for the advancement of Tri-structural Isotropic (TRISO) fuel, the supply chain for silicon-carbide (SiC) coating materials remains fragmented, posing a significant risk to maintaining project schedules within the market. Silicon-carbide coatings are critical components in TRISO fuel particles, providing essential structural integrity and acting as a barrier to contain fission products. However, the availability of nuclear-grade alpha-SiC powders with extremely low impurity levels-measured in sub-parts per million-is limited to only a handful of qualified suppliers worldwide.

As of August 2024, just three vendors are certified to produce these high-purity powders: Morgan Advanced Materials in the United Kingdom, Washington Mills in the United States, and Tokai Carbon in Japan. Together, these suppliers have a combined annual production capacity of approximately 900 tonnes. While this may seem substantial, the Electric Power Research Institute (EPRI) projects that demand for SiC powder in TRISO fuel applications is expected to rise sharply, reaching an estimated 1,250 tonnes per year by 2028.

Detailed Market Segmentation

By Type, uranium-based TRISO fuel holds a dominant position in the Tri-structural Isotropic (TRISO) Fuel Market, capturing an 85.56% share. This strong preference is largely due to its compatibility with existing nuclear fuel infrastructure, including enrichment, conversion, and deconversion facilities that are already optimized to handle high-assay low-enriched uranium (HALEU) up to 19.75%. Because these facilities are well-established and extensively utilized, uranium-based TRISO fuel benefits from economies of scale and streamlined processing pathways that significantly reduce the need for new capital investments.

By Reactor Type, High Temperature Gas-Cooled Reactors (HTGRs) hold a commanding position in the Tri-structural Isotropic (TRISO) Fuel Market, accounting for 50.48% of the market share. This dominance stems from the reactor's ability to leverage the exceptional temperature resistance of TRISO fuel, allowing it to operate at outlet temperatures nearing 750 °C without relying on active water cooling systems. The inherent robustness of TRISO particles enables the reactor core to sustain these high temperatures safely, which is a significant advantage over traditional reactor designs that depend heavily on water for cooling.

By Form Type, pebble fuel elements dominate the Tri-structural Isotropic (TRISO) Fuel Market, capturing 61% of the market share. Their spherical geometry plays a crucial role in this leadership position, as it significantly streamlines both manufacturing throughput and core reactor operations. The round shape facilitates smoother handling and processing compared to other fuel forms, which contributes to increased efficiency and reduced complexity in production lines.

By End User, nuclear power utilities hold a significant 49.18% share of the Tri-structural Isotropic (TRISO) Fuel Market, reflecting their unique ability to leverage the advanced characteristics of TRISO fuel within the framework of regulated-rate-base assets. These utilities are well-positioned to incorporate the benefits of TRISO fuel-such as enhanced safety, higher efficiency, and longer lifespans-into their operational and financial models, which are overseen by state regulatory commissions.

Segment Breakdown

By Type

  • Uranium-based TRISO Fuel
  • Thorium-based TRISO Fuel
  • Mixed Oxide (MOX) TRISO Fuel

By Reactor Type

  • High Temperature Gas-Cooled Reactors (HTGRs)
    • Prismatic Reactors
    • Pebble-Bed Reactors
  • Small Modular Reactors (SMRs)
  • Micro Reactors
  • Molten Salt Reactors (MSRs)
  • Others

By Form Type

  • Cylindrical Pellets
  • Pebbles

By End User

  • Nuclear Power Utilities
  • Government Research Institutions
  • Private Advanced Reactor Developers
  • Defense & Aerospace Organizations
  • Universities and Academic Institutions

By Region

  • North America
    • The U.S.
    • Canada
    • Mexico
  • Europe
    • Western Europe
      • The UK
      • Germany
      • France
      • Italy
      • Spain
      • Rest of Western Europe
    • Eastern Europe
      • Poland
      • Russia
      • Rest of Eastern Europe
  • Asia Pacific
    • China
    • India
    • Japan
    • Australia & New Zealand
    • South Korea
    • ASEAN
    • Rest of Asia Pacific
  • Middle East & Africa (MEA)
    • Saudi Arabia
    • South Africa
    • UAE
    • Rest of MEA
  • South America
    • Argentina
    • Brazil
    • Rest of South America

Geography Breakdown

North America holds a commanding position in the Tri-structural Isotropic (TRISO) Fuel Market, accounting for over 37.57% of the global share. This dominant stance results from a convergence of factors, including robust federal incentives, well-established enrichment infrastructure, and strong utility-driven purchasing behaviors, which together create a self-reinforcing cycle of demand.

A significant boost came in February 2024 with the finalization of the Inflation Reduction Act credit, which provides USD 43 per megawatt-hour (MWh) for advanced reactors. This financial incentive immediately strengthened fuel contracts for notable projects such as X-energy's Xe-100 modules located in Washington State, as well as Dow's process-heat units in Texas.

In addition to direct incentives, parallel streams of government funding further support this growth trajectory. The U.S. Department of Energy (DOE) has committed an additional USD 420 million to its Advanced Reactor Demonstration Program, with 38% of these funds specifically earmarked for TRISO fuel qualification and high-assay low-enriched uranium (HALEU) procurement. This targeted investment is critical for advancing the technical readiness and supply chain development of TRISO fuel.

Leading Market Participants

  • X Energy, LLC
  • Ultra Safe Nuclear Corporation (USNC)
  • JAEA (Japan Atomic Energy Agency)
  • BWX Technologies, Inc.
  • Framatome
  • Oak Ridge National Laboratory (ORNL)
  • Global Nuclear Fuel
  • Other Prominent Players

Table of Content

Chapter 1. Research Framework

  • 1.1. Research Objective
  • 1.2. Product Overview
  • 1.3. Market Segmentation

Chapter 2. Research Methodology

  • 2.1. Qualitative Research
    • 2.1.1. Primary & Secondary Sources
  • 2.2. Quantitative Research
    • 2.2.1. Primary & Secondary Sources
  • 2.3. Breakdown of Primary Research Respondents, By Region
  • 2.4. Assumption for the Study
  • 2.5. Market Size Estimation
  • 2.6. Data Triangulation

Chapter 3. Executive Summary: Global Tri-structural Isotropic (TRISO) Fuel Market

Chapter 4. Global Tri-structural Isotropic (TRISO) Fuel Market Overview

  • 4.1. Industry Value Chain Analysis
    • 4.1.1. Material Provider
    • 4.1.2. Manufacturer
    • 4.1.3. Distributor
    • 4.1.4. End User
  • 4.2. Industry Outlook
    • 4.2.1. Overview of nuclear power development in 2023, By Country
  • 4.3. PESTLE Analysis
  • 4.4. Porter's Five Forces Analysis
    • 4.4.1. Bargaining Power of Suppliers
    • 4.4.2. Bargaining Power of Buyers
    • 4.4.3. Threat of Substitutes
    • 4.4.4. Threat of New Entrants
    • 4.4.5. Degree of Competition
  • 4.5. Market Dynamics and Trends
    • 4.5.1. Growth Drivers
    • 4.5.2. Restraints
    • 4.5.3. Challenges
    • 4.5.4. Key Trends
  • 4.6. Market Growth and Outlook
    • 4.6.1. Market Revenue Estimates and Forecast (US$ Mn), 2020 - 2033
    • 4.6.2. Price Trend Analysis
  • 4.7. Competition Dashboard
    • 4.7.1. Market Concentration Rate
    • 4.7.2. Company Market Share Analysis (Value %), 2024
    • 4.7.3. Competitor Mapping & Benchmarking
  • 4.8. Actionable Insights (Analyst Recommendation's)
    • 4.8.1. Strategic Responses of Companies to the Impact of U.S. Tariffs

Chapter 5. Global Tri-structural Isotropic (TRISO) Fuel Market Analysis, By Type

  • 5.1. Key Insights
  • 5.2. Market Size and Forecast, 2020 - 2033 (US$ Mn)
    • 5.2.1. Uranium-based TRISO Fuel
    • 5.2.2. Thorium-based TRISO Fuel
    • 5.2.3. Mixed Oxide (MOX) TRISO Fuel

Chapter 6. Global Tri-structural Isotropic (TRISO) Fuel Market Analysis, By Reactor Type

  • 6.1. Key Insights
  • 6.2. Market Size and Forecast, 2020 - 2033 (US$ Mn)
    • 6.2.1. High Temperature Gas-Cooled Reactors (HTGRs)
      • 6.2.1.1. Prismatic Reactors
      • 6.2.1.2. Pebble-Bed Reactors
    • 6.2.2. Small Modular Reactors (SMRs)
    • 6.2.3. Micro Reactors
    • 6.2.4. Molten Salt Reactors (MSRs)
    • 6.2.5. Others

Chapter 7. Global Tri-structural Isotropic (TRISO) Fuel Market Analysis, By Form Type

  • 7.1. Key Insights
  • 7.2. Market Size and Forecast, 2020 - 2033 (US$ Mn)
    • 7.2.1. Cylindrical Pellets
    • 7.2.2. Pebbles

Chapter 8. Global Tri-structural Isotropic (TRISO) Fuel Market Analysis, By End User

  • 8.1. Key Insights
  • 8.2. Market Size and Forecast, 2020 - 2033 (US$ Mn)
    • 8.2.1. Nuclear Power Utilities
    • 8.2.2. Government Research Institutions
    • 8.2.3. Private Advanced Reactor Developers
    • 8.2.4. Defense & Aerospace Organizations
    • 8.2.5. Universities and Academic Institutions

Chapter 9. Global Tri-structural Isotropic (TRISO) Fuel Market Analysis, By Region

  • 9.1. Key Insights
  • 9.2. Market Size and Forecast, 2020 - 2033 (US$ Mn)
    • 9.2.1. North America
      • 9.2.1.1. The U.S.
      • 9.2.1.2. Canada
      • 9.2.1.3. Mexico
    • 9.2.2. Europe
      • 9.2.2.1. Western Europe
        • 9.2.2.1.1. The UK
        • 9.2.2.1.2. Germany
        • 9.2.2.1.3. France
        • 9.2.2.1.4. Italy
        • 9.2.2.1.5. Spain
        • 9.2.2.1.6. Rest of Western Europe
      • 9.2.2.2. Eastern Europe
        • 9.2.2.2.1. Poland
        • 9.2.2.2.2. Russia
        • 9.2.2.2.3. Rest of Eastern Europe
    • 9.2.3. Asia Pacific
      • 9.2.3.1. China
      • 9.2.3.2. India
      • 9.2.3.3. Japan
      • 9.2.3.4. South Korea
      • 9.2.3.5. Australia & New Zealand
      • 9.2.3.6. ASEAN
        • 9.2.3.6.1. Indonesia
        • 9.2.3.6.2. Thailand
        • 9.2.3.6.3. Singapore
        • 9.2.3.6.4. Vietnam
        • 9.2.3.6.5. Malaysia
        • 9.2.3.6.6. Philippines
        • 9.2.3.6.7. Rest of ASEAN
      • 9.2.3.7. Rest of Asia Pacific
    • 9.2.4. Middle East & Africa
      • 9.2.4.1. UAE
      • 9.2.4.2. Saudi Arabia
      • 9.2.4.3. South Africa
      • 9.2.4.4. Rest of MEA
    • 9.2.5. South America
      • 9.2.5.1. Argentina
      • 9.2.5.2. Brazil
      • 9.2.5.3. Rest of South America

Chapter 10. North America Tri-structural Isotropic (TRISO) Fuel Market Analysis

  • 10.1. Key Insights
  • 10.2. Market Size and Forecast, 2020 - 2033 (US$ Mn)
    • 10.2.1. By Type
    • 10.2.2. By Reactor Type
    • 10.2.3. By Form Type
    • 10.2.4. By End User
    • 10.2.5. By Country

Chapter 11. Europe Tri-structural Isotropic (TRISO) Fuel Market Analysis

  • 11.1. Key Insights
  • 11.2. Market Size and Forecast, 2020 - 2033 (US$ Mn)
    • 11.2.1. By Type
    • 11.2.2. By Reactor Type
    • 11.2.3. By Form Type
    • 11.2.4. By End User
    • 11.2.5. By Country

Chapter 12. Asia Pacific Tri-structural Isotropic (TRISO) Fuel Market Analysis

  • 12.1. Key Insights
  • 12.2. Market Size and Forecast, 2020 - 2033 (US$ Mn)
    • 12.2.1. By Type
    • 12.2.2. By Reactor Type
    • 12.2.3. By Form Type
    • 12.2.4. By End User
    • 12.2.5. By Country

Chapter 13. Middle East and Africa Tri-structural Isotropic (TRISO) Fuel Market Analysis

  • 13.1. Key Insights
  • 13.2. Market Size and Forecast, 2020 - 2033 (US$ Mn)
    • 13.2.1. By Type
    • 13.2.2. By Reactor Type
    • 13.2.3. By Form Type
    • 13.2.4. By End User
    • 13.2.5. By Country

Chapter 14. South America Tri-structural Isotropic (TRISO) Fuel Market Analysis

  • 14.1. Key Insights
  • 14.2. Market Size and Forecast, 2020 - 2033 (US$ Mn)
    • 14.2.1. By Type
    • 14.2.2. By Reactor Type
    • 14.2.3. By Form Type
    • 14.2.4. By End User
    • 14.2.5. By Country

Chapter 15. Company Profile (Company Overview, Financial Matrix, Key Product landscape, Key Personnel, Key Competitors, Contact Address, and Business Strategy Outlook)

  • 15.1. X Energy, LLC
  • 15.2. Ultra Safe Nuclear Corporation (USNC)
  • 15.3. JAEA (Japan Atomic Energy Agency)
  • 15.4. BWX Technologies, Inc.
  • 15.5. Framatome
  • 15.6. Oak Ridge National Laboratory (ORNL)
  • 15.7. Global Nuclear Fuel

Chapter 16 Annexure

  • 16.1. List of Secondary Sources
  • 16.2. Key Country Markets- Macro Economic Outlook/Indicators