封面
市场调查报告书
商品编码
1755977

三结构等向性(TRISO) 燃料市场预测(至 2032 年):按核子反应炉类型、包覆材料、燃料形式、部署阶段、应用和地区进行的全球分析

Tri-Structural Isotropic Fuel Market Forecasts to 2032 - Global Analysis By Reactor Type, Coating Material, Fuel Form, Deployment Phase, Application and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球三结构等向性(TRISO) 燃料市场预计在 2025 年达到 4.1416 亿美元,到 2032 年将达到 6.1457 亿美元,预测期内的复合年增长率为 5.8%。

一种称为三结构等向性(TRISO)燃料的核燃料旨在用于高温反应炉。 TRISO燃料由多层保护性铀组成,通常以二氧化铀或氧化铀的形式存在。这些铀结合在一起形成由碳化硅、内层热解碳、外层热解碳和多孔碳缓衝层组成的细小而坚韧的颗粒。这种多层涂层提供了卓越的裂变产物遏制能力,并提高了在恶劣环境下的性能和安全性。 TRISO燃料坚固的结构和抗熔化性能使其成为下一代核能系统和先进核子反应炉设计的理想选择。

新核子反应炉的需求不断增加

为了使这些核子反应炉安全有效地运行,它们需要像TRISO一样坚固耐用、耐高温的燃料。 TRISO燃料的特殊设计提供了卓越的放射性安全壳,并满足下一代核子反应炉的安全要求。公共和私营部门对尖端核能技术的投资正在推动TRISO燃料的需求。此外,全球对清洁能源解决方案的关注推动了TRISO在永续电力系统中的应用。这种日益增长的吸引力正在加速TRISO燃料领域的技术创新和生产能力。

製造成本高、製造流程复杂

製造过程成本高昂,需要多层加工和专用材料。此外,复杂的製造流程限制了扩充性,因为它需要先进的设备和精密的工程设计。这些挑战抑制了投资,并提高了新製造商的进入门槛。因此,TRISO燃料的经济可行性仍然有限。最终,由于复杂性和成本的双重影响,TRISO燃料在商用核子反应炉中的大规模部署被推迟。

政府措施和研发资金

主要经济体的政府正在大力投资先进的核燃料技术,以减少碳排放并提高能源安全。这些投资通常透过与私人公司达成协议或直接资助国家实验室进行TRISO燃料开发。支持性法律法规也促进了创新并加速了商业化进程。透过官民合作关係,鼓励进行先进的测试、核子反应炉演示和安全改进。因此,TRISO燃料作为下一代核子反应炉可靠安全的替代燃料,正日益受到欢迎。

监管障碍和公众认知

严格的核能监管法规拖延了许可证发放,并提高了开发成本,阻碍了新进业者。冗长的许可证审批程序进一步拖慢了核能的接受度因安全疑虑和怀疑而降低,而这些担忧往往源于过去的事故。人们对TRISO等现代燃料的辐射危害有误解,阻碍了投资。这些障碍共同限制了市场扩张,并阻碍了TRISO燃料技术的广泛应用。

COVID-19的影响

新冠疫情对等向性(TRISO) 燃料市场产生了适度但显着的影响。供应链延迟,尤其是石墨和碳化硅涂层的延迟,导致新燃料的生产延迟。预算重新分配给紧急的医疗保健需求,导致一些研发项目延期。停工期间核能研究需求下降,进一步延后了计划进度。然而,随着全球核工业在2021年復苏,对包括TRISO在内的新型核子反应炉燃料的投资恢復了势头,推动了产量的恢復,并重新燃起了人们对提高其安全性和性能的兴趣。

预测期内,碳化硅(SiC)部分预计将实现最大幅度成长

预计碳化硅 (SiC) 将在预测期内占据最大的市场占有率,这得益于其优异的导热性和耐高温性,从而提高了核子反应炉的安全性和效率。 SiC 涂层可有效防止裂变产物的释放,确保在极端核子条件下的安全壳。 SiC 的化学稳定性和耐腐蚀性使其成为高温反应炉(HTGR) 等先进核子反应炉的理想选择。对事故容错燃料日益增长的需求推动了下一代核能技术中 SiC 基 TRISO 颗粒的应用。此外,SiC 製造流程的进步正在降低成本并扩大商业性可行性。

预计预测期内电力公用事业部门的复合年增长率最高。

由于人们对用于清洁能源发电的先进核能技术的兴趣日益浓厚,预计电力产业将在预测期内实现最高成长。随着脱碳和更换老化石化燃料电厂的压力日益增大,公用事业公司正在寻求用于下一代核子反应炉的TRISO燃料的安全性和耐高温性。使用TRISO的小型模组化反应器(SMR)对于偏远地区和电网紧张地区的分散式能源发电尤其具有吸引力。此外,TRISO的抗融化性能增强了电网可靠性和能源安全性,从而吸引了投资。随着公用事业公司扩大其核能组合,对TRISO燃料的需求预计将稳定成长。

占比最大的地区:

在预测期内,由于中国、韩国和日本等国家核能应用的日益普及,预计亚太地区将占据最大的市场占有率。尤其是中国,在以TRISO燃料为核心的高温反应炉(HTGR)技术研发方面取得了重大进展。该地区对能源多元化的关注正在刺激需求,同时也增加了对下一代核子反应炉的投资。强而有力的政府支持和国际合作研究计画将进一步加速这一高成长市场TRISO燃料的技术创新和商业化。

复合年增长率最高的地区:

由于人们对先进核子反应炉的兴趣重燃,以及政府大力推广清洁能源,预计北美在预测期内的复合年增长率将最高。美国能源局一直是TRISO开发案的关键支持者,资助了TRISO开发计划,并与X-energy和BWXT等私人公司合作。美国的能源安全目标和工业部门脱碳需求进一步支撑了TRISO市场。随着高温反应炉)需求的不断增长,TRISO燃料将在该地区的能源结构中发挥关键作用。

免费客製化服务

订阅此报告的客户可以选择以下免费自订选项之一:

  • 公司简介
    • 全面分析其他市场参与者(最多 3 家公司)
    • 主要企业的SWOT分析(最多3家公司)
  • 地理细分
    • 根据客户兴趣对主要国家市场进行估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 研究范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 限制因素
  • 机会
  • 威胁
  • 应用分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买家的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球三结构等向性(TRISO)燃料市场(依核子反应炉类型)

  • 高温气冷式反应炉(HTGR)
  • 超高温核子反应炉(VHTR)
  • 熔盐反应器(MSR)
  • 气冷快堆(GFR)
  • 其他核子反应炉类型

6. 全球三结构等向性(TRISO) 燃料市场(依涂层材料)

  • 热解碳(PyC)
  • 碳化硅(SiC)
  • 外层热解碳
  • 其他涂层材料

7. 全球三结构等向性(TRISO)燃料市场(依燃料类型)

  • 燃料紧凑型
  • Pebble Fuel
  • 棱柱形燃料块
  • 其他燃料形式

8. 全球三结构等向性(TRISO)燃料市场(依部署阶段)

  • 正在开发的核子反应炉
  • 运作中的核子反应炉
  • 原型核子反应炉
  • 其他发展阶段

9. 全球三结构等向性(TRISO)燃料市场(依应用)

  • 电力公司部门
  • 太空推进
  • 研究组织
  • 特殊工业核子反应炉
  • 其他用途

10. 全球三结构等向性(TRISO)燃料市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十二章 公司概况

  • X-energy
  • Kairos Power
  • TerraPower
  • TRISO-X
  • Westinghouse Electric Company
  • USNC(Ultra Safe Nuclear Corporation)
  • Centrus Energy
  • Nukem Technologies
  • BWXT
  • Radiant Industries
  • New Millennium Nuclear Technologies International Inc.(NMNTI)
  • Clean Energy Solar
  • Recycled Energy Development, LLC(RED)
  • Gevo, Inc.
  • Innospec Inc.
  • Infineum International Limited
  • Chevron Oronite Company LLC
  • Afton Chemical Corporation
Product Code: SMRC29871

According to Stratistics MRC, the Global Tri-Structural Isotropic (TRISO) Fuel Market is accounted for $414.16 million in 2025 and is expected to reach $614.57 million by 2032 growing at a CAGR of 5.8% during the forecast period. A kind of nuclear fuel called Tri-Structural Isotropic (TRISO) fuel is intended for use in high-temperature gas-cooled reactors. It is made up of several layers of protective uranium, usually in the form of uranium dioxide or uranium oxycarbide. These combine to produce a small, robust particle and consist of silicon carbide, inner pyrolytic carbon, outer pyrolytic carbon, and a porous carbon buffer. This multilayer coating improves performance and safety in harsh environments by offering superior fission product containment. Because of its strong structure and resistance to melting, TRISO fuel is perfect for next-generation nuclear systems and sophisticated reactor designs.

Market Dynamics:

Driver:

Increased demand for advanced nuclear reactors

Strong, high-temperature resistant fuels like TRISO are necessary for these reactors to operate safely and effectively. The special design of TRISO fuel provides excellent radioactive material containment, meeting the safety requirements of next-generation reactors. Investments in cutting-edge nuclear technologies by both public and private entities are increasing the need for TRISO fuel. Furthermore, the implementation of TRISO in sustainable power systems is facilitated by the global focus on clean energy solutions. Innovation and production capacity in the TRISO fuel sector are accelerated by this increasing traction.

Restraint:

High production cost and complex fabrication process

The production process is very costly because to the numerous layers of fabrication and specialised materials required. Furthermore, the intricate fabrication process restricts scalability by requiring sophisticated facilities and precise engineering. These difficulties deter investment and raise entry barriers for new producers. Consequently, TRISO fuel's economic potential is still limited. In the end, mass deployment in commercial nuclear reactors is delayed by the combination of complexity and cost.

Opportunity:

Government initiatives and R&D funding

Advanced nuclear fuel technologies are being heavily invested in by governments in major economies in an effort to lower carbon emissions and improve energy security. These investments frequently consist of agreements with private companies for the development of TRISO fuels and direct financing to national labs. Supportive laws and regulations also promote innovation and quicken the commercialisation process. Advanced testing, reactor demonstrations, and safety improvements are encouraged by public-private partnerships. TRISO fuel is therefore becoming more and more popular as a dependable and secure alternative for nuclear reactors of the next generation.

Threat:

Regulatory hurdles and public perception

Tight nuclear restrictions discourage new entrants by delaying licenses and raising development costs. Timelines for deployment are further slowed down by drawn-out licensing procedures. Social acceptance of nuclear energy is lowered by public scepticism, which is frequently fuelled by safety worries and previous mishaps. Investment is hampered by misconceptions regarding the radiation dangers associated with modern fuels like TRISO. When combined, these obstacles limit market expansion and prevent TRISO fuel technology from being widely used.

Covid-19 Impact

The COVID-19 pandemic had a modest but notable impact on the Tri-Structural Isotropic (TRISO) fuel market. Supply-chain delays-especially for graphite and silicon carbide coatings-slowed new fuel production. Budget re-allocations to urgent healthcare needs resulted in minor R&D postponements. Lower demand for nuclear research during lockdowns further decelerated project timelines. However, as global industries rebounded by 2021, investment in advanced reactor fuel, including TRISO, regained momentum-driving a recovery in production and renewed interest in its enhanced safety and performance benefits.

The silicon carbide (SiC) segment is expected to be the largest during the forecast period

The silicon carbide (SiC) segment is expected to account for the largest market share during the forecast period, due to its superior thermal conductivity and high-temperature tolerance, enhancing reactor safety and efficiency. SiC coatings provide an effective barrier against fission product release, ensuring containment under extreme nuclear conditions. Its chemical stability and corrosion resistance make SiC ideal for use in advanced reactors like high-temperature gas-cooled reactors (HTGRs). Growing demand for accident-tolerant fuels boosts the adoption of SiC-based TRISO particles in next-generation nuclear technologies. Additionally, advancements in SiC manufacturing processes are reducing costs and expanding commercial feasibility.

The electric utility sector segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the electric utility sector segment is predicted to witness the highest growth rate, due to its growing interest in advanced nuclear technologies for clean energy generation. With increasing pressure to decarbonize and replace aging fossil-fuel plants, utilities are exploring TRISO fuel's safety and high-temperature tolerance for next-generation reactors. Small modular reactors (SMRs) using TRISO are especially appealing for distributed energy generation in remote or grid-stressed areas. Furthermore, TRISO's resistance to meltdown enhances grid reliability and energy security, attracting investment. As utilities expand nuclear portfolios, demand for TRISO fuel is expected to accelerate steadily.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to increasing nuclear energy adoption in countries like China, South Korea, and Japan. China, in particular, has made significant progress in developing High-Temperature Gas-cooled Reactor (HTGR) technology, with TRISO fuel at its core. The region's focus on energy diversification, along with growing investments in next-generation reactors, is fueling demand. Strong governmental support and collaborative international research programs further accelerate innovation and commercialization of TRISO fuel in this high-growth market.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR by renewed interest in advanced nuclear reactors and government initiatives promoting clean energy. The U.S. Department of Energy has been a key supporter, funding TRISO development projects and collaborating with private players like X-energy and BWXT. The market is further supported by national energy security goals and the need to decarbonize industrial sectors. With rising demand for high-temperature gas-cooled reactors, TRISO fuel is poised to play a vital role in the regional energy mix.

Key players in the market

Some of the key players profiled in the Tri-Structural Isotropic (TRISO) Fuel Market include X-energy, Kairos Power, TerraPower, TRISO-X, Westinghouse Electric Company, USNC (Ultra Safe Nuclear Corporation), Centrus Energy, Nukem Technologies, BWXT, Radiant Industries, New Millennium Nuclear Technologies International Inc. (NMNTI), Clean Energy Solar, Recycled Energy Development, LLC (RED), Gevo, Inc., Innospec Inc., Infineum International Limited, Chevron Oronite Company LLC and Afton Chemical Corporation.

Key Developments:

In December 2024, Westinghouse signed a contract with Kozloduy Nuclear Power Plant to conduct safety analysis for licensing a new nuclear fuel assembly design for Unit 6. This agreement diversifies Bulgaria's nuclear fuel supply and supports energy security goals.

In July 2024, Kairos contracted Barnard Construction to begin excavation and site work for Hermes in Oak Ridge. Concurrently, cooperative agreements were established with Oak Ridge National Lab, Idaho National Lab, EPRI, Materion, Los Alamos, and TVA for fuel production, operations, licensing, and engineering support

In November 2023, Westinghouse completed the full acquisition of Tecnatom from Endesa, having previously held a 50% stake since 2021. This acquisition enhances Westinghouse's capabilities in nuclear refueling, maintenance, inspection services, engineering, training, and digital services, strengthening its position in the nuclear industry.

Reactor Types Covered:

  • High-Temperature Gas-cooled Reactor (HTGR)
  • Very High-Temperature Reactor (VHTR)
  • Molten Salt Reactor (MSR)
  • Gas-cooled Fast Reactor (GFR)
  • Other Reactor Types

Coating Materials Covered:

  • Pyrolytic Carbon (PyC)
  • Silicon Carbide (SiC)
  • Outer Pyrolytic Carbon
  • Other Coating Materials

Fuel Forms Covered:

  • Fuel Compacts
  • Pebble Fuel
  • Prismatic Fuel Blocks
  • Other Fuel Forms

Deployment Phases Covered:

  • Development Phase Reactors
  • Operational Reactors
  • Prototype Reactors
  • Other Deployment Phases

Applications Covered:

  • Electric Utility Sector
  • Space Propulsion
  • Research Institutions
  • Specialized Industrial Reactors
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Tri-Structural Isotropic (TRISO) Fuel Market, By Reactor Type

  • 5.1 Introduction
  • 5.2 High-Temperature Gas-cooled Reactor (HTGR)
  • 5.3 Very High-Temperature Reactor (VHTR)
  • 5.4 Molten Salt Reactor (MSR)
  • 5.5 Gas-cooled Fast Reactor (GFR)
  • 5.6 Other Reactor Types

6 Global Tri-Structural Isotropic (TRISO) Fuel Market, By Coating Material

  • 6.1 Introduction
  • 6.2 Pyrolytic Carbon (PyC)
  • 6.3 Silicon Carbide (SiC)
  • 6.4 Outer Pyrolytic Carbon
  • 6.5 Other Coating Materials

7 Global Tri-Structural Isotropic (TRISO) Fuel Market, By Fuel Form

  • 7.1 Introduction
  • 7.2 Fuel Compacts
  • 7.3 Pebble Fuel
  • 7.4 Prismatic Fuel Blocks
  • 7.5 Other Fuel Forms

8 Global Tri-Structural Isotropic (TRISO) Fuel Market, By Deployment Phase

  • 8.1 Introduction
  • 8.2 Development Phase Reactors
  • 8.3 Operational Reactors
  • 8.4 Prototype Reactors
  • 8.5 Other Deployment Phases

9 Global Tri-Structural Isotropic (TRISO) Fuel Market, By Application

  • 9.1 Introduction
  • 9.2 Electric Utility Sector
  • 9.3 Space Propulsion
  • 9.4 Research Institutions
  • 9.5 Specialized Industrial Reactors
  • 9.6 Other Applications

10 Global Tri-Structural Isotropic (TRISO) Fuel Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 X-energy
  • 12.2 Kairos Power
  • 12.3 TerraPower
  • 12.4 TRISO-X
  • 12.5 Westinghouse Electric Company
  • 12.6 USNC (Ultra Safe Nuclear Corporation)
  • 12.7 Centrus Energy
  • 12.8 Nukem Technologies
  • 12.9 BWXT
  • 12.10 Radiant Industries
  • 12.11 New Millennium Nuclear Technologies International Inc. (NMNTI)
  • 12.12 Clean Energy Solar
  • 12.13 Recycled Energy Development, LLC (RED)
  • 12.14 Gevo, Inc.
  • 12.15 Innospec Inc.
  • 12.16 Infineum International Limited
  • 12.17 Chevron Oronite Company LLC
  • 12.18 Afton Chemical Corporation

List of Tables

  • Table 1 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Reactor Type (2024-2032) ($MN)
  • Table 3 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By High-Temperature Gas-cooled Reactor (HTGR) (2024-2032) ($MN)
  • Table 4 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Very High-Temperature Reactor (VHTR) (2024-2032) ($MN)
  • Table 5 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Molten Salt Reactor (MSR) (2024-2032) ($MN)
  • Table 6 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Gas-cooled Fast Reactor (GFR) (2024-2032) ($MN)
  • Table 7 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Other Reactor Types (2024-2032) ($MN)
  • Table 8 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Coating Material (2024-2032) ($MN)
  • Table 9 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Pyrolytic Carbon (PyC) (2024-2032) ($MN)
  • Table 10 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Silicon Carbide (SiC) (2024-2032) ($MN)
  • Table 11 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Outer Pyrolytic Carbon (2024-2032) ($MN)
  • Table 12 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Other Coating Materials (2024-2032) ($MN)
  • Table 13 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Fuel Form (2024-2032) ($MN)
  • Table 14 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Fuel Compacts (2024-2032) ($MN)
  • Table 15 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Pebble Fuel (2024-2032) ($MN)
  • Table 16 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Prismatic Fuel Blocks (2024-2032) ($MN)
  • Table 17 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Other Fuel Forms (2024-2032) ($MN)
  • Table 18 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Deployment Phase (2024-2032) ($MN)
  • Table 19 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Development Phase Reactors (2024-2032) ($MN)
  • Table 20 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Operational Reactors (2024-2032) ($MN)
  • Table 21 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Prototype Reactors (2024-2032) ($MN)
  • Table 22 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Other Deployment Phases (2024-2032) ($MN)
  • Table 23 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Application (2024-2032) ($MN)
  • Table 24 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Electric Utility Sector (2024-2032) ($MN)
  • Table 25 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Space Propulsion (2024-2032) ($MN)
  • Table 26 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Research Institutions (2024-2032) ($MN)
  • Table 27 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Specialized Industrial Reactors (2024-2032) ($MN)
  • Table 28 Global Tri-Structural Isotropic (TRISO) Fuel Market Outlook, By Other Applications (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.