诱导多能干细胞(iPS 细胞)的全球市场:市场规模、趋势和预测(2024 年)
市场调查报告书
商品编码
1497893

诱导多能干细胞(iPS 细胞)的全球市场:市场规模、趋势和预测(2024 年)

Global Induced Pluripotent Stem Cell (iPSC) Industry Report - Market Size, Trends, and Forecasts, 2024

出版日期: | 出版商: BioInformant | 英文 389 Pages | 订单完成后即时交付

价格
简介目录

自2006年发现诱导多能干细胞(iPSC)技术以来,干细胞生物学和再生医学取得了巨大进展。新的病理机制已经被识别和解释,透过 iPS 细胞筛选鑑定的新药物已经开发出来,并且首次使用人类 iPSC 衍生细胞的临床试验已经开始。 iPS 细胞可用于探索疾病发生和进展的原因、开发和测试新药物和治疗方法以及治疗以前无法治癒的疾病。

目前,诱导性多能干细胞(iPSC)商业化的方法包括:

  • 细胞疗法:iPS 细胞正被考虑应用于多种细胞疗法,以达到从损伤或疾病中恢復的目的。
  • 疾病模型:透过从患病患者体内产生 iPS 细胞并将其分化为疾病特异性细胞,iPS 细胞可以 "在培养皿中" 有效地创建疾病模型。
  • 药物发现/开发:iPS细胞为化合物鑑定、标靶验证、化合物筛选和工具发现提供生理相关细胞,它有可能彻底改变世界。
  • 个人化医疗:CRISPR 等技术使我们能够在许多细胞类型中精确、直接地创建基因敲除和基因敲入(包括单碱基变化)。 iPS 细胞和基因组编辑技术的结合正在为个人化医疗带来新的维度。
  • 毒理学测试:iPS细胞可用于毒理学筛检。这涉及使用 iPS 细胞或其衍生物(组织特异性细胞)评估活细胞中化合物和药物的安全性。
  • 组织工程:iPS 细胞可以接种到由生物相容性材料製成的支架中。这些支架可以模仿目标组织的结构和特性,并为细胞增殖和分化提供支持环境。
  • 类器官的生成:iPS 细胞可以被诱导自组装成称为类器官的三维结构,模仿器官的结构和功能。类器官可用于研究器官发育、模型疾病、测试药物等。
  • 基因编辑:可以使用 CRISPR-Cas9 等技术对 iPS 细胞进行基因改造,以纠正引起疾病的突变或引入特定的基因变化。编辑后的 iPS 细胞可以分化成用于移植或疾病建模所需的细胞类型。
  • 研究工具:iPS 细胞和 iPSC 衍生细胞广泛用于从基础到应用的各种研究应用。
  • 干细胞库:iPS 细胞储存库可让研究人员使用健康和患病捐赠者产生的 iPSC 衍生细胞类型来研究不同的疾病状态,为您提供机会。
  • 培养肉生产:iPS细胞在清洁肉类生产中用作生产培养肉的细胞基础。
  • 3D 生物列印:iPS 细胞可以分化为所需的细胞类型,例如皮肤、心臟或肝细胞,然后可以将其纳入生物墨水中。
  • 野生动物保护和防止灭绝计画:iPS细胞用于野生动物保护和防止灭绝计画。例如,Colossal Biosciences 正在使用 iPS 细胞技术来防止猛□象的灭绝。

iPSC 市场趋势

自 2006 年发现 iPSC 以来,仅花了七年时间,第一个 iPSC 衍生细胞产品就于 2013 年移植到人类患者体内。从那时起,iPSC 衍生细胞被用于世界各地数量迅速增加的临床前研究、研究者发起的研究和临床试验。

iPSC 的发现不仅彻底改变了药物发现、毒性测试和培养皿内疾病建模领域,而且对细胞和基因治疗领域产生了强大影响。 iPSC 在体外生长并分化为特殊细胞的能力使其成为临床治疗细胞替代疗法和疾病建模的各种细胞类型的理想来源。

当然,2013 年是具有里程碑意义的一年。这是因为位于神户的 RIKEN 中心已经开始了第一个将 iPS 细胞移植到人体的细胞疗法。该研究由 Masayo Takahashi 博士领导,调查了 iPSC 衍生细胞片在黄斑部病变患者中的安全性。 Cynata Therapeutics 于 2016 年获得批准,开始用于治疗 GvHD 的同种异体 iPSC 衍生细胞产品 (CYP-001) 的首次正式临床试验,这是另一项世界首创。 CYP-001 是 iPSC 衍生的 MSC 产物。在这项历史性的临床试验中,CYP-001达到了临床终点,并证明了治疗类固醇抗药性急性 GvHD 的良好安全性和有效性数据。

iPSC 衍生的 MSC 正在治疗类固醇抗性急性移植物抗宿主疾病 (GvHD) 中进行测试,iPSC 衍生的多巴胺能祖细胞正在评估帕金森氏症的治疗效果。 iPSC 来源的视网膜色素上皮细胞在治疗老年黄斑部病变 (AMD) 方面显示出良好的效果。此外,iPSC 衍生的胰岛素分泌 β 细胞正在测试作为第 1 型糖尿病的治疗方法。

iPSC 有潜力应用于同种异体和自体移植,但使用 iPSC 衍生製剂的同种异体疗法的发展速度超过了自体疗法的发展速度。几种利用来自健康捐赠者的 iPSC 衍生细胞的异体疗法已被用于治疗糖尿病、帕金森氏症和 AMD,这些疗法正在迅速进入早期临床试验。

开发该市场的竞争对手也将 iPS 细胞衍生产品商业化,用于药物发现、疾病建模和毒性测试。在更广泛的 iPSC 领域,FUJIFILM CDI (FCDI) 是最大、最具主导地位的参与者之一。 Cellular Dynamics International (CDI) 由威斯康辛大学麦迪逊分校的 James Thomson 博士于 2004 年创立,并于 2007 年首次从人类体细胞建立了 iPSC 系。这项壮举是在日本山中伸弥博士的实验室里同时完成的。FUJIFILM于 2015 年 4 月以 3.07 亿美元收购了 CDI。如今,合併后的公司 (FCDI) 是全球最大的源自 iPS 细胞的人体细胞製造商,其用于研究、药物发现和再生医学应用。

ReproCELL 成立于 2009 年,是东京大学和京都大学的创投公司,也是 iPS 细胞领域的专家。该公司推出了ReproCardio产品,这是一种人类iPSC衍生的心肌细胞,使其成为世界上第一个商业化的iPSC产品。在欧洲市场,Evotec、Ncardia 和 Axol Bioscience 是主要竞争对手。 Evotec 总部位于德国汉堡,是一家药物发现联盟和开发合作伙伴公司。我们正在开发一个 iPSC 平台,目标是将基于 iPSC 的药物发现筛选与通量、重现性和稳健性相关性进行工业化。如今,Evotec 的基础设施是世界上最大、最先进的 iPSC 平台之一。

Ncardia 成立于 2017 年,由 Axiogenesis 和 Pluriomics 合併而成。其前身 Axiogenesis 成立于 2011 年,最初专注于小鼠胚胎干细胞衍生的细胞和检测。山中教授的 iPSC 技术面世后,Axiogenesis 于 2010 年成为第一家获得许可的欧洲公司。如今,合併后的公司 (Ncardia) 是人类 iPSC 心臟和神经应用领域的世界权威。 Axol Bioscience 成立于 2012 年,是一家规模虽小但颇具知名度的竞争对手,专注于 iPSC 衍生产品。我们总部位于英国剑桥,专注于人类细胞培养,并提供 iPSC 衍生细胞和 iPSC 特异性细胞培养产品。

当然,世界上最大的研究和供应公司也在将各种 iPSC 衍生产品和服务商业化。例如,Lonza、BD Biosciences、Thermo Fisher Scientific、Merck、Takara Bio 以及无数其他公司。目前,至少有 90 家竞争公司提供各种 iPSC 产品、服务、技术和疗法。

本报告考察了全球 iPS 细胞市场的主要参与者,包括他们的核心技术、策略伙伴关係和正在开发的产品。它还涵盖了 iPSC 研究、生物医学应用、製造技术、专利和资金的现状,以及与全球 iPSC 衍生细胞疗法开发相关的已知试验。重要的是,本书提供了全球领先市场参与者的概况,并依应用、技术、细胞类型和地区(北美、欧洲、亚太地区和世界其他地区)全面介绍了 iPSC。它还显示了 2030 年之前的市场总规模和预测成长率。

目录

第一章研究概述

第 2 章简介

第三章 iPS细胞(iPSC)产业现况

  • 利用 iPS 细胞进行自体细胞治疗的进展
    • 正在开发的自体 iPSC 衍生细胞疗法范例
    • 自体 iPSC 衍生细胞产品的生产计划
    • iPS 细胞生产成本
    • iPS 细胞生产的自动化
  • 使用同种异体 iPS 细胞进行细胞治疗
  • 基于 iPS 细胞的分析在整个干细胞产业中的占有率
  • iPS细胞公司的主要关注领域
  • 市售 iPSC 衍生细胞的类型
  • iPSC 衍生细胞类型在毒性测试分析中的相对用途
  • 临床试验中使用的 iPSC 衍生细胞类型
  • 目前可用的 iPS 细胞技术
    • iPS细胞相关技术概述

第四章诱导多能干细胞(iPS细胞)的历史

  • 2006 年:从小鼠纤维母细胞产生第一批 iPS 细胞
  • 2007 年:第一代人类 iPS 细胞
  • 2010 年:CiRA 成立
  • 2012 年:首次使用 iPS 细胞进行高通量筛选
  • 2013年:首个iPS细胞临床试验在日本获得批准
  • 2014 年:首次针对 AMD 进行 iPSC-RPE 细胞片移植
  • 2014 年:EBiSC 成立
  • 2017 年首次使用同种异体 iPS 细胞治疗 AMD 的临床试验
  • 2018:使用同种异体 iPS 细胞治疗巴金森氏症的临床试验
  • 2018年:建立商业iPS细胞工厂SMaRT
  • 2019 年:日本首家 iPS 细胞治疗中心
  • 2019 年:NIH 赞助的美国首次使用 iPS 细胞的临床试验
  • 2020 年:Cynata Therapeutics 进行全球规模最大的 3 期试验
  • 2021 年:iPS 细胞製造工具与临床试验专业知识
  • 2022 年:利用周边血球内部生产 iPS 细胞

第 5 章 iPS 细胞研究出版品

  • iPS 细胞出版物数量迅速增加
    • 使用 iPS 细胞进行病理生理学研究的 PubMed 出版物
    • 重编程的 PubMed 文章
    • 有关 iPS 细胞分化的 PubMed 文章
    • 关于 iPS 细胞在药物发现中的应用的 PubMed 文章
    • 关于基于 iPS 细胞的细胞疗法的 PubMed 文章

第六章 iPS 细胞:专利状况分析

  • iPS 细胞专利申请数量:依司法管辖区划分
  • iPS细胞专利申请人
  • iPS细胞专利发明人
  • iPS 细胞专利拥有者
  • iPS 细胞专利的法律地位

第 7 章 iPS 细胞:临床试验现况

  • iPS细胞临床试验数量
  • iPS细胞临床试验招募情形
  • iPS细胞临床试验与研究的设计
  • 治疗性与非治疗性 iPS 细胞临床试验
    • 非治疗性临床研究:依应用分类
    • 治疗研究的目标疾病
    • 使用 iPS 细胞进行治疗研究的范例
  • 基于 iPS 细胞的检验:依研究阶段划分
  • iPS 细胞临床试验:依资助者类型
  • iPS 细胞的临床试验:地理分布
  • 有前景的 iPS 细胞候选产品
    • CYP-001□CYP-004□CYP-006:Cynata Therapeutics
    • BioVAT-HF:Repairon GmbH
    • HS-001:Heartseed
    • CNTY-101:Century Therapeutics
    • FT-576□FT-819:Fate Therapeutics
    • RPE:National Eye Institute
    • QN-019a:Qihan Biotech
    • iPSC-CL:Heartworks, Inc.
  • 拥有临床前阶段 iPS 细胞资产的公司
    • Aspen Neuroscience
    • Ryne Biotech
    • Bluerock Therapeutics
    • Vita Therapeutics
    • Hopstem Biotechnology
    • Res Nova Bio, Inc.
    • Cytovia Therapeutics
    • Hebecell Corporation
    • Sana Biotechnology
    • SCG Cell Therapy Pte
    • Cytomed
    • Shoreline Biosciences
    • Neukio Biotherapeutics
    • Exacis Biotherapeutics
    • CellOrigin Biotech

第八章 iPS细胞领域併购、业务合作及融资活动

  • 併购 (M&A) 部门
    • Century Therapeutics□Clade Therapeutics
    • Evotech□Rigenerand
    • Fujifilm Corporation□Atara Biotherapeutics
    • Catalent□RheinCell Therapeutics
    • Axol Biosciences□Censo Biotechnologies
    • Bayer AG□Bluerock Therapeutics
    • Pluriomix□Axiogenesis
  • iPS细胞领域的业务联盟/业务合作与授权协议
    • Shinobi Therapeutics□Panasonic
    • SCG Cell Therapy and A*STAR
    • Charles River Laboratories□Pluristyx, Inc.
    • Pluristyx, Inc.□National Resilience, Inc.
    • University of Texas□GeneCure
    • Heartseed, Inc.□Undisclosed Biotech
    • Bluerock Therapeutics□Bit.bio
    • Applied Stem Cell, Inc.□CIRM
    • Resolution Therapeutics□OmniaBio, Inc.
    • REPROCELL, Inc.□CIRM
    • REPROCELL, Inc.□BioBridge Global
    • Elevate Bio□CIRM
    • Evotec□Sernova
    • Evotec□Almiral
    • Quell Therapeutics□Cellistic
    • MDimmune□YiPSCELL
    • Edigene□Neukio Biotherapeutics
    • Matricelf□Ramot
    • Evotec□Boehringer Ingelheim
    • Pluristyx, Pancella□Implant Therapeutics
    • Century Therapeutics□Bristol Myers Squibb
    • Fujifilm Cellular Dynamics□Pheno Vista Biosciences
    • Metrion Biosciences□Bioqube Ventures
    • Cytovia Therapeutics□Cellectis
    • Exacis Biotherapeutics□CCRM
    • Cynata Therapeutics□Fujifilm Corporation
    • Bone Therapeutics□Implant Therapeutics
    • REPROCELL□TEXCELL
    • Jacobio□Herbecell
    • NeuCyte□KIF1A.ORG
    • Kite□Shoreline Biosciences
    • Neuropath Therapeutics□Hopstem Biotechnology
    • Allele Biotech□Cellatoz
    • Bluerock Therapeutics, Fujifilm Cellular Dynamics□Opsis Therapeutics
    • Newcells□Takeda
    • Biocentriq□Kytopen
    • Fujifilm Cellular Dynamics□Sana Biotechnology
    • Evotec□Medical Center Hamburg-Eppdorf (UKE)
    • NeuCyte□Seaver Autism Center for Research and Treatment
    • Cytovia Therapeutics□National Cancer Institute
    • Mogrify□MRC Laboratory of Molecular Biology
  • iPS细胞领域的创投
    • Asgard Therapeutics
    • Kenai Therapeutics
    • Pluristyx
    • Fujifilm Cellular Dynamics
    • Mogrify Ltd.
    • Heartseed, Inc.
    • Elevate Bio
    • Aspen Neurosciences
    • Axol Biosciences
    • Thyas, Co. Ltd
    • Synthego
    • Cellino Biotech, Inc
    • Curi Bio
    • Ncardia
    • Evotec SE
    • bit.bio
    • Clade Therapeutics
    • Shoreline Biosciences
    • Kytopen
    • Cytovia Therapeutics & CytoLynx
    • TreeFrog Therapeutics
    • HebeCell Corporation
    • Neukio Biotherapeutics
    • Stemson Therapeutics
    • Vita Therapeutics
    • Century Therapeutics
    • Heartseed
    • Mogrify
    • Metrion Biosciences
    • Elevate Bio
    • Vita Therapeutics

第 9 章诱导多能干细胞 (iPSC) 的生成

  • OSKM 鸡尾酒
    • Oct4(八聚体结合转录因子 4)
    • Sox(SRY-box 转录)因子 2
    • Klf4(Kruppel 样因子 4)
    • C-Myc
  • 多能性相关转录因子及其功能
    • 不同细胞来源的不同因素组合
  • 重编程因子的传递
    • 系统集成
    • 非整合交付系统
    • 交付方式比较
  • 用于 iPS 细胞生成的基因组编辑技术
    • CRISPR/Cas9
  • 可用的 iPS 细胞系及其用途

第 10 章人类 iPS 细胞库

  • 储存 iPS 细胞和 iPS 细胞系的主要生物库
    • RIKEN
    • WiCell
    • Fujifilm Cellular Dynamics, Inc.
    • Sampled
    • Coriell Institute for Medical Research
    • European Bank for Induced Pluripotent Stem Cells (EBiSC)
  • iPS 细胞库的细胞来源
  • iPS细胞库中的重编程方法
  • iPS 细胞库的所有权和投资

第 11 章 iPS 细胞的生物医学利用

  • iPS 细胞在基础研究的应用
    • 瞭解细胞命运控制
    • 瞭解细胞再生
    • 瞭解多能性
    • 研究组织与器官发育
    • 利用 iPS 细胞创造人类配子
    • 为研究人员提供 iPS 细胞相关服务的提供者
  • iPS 细胞在药物发现中的利用
    • 利用 iPS 细胞检验治疗心血管疾病的药物
    • 使用 iPS 细胞系测试神经系统疾病的治疗药物
    • 使用 iPS 细胞系测试罕见疾病药物
  • iPS 细胞在毒理学研究的应用
    • 使用 iPS 细胞进行毒性测试的药物范例
    • 用于毒性测试研究的 iPSC 衍生细胞类型:相对利用率
  • 疾病模型iPS 细胞的利用
    • 利用 iPSC 衍生细胞建模心血管疾病
    • 使用 iPSC 衍生的肝细胞模拟肝臟疾病
    • 神经退化性疾病模型中的 iPS 细胞
    • iPSC 衍生的类器官用于疾病建模
    • 癌症来源的 iPS 细胞
  • iPS 细胞在细胞疗法中的应用
    • 仅专注于 iPS 细胞疗法的公司
  • iPS 细胞的其他新用途
    • iPS 细胞在组织工程上的应用
    • 源自牲畜的 iPS 细胞
    • 用于保护濒危动物物种的 iPS 细胞系
    • 培养肉中的 iPS 细胞

第十二章市场分析

  • 全球 iPS 细胞市场:依地区划分
  • 全球 iPS 细胞市场:依技术分类
  • 全球 iPS 细胞市场:依生物医学应用划分
  • 全球 iPS 细胞市场:依衍生细胞类型划分
  • 市场驱动因素
    • 目前影响 iPS 细胞市场的因素
  • 市场限制因素
    • 经济课题
    • 基因组不稳定
    • 免疫原性
    • 生物样本库

第十三章公司简介

  • AcceGen
    • ASC-CRISPR iPSs基因编辑技术服务
  • Acellta, Ltd.
    • 技术
  • AddGene, Inc.
    • 病毒质粒
  • Allele Biotechnology, Inc.
    • 技术
  • ALSTEM, Inc.
    • 细胞株生成工具
    • 细胞永生化试剂盒
    • iPS 细胞试剂盒
    • 细胞系
    • 基因编辑
    • iPS细胞系
    • 病毒打包工具
  • Altos Labs
    • altos的科学
  • AMS Biotechnology, Ltd. (AMSBIO)
    • 细胞株产品
  • Applied StemCell (ASC)
    • 基于 iPS 细胞的临床前 CRO 服务
    • GMP 级 iPS 细胞服务与产品
    • GMP TARGATT iPS 细胞-iNK 平台
    • CRISPR iPS细胞基因组编辑服务
    • iPS细胞生成服务
    • iPS细胞分化服务
    • 干细胞产品
  • Asgard Therapeutics
  • Aspen Neurosciences, Inc.
    • Aspen 的临床产品线
  • Astellas Pharma, Inc.
    • 同种异体细胞疗法
    • 通用供体细胞技术
    • Astellas强大的产品线
  • Axol Biosciences 有限公司
    • Axol 的基因工程疾病系列
    • 客製化人类 iPS 细胞和 iPS 细胞服务
    • Axol 产品
  • BioCentriq
  • 生物中心
    • LEAP先进治疗平台
  • Bit.bio
    • 治疗药物
    • Opti-Ox 重编程技术
  • BlueRock Therapeutics LP
    • Bluerock 细胞疗法
    • 细胞+基因平台
    • BlueRock 的细胞治疗计划
  • BrainXell
    • 产品
    • 客製化服务项目
    • 内部侦测服务
  • Cartherics Pty, Ltd.
    • 同种异体 CAR 免疫细胞
  • Catalent Biologics
    • OneBio 整合套件
    • 医药原料开发
    • 药物开发
    • 分析服务
    • Catalent 的 iPS 细胞服务
  • Cellistic
    • 脉衝平台
    • Echo 平台
    • 使用 iPS 细胞的同种异体移植方法
  • CellOrigin Biotech (Hangzhou), Co., Ltd.
  • Celogics, Inc.
    • 心肌细胞
  • Cellular Engineering Technologies (CET)
    • iPS细胞重编程法
    • 使用 CET 干细胞
    • 产品
  • Cellusion, Inc.
    • 孤儿药认定
    • 球状角膜病
  • Century Therapeutics, Inc.
    • 细胞治疗平台
    • 世纪的产品线
  • Citius Pharmaceuticals, Inc.
    • 干细胞平台
  • Creative Bioarray
    • 多能干细胞
    • iPSC 衍生细胞
    • 服务
  • Curi Bio
    • 疾病模型开发服务
  • Cynata Therapeutics, Ltd.
    • Cymerus 平台
    • GVHD 的临床进展
    • 骨关节炎
    • 急性呼吸窘迫症候群
    • 糖尿病伤口
  • Cytovia Therapeutics
    • iPSC 衍生的 NK 细胞和 CAR-NK 细胞
  • DefiniGEN
    • DefiniGEN 平台
    • 效能筛选服务
    • 毒性筛检
    • 疾病模型
    • iPS 细胞产品
  • Editas Medicine
    • SLEEK 基因编辑
    • iPSC 衍生的 NK 细胞
  • Editco Bio., Inc.
    • 敲除 iPS 细胞系
    • 敲入 iPS 细胞系
  • ElevateBio
    • iPS 细胞技术
  • Elixirgen Scientific, Inc.
    • 技术
    • 服务内容
    • iPS 细胞产品
  • Eterna Therapeutics
    • 基因编辑
    • 基因传递
  • Evotec AG
    • iPS 细胞疗法
    • 药物发现服务
    • 治疗区域
  • Eyestem
    • Eyecyte-RPE
    • Eyecyte-PRP
    • Aircyte-AEC
  • Fate Therapeutics
    • iPS细胞平台
    • iPS细胞的製造
    • 产品管道
    • Fate Therapeutics 合作
  • FUJIFILM Cellular Dynamics, Inc.
    • 产品
    • FUJIFILM客製化服务
    • iPS细胞疾病模型
    • 安全药理学/毒理学测试
  • Gameto
    • Fertilo
  • Greenstone Biosciences
  • Heartseed, Inc.
    • HS-001:主导候选产品
    • 技术
  • HebeCell
    • ProtoNK
    • 视网膜感光前驱细胞
    • 奈米蛋白质
  • Helios K.K.
    • 研究活动
  • Hera BioLabs
    • 独特的 SRG 老鼠
    • Cas-CLOVER基因编辑平台
    • 搭载转座子系统平台
    • 细胞系开发服务
    • 客製化细胞系工程服务
    • 动物模型的创建
    • 体内调查服务
  • Hopstem Biotechnology
    • 管道
  • Implant Therapeutics, Inc.
    • 服务
  • IN8bio
    • DeltEx 平台
    • iPSC γ δ T 细胞
  • I Peace, Inc.
    • GMP 产品
    • 客製化製造服务
  • IPS HEART
    • IPS HEART 方法
    • ISX-9
    • GIVI-MPC
  • iPS Portal, Inc.
    • 服务
  • iPSirius
    • iPSirius 平台
  • iXCells Biotechnologies
    • iPS 细胞产品
    • 临床前服务
  • Kenai Therapeutics, Inc.
  • Khloris Biosciences, Inc.
  • Kytopen
    • 产品
  • Laverock Therapeutics
    • GEiGS 和 iPS 细胞
    • Ex Vivo GEiGS 相容细胞疗法
  • Lindville Bio, Ltd.
    • 服务
  • Lonza Group, Ltd.
    • iPS 细胞製造的专业知识
    • 核转染技术
  • Matricelf
    • 脊髓损伤的解决方案
  • Megakaryon Corporation
    • 利用 iPS 细胞生产血小板
    • 从 iPS 细胞发育成巨核细胞
    • 血小板的安全生产
    • 研发管线
  • Metrion Biosciences 有限公司
    • 离子通道高通量筛选
    • 使用人类 iPS 细胞来源的心肌细胞进行临床 QTc/QRS 预测
  • Mogrify
    • MOGRIFY 平台
    • epiMOGRIFY 平台
  • Ncardia Services B.V.
    • 神经细胞星状细胞
    • Ncyte内皮细胞
    • Ncyte 神经组合
    • Ncyte 平滑肌细胞
    • Ncyte v 心肌细胞
    • 客製化疾病建模服务
    • 高通量筛选服务
    • 基于 iPS 细胞的功效检测服务
    • 基于 iPS 细胞的安全性和毒性测试
  • NeuCyte
    • 技术
    • 药物发现
  • Neukio Biotherapeutics
    • 同种异体免疫治疗平台
  • Newcells Biotech
    • 视网膜模型
    • 视网膜类器官
    • 视网膜色素上皮 (RPE)
    • 肾臟近曲小管细胞模型
    • 检测准备就绪 aProximate
    • 肾丝球毒性与疾病模型
    • 肺气道模型
    • 疾病建模服务
  • NEXEL, Co., Ltd.
    • 产品
    • Curi Bio Systems
    • 服务
  • Notch Therapeutics
    • 技术
    • 产品开发
  • Orizuru Therapeutics, Inc.
    • iCM 项目
  • Phenocell SAS
    • iPSC 衍生的 RPE 细胞用于治疗老年黄斑部病变 (AMD)
    • 痤疮和皮脂溢出的研发解决方案
    • 皮肤色素沉着调查/测试平台
    • 细胞与试剂盒
  • Pluristyx
    • panCELLa平台
    • RTD iPS 细胞和 GMP 细胞库
    • 开发服务
    • 自订基因编辑
    • iPS 细胞 GMP 製造的专业知识
    • 自订基因编辑
    • 故障安全
    • iACT 隐形细胞
    • 产品
    • 分化细胞
  • ReNeuron
    • 技术平台
  • Repairon GmbH
    • 技术
  • REPROCELL USA, Inc.
    • 服务
    • REPROCELL iPS 细胞产品
  • Res Nova Bio, Inc.
    • 临床前研究
  • Sartorius CellGenix GmbH
    • 产品
  • Shinobi Therapeutics
  • Shoreline Biosciences
    • iMAC
  • StemSight
    • 技术
  • Stemson Therapeutics
    • 用于毛囊的 iPS 细胞
  • Stemina 生物标记发现
    • 有氧运动快速预测
    • devTOX 快速预测
  • Tempo Bioscience, Inc.
    • Tempo-iAstro
    • Tempo-iBMEC
    • Tempo-iCardio
    • Tempo-iCort
    • Tempo-iDopaNer
    • Tempo-iLSEC
    • Tempo-iKupffer
    • Tempo-iHepStellate
    • Tempo-iHep3D
    • Tempo-iKer
    • Tempo-iKidneyPod
    • Tempo-iMel
    • Tempo-iMG
    • Tempo-iMono
    • Tempo-iMotorNer
    • Tempo-iMSC
    • Tempo-iNStem
    • Tempo-iOligo
    • Tempo-iOsteo
    • Tempo-iPeri
    • Tempo-iPhago
    • Tempo-iRPE
    • Tempo-iSchwann
    • Tempo-iSenso
    • Tempo StemBank
  • 不常见(高级牛排)
    • 使用 iPS 细胞培养猪肉
  • Universal Cells
    • 技术
  • VCCT, Inc.
    • 视网膜色素上皮细胞的再生
  • ViaCyte, Inc.
    • 技术
    • 管道
  • Vita Therapeutics
    • 技术
  • XCell Science
    • 控制线
    • 细胞产物
    • 服务
  • Yashraj Biotechnology, Ltd.
    • iPS 细胞产品
    • 合约调查服务

插图索引

表索引

简介目录

Since the discovery of induced pluripotent stem cell (iPSC) technology in 2006, significant progress has been made in stem cell biology and regenerative medicine. New pathological mechanisms have been identified and explained, new drugs identified by iPSC screens are in the pipeline, and the first clinical trials employing human iPSC-derived cell types have been initiated. iPSCs can be used to explore the causes of disease onset and progression, create and test new drugs and therapies, and treat previously incurable diseases.

Today, methods of commercializing induced pluripotent stem cells (iPSCs) include:

  • Cellular Therapy: iPSCs are being explored in a diverse range of cell therapy applications for the purpose of reversing injury or disease.
  • Disease Modelling: By generating iPSCs from patients with disorders of interest and differentiating them into disease-specific cells, iPSCs can effectively create disease models "in a dish".
  • Drug Development and Discovery: iPSCs have the potential to transform drug discovery by providing physiologically relevant cells for compound identification, target validation, compound screening, and tool discovery.
  • Personalized Medicine: The use of techniques such as CRISPR enable precise, directed creation of knock-outs and knock-ins (including single base changes) in many cell types. Pairing iPSCs with genome editing technologies is adding a new dimension to personalized medicine.
  • Toxicology Testing: iPSCs can be used for toxicology screening, which is the use of iPSCs or their derivatives (tissue-specific cells) to assess the safety of compounds or drugs within living cells.
  • Tissue Engineering: iPSCs can be seeded onto scaffolds made from biocompatible materials. These scaffolds mimic the structure and properties of the target tissue and can provide a supportive environment for cell growth and differentiation.
  • Organoid Production: iPS cells can be coaxed to self-organize into 3D structures called organoids, which mimic the structure and function of organs. Organoids can be used for studying organ development, modeling diseases, and testing drugs.
  • Gene Editing: iPS cells can be genetically modified using techniques like CRISPR-Cas9 to correct disease-causing mutations or introduce specific genetic changes. These edited iPS cells can then be differentiated into the desired cell type for transplantation or disease modeling.
  • Research Tools: iPSCs and iPSC-derived cell types are being widely used within a diverse range of basic and applied research applications.
  • Stem Cell Banking: iPSC repositories provide researchers with the opportunity to investigate a diverse range of conditions using iPSC-derived cell types produced from both healthy and diseased donors.
  • Cultured Meat Production: iPSCs are being utilized in clean meaat production by serving as the cellular foundation for the creation of lab-grown meat.
  • 3D Bioprinting: iPSCs can be directed to differentiate into cell types of interest, such as skin, heart, or liver cells, which are then incorporated into bioinks.
  • Wildlife Conservation and De-extinction Projects: iPSCs are being used in wildlife conservation and de-extinction projects. For example, Colossal Biosciences is using iPSC technology in an effort to achieve woolly mammoth de-extinction.

iPSC Market Dynamics

Since the discovery of iPSCs in 2006, it took only seven years for the first iPSC-derived cell product to be transplanted into a human patient in 2013. Since then, iPSC-derived cells have been used within a rapidly growing number of preclinical studies, physician-led studies, and clinical trials worldwide.

The discovery of iPSC has not only favorably transformed the field of drug discovery, toxicity testing and in-a-dish disease modeling, but also powerfully impacted the field of cell and gene therapy. The ability of iPSCs to multiply in vitro and then get differentiated into specialized cells makes iPSCs an ideal source of cells of different types for curative clinical cell replacement therapies and disease modeling.

Of course, 2013 was a landmark year because it saw the first cellular therapy involving the transplant of iPSCs into humans initiated at the RIKEN Center in Kobe, Japan. Led by Dr. Masayo Takahashi, it investigated the safety of iPSC-derived cell sheets in patients with macular degeneration. In another world first, Cynata Therapeutics received approval in 2016 to launch the first formal clinical trial of an allogeneic iPSC-derived cell product (CYP-001) for the treatment of GvHD. CYP-001 is an iPSC-derived MSC product. In this historic trial, CYP-001 met its clinical endpoints and produced positive safety and efficacy data for the treatment of steroid-resistant acute GvHD.

Today, at least 155 ongoing clinical trials are using iPSC-derived specialized cells to address various indications. iPSC-derived MSCs are being tested in the treatment of steroid-resistant acute graft versus host disease (GvHD). iPSC-derived dopaminergic progenitors are being evaluated in the treatment of Parkinson's disease. iNK cell-based cancer immunotherapy is being studied in the treatment of metastatic solid tumors. iPSC-derived retinal pigment epithelial cells have shown positive results in the treatment of age-related macular degeneration (AMD). Furthermore, iPSC derived insulin secreting beta cells are being tested for the treatment of Type 1 diabetes.

Although iPSCs have the potential to be used in both allogeneic and autologous applications, the development of allogeneic therapies using iPSC-derived products is outpacing the development of autologous therapies. Several allogeneic therapies utilizing iPSC-derived cells derived from healthy donors are being used to address diabetes, Parkinson's disease, and AMD, and these therapies are quickly progressing into early phase clinical trials.

Market competitors are also commercializing iPSC-derived products for use in drug development and discovery, disease modeling, and toxicology testing. Across the broader iPSC sector, FUJIFILM CDI (FCDI) is one of the largest and most dominant players. Cellular Dynamics International (CDI) was founded in 2004 by Dr. James Thomson at the University of Wisconsin-Madison, who in 2007 derived iPSC lines from human somatic cells for the first time. The feat was accomplished simultaneously by Dr. Shinya Yamanaka's lab in Japan. FUJIFILM acquired CDI in April 2015 for $307 million. Today, the combined company (FCDI) is the world's largest manufacturer of human cells created from iPSCs for use in research, drug discovery and regenerative medicine applications.

Another iPSC specialist is ReproCELL, a company that was established as a venture company originating from the University of Tokyo and Kyoto University in 2009. It became the first company worldwide to make iPSC products commercially available when it launched its ReproCardio product, which are human iPSC-derived cardiomyocytes. Within the European market, the dominant competitors are Evotec, Ncardia, and Axol Bioscience. Headquartered in Hamburg, Germany, Evotec is a drug discovery alliance and development partnership company. It is developing an iPSC platform with the goal to industrialize iPSC-based drug screening as it relates to throughput, reproducibility, and robustness. Today, Evotec's infrastructure represents one of the largest and most advanced iPSC platforms globally.

Ncardia was formed through the merger of Axiogenesis and Pluriomics in 2017. Its predecessor, Axiogenesis, was founded in 2011 with an initial focus on mouse embryonic stem cell-derived cells and assays. When Yamanaka's iPSC technology became available, Axiogenesis became the first European company to license it in 2010. Today, the combined company (Ncardia) is a global authority in cardiac and neural applications of human iPSCs. Founded in 2012, Axol Bioscience is a smaller but noteworthy competitor that specializes in iPSC-derived products. Headquartered in Cambridge, UK, it specializes in human cell culture, providing iPSC-derived cells and iPSC-specific cell culture products.

Of course, the world's largest research supply companies are also commercializing a diverse range of iPSC-derived products and services. Examples of these companies include Lonza, BD Biosciences, Thermo Fisher Scientific, Merck, Takara Bio, and countless others. In total, at least 90 market competitors now offer a diverse range of iPSC products, services, technologies, and therapeutics.

This global strategic report reveals all major market competitors worldwide, including their core technologies, strategic partnerships, and products under development. It covers the current status of iPSC research, biomedical applications, manufacturing technologies, patents, and funding events, as well as all known trials for the development of iPSC-derived cell therapeutics worldwide. Importantly, it profiles leading market competitors worldwide and presents a comprehensive market size breakdown for iPSCs by Application, Technology, Cell Type, and Geography (North America, Europe, Asia/Pacific, and Rest of World). It also presents total market size figures with projected growth rates through 2030.

TABLE OF CONTENTS

1. REPORT OVERVIEW

  • 1.1. Statement of the Report
  • 1.2. Executive Summary

2. INTRODUCTION

3. . CURRENT STATUS OF IPSC INDUSTRY

  • 3.1. Progress made in Autologous Cell Therapy using iPSCs
    • 3.1.1. Examples of Autologous iPSC-derived Cell Therapies in Development
    • 3.1.2. Manufacturing Timeline for Autologous iPSC-derived Cell Products
    • 3.1.3. Cost of iPSC Production
    • 3.1.4. Automation in iPSC Production
  • 3.2. Allogeneic iPSC-based Cell Therapies
  • 3.3. Share of iPSC-based Research within the Overall Stem Cell Industry
  • 3.4. Major Focus Areas of iPSC Companies
  • 3.5. Commercially Available iPSC-derived Cell Types
  • 3.6. Relative use of iPSC-derived Cell Types in Toxicology Testing Assays
  • 3.7. iPSC-derived Cell Types used in Clinical Trials
  • 3.8. Currently Available iPSC Technologies
    • 3.8.1. Brief Descriptions of some iPSC-related Technologies
      • 3.8.1.1. Nucleofector Technology
      • 3.8.1.2. Opti-ox Technology
      • 3.8.1.3. MOGRIFY Technology
      • 3.8.1.4. Transcription Factor-based iPSC Differentiation Technology
      • 3.8.1.5. Flowfect Technology
      • 3.8.1.6. Technology for Mass Production of Platelets
      • 3.8.1.7. SynFire Technology

4. HISTORY OF INDUCED PLURIPOTENT STEM CELLS (IPSCS)

  • 4.1. First iPSC Generation from Mouse Fibroblasts, 2006
  • 4.2. First Human iPSC Generation, 2007
  • 4.3. Creation of CiRA, 2010
  • 4.4. First High-Throughput Screening using iPSCs, 2012
  • 4.5. First iPSC Clinical Trial Approved in Japan, 2013
  • 4.6. First iPSC-RPE Cell Sheet Transplantation for AMD, 2014
  • 4.7. EBiSC Founded, 2014
  • 4.8. First Clinical Trial using Allogeneic iPSCs for AMD, 2017
  • 4.9. Clinical Trial for Parkinson's Disease using Allogeneic iPSCs, 2018
  • 4.10. Commercial iPSC Plant SMaRT Established, 2018
  • 4.11. First iPSC Therapy Center in Japan, 2019
  • 4.12. First U.S.-based NIH-Sponsored Clinical Trial using iPSCs, 2019
  • 4.13. Cynata Therapeutics' World's Largest Phase III Clinical Trial, 2020
  • 4.14. Tools and Know-how to Manufacture iPSCs in Clinical Trials, 2021
  • 4.15. Production of in-house iPSCs using Peripheral Blood Cells, 2022

5. RESEARCH PUBLICATIONS ON IPSCS

  • 5.1. Rapid Growth in iPSC Publications
    • 5.1.1. PubMd Publications on Pathophysiological Research using iPSCs
    • 5.1.2. PubMed Papers on Reprogramming
    • 5.1.3. PubMed Papers on iPSC Differentiation
    • 5.1.4. PubMed Papers on the use of iPSCs in Drug Discovery
    • 5.1.5. PubMed Papers on iPSC-based Cell Therapy
      • 5.1.5.1. Percent Share of Published Articles by Disease Type
      • 5.1.5.2. Percent Share of Articles by Country

6. IPSC: PATENT LANDSCAPE ANALYSIS

  • 6.1. iPSC Patent Applications by Jurisdiction
  • 6.2. iPSC Patent Applicants
  • 6.3. Inventors of iPSC Patents
  • 6.4. iPSC Patent Owners
  • 6.5. Legal Status of iPSC Patents

7. IPSC: CLINICAL TRIAL LANDSCAPE

  • 7.1. Number of iPSC Clinical Trials
  • 7.1. Recruitment Status of iPSC Clinical Trials
  • 7.3. iPSC Clinical Trials Stydy Designs
  • 7.4. Therapeutic & Non-Therapeutic iPSC Clinical Trials
    • 7.4.1. Non-Therapeutic Clinical Studies by Use
    • 7.4.2. Diseases Targeted by Therapeutic Studies
      • 7.4.2.1. Therapeutic Clinical Studies by Autologous & Allogeneic Sources of iPSCs
    • 7.4.3. Examples of iPSC-based Therapeutic Studies
  • 7.5. iPSC-based Trials by Phase of Study
  • 7.6. iPSC Clinical Trials by Funder Type
  • 7.7. Geographic Distribution of iPSC-based Clinical Trials
  • 7.8. Promising iPSC Product Candidates
    • 7.8.1. CYP-001, CYP-004 & CYP-006 from Cynata Therapeutics
    • 7.8.2. BioVAT-HF from Repairon GmbH
    • 7.8.3. HS-001 from Heartseed
    • 7.8.4. CNTY-101 from Century Therapeutics
    • 7.8.5. FT-576 & FT-819 from Fate Therapeutics
    • 7.8.6. RPE from National Eye Institute
    • 7.8.7. QN-019a from Qihan Biotech
    • 7.8.8. iPSC-CL from Heartworks, Inc.
  • 7.9. Companies having Preclinical iPSC Assets
    • 7.9.1. Aspen Neuroscience
    • 7.9.2. Ryne Biotech
    • 7.9.2. Bluerock Therapeutics
    • 7.9.4. Vita Therapeutics
    • 7.9.5. Hopstem Biotechnology
    • 7.9.6. Res Nova Bio, Inc.
    • 7.9.7. Cytovia Therapeutics
    • 7.9.8. Hebecell Corporation
    • 7.9.9. Sana Biotechnology
    • 7.9.10. SCG Cell Therapy Pte
    • 7.9.11. Cytomed
    • 7.9.12. Shoreline Biosciences
    • 7.9.13. Neukio Biotherapeutics
    • 7.9.14. Exacis Biotherapeutics
    • 7.9.15. CellOrigin Biotech

8. M&A, COLLABORATIONS & FUNDING ACTIVITIES IN IPSC SECTOR

  • 8.1. Mergers and Acquisitions (M&A) Sector
    • 8.1.1. Century Therapeutics & Clade Therapeutics
    • 8.1.2. Evotech & Rigenerand
    • 8.1.3. Fujifilm Corporation & Atara Biotherapeutics
    • 8.1.4. Catalent & RheinCell Therapeutics
    • 8.1.5. Axol Biosciences & Censo Biotechnologies
    • 8.1.6. Bayer AG & Bluerock Therapeutics
    • 8.1.7. Pluriomix & Axiogenesis
  • 8.2. Partnership/Collaboration & Licensing Deals in iPSC Sector
    • 8.2.1. Shinobi Therapeutics & Panasonic
    • 8.2.2. SCG Cell Therapy and A*STAR
    • 8.2.3. Charles River Laboratories & Pluristyx, Inc.
    • 8.2.4. Pluristyx, Inc. & National Resilience, Inc.
    • 8.2.5. University of Texas & GeneCure
    • 8.2.6. Heartseed, Inc. & Undisclosed Biotech
    • 8.2.7. Bluerock Therapeutics & Bit.bio
    • 8.2.8. Applied Stem Cell, Inc. & CIRM
    • 8.2.9. Resolution Therapeutics & OmniaBio, Inc.
    • 8.2.10. REPROCELL, Inc. & CIRM
    • 8.2.11. REPROCELL, Inc. & BioBridge Global
    • 8.2.12. Elevate Bio & CIRM
    • 8.2.13. Evotec & Sernova
    • 8.2.14. Evotec & Almiral
    • 8.2.15. Quell Therapeutics & Cellistic
    • 8.2.16. MDimmune & YiPSCELL
    • 8.2.17. Edigene & Neukio Biotherapeutics
    • 8.2.18. Matricelf & Ramot
    • 8.2.19. Evotec & Boehringer Ingelheim
    • 8.2.20. Pluristyx, Pancella & Implant Therapeutics
    • 8.2.21. Century Therapeutics & Bristol Myers Squibb
    • 8.2.22. Fujifilm Cellular Dynamics & Pheno Vista Biosciences
    • 8.2.23. Metrion Biosciences & Bioqube Ventures
    • 8.2.24. Cytovia Therapeutics & Cellectis
    • 8.2.25. Exacis Biotherapeutics & CCRM
    • 8.2.26. Cynata Therapeutics & Fujifilm Corporation
    • 8.2.27. Bone Therapeutics & Implant Therapeutics
    • 8.2.28. REPROCELL & TEXCELL
    • 8.2.29. Jacobio & Herbecell
    • 8.2.30. NeuCyte & KIF1A.ORG
    • 8.2.31. Kite & Shoreline Biosciences
    • 8.2.32. Neuropath Therapeutics & Hopstem Biotechnology
    • 8.2.33. Allele Biotech & Cellatoz
    • 8.2.34. Bluerock Therapeutics, Fujifilm Cellular Dynamics & Opsis Therapeutics
    • 8.2.35. Newcells & Takeda
    • 8.2.36. Biocentriq & Kytopen
    • 8.2.37. Fujifilm Cellular Dynamics & Sana Biotechnology
    • 8.2.38. Evotec & Medical Center Hamburg-Eppdorf (UKE)
    • 8.2.39. NeuCyte & Seaver Autism Center for Research and Treatment
    • 8.2.40. Cytovia Therapeutics & National Cancer Institute
    • 8.2.41. Mogrify & MRC Laboratory of Molecular Biology
  • 8.3. Venture Capital Funding in iPSC Sector
    • 8.3.1. Asgard Therapeutics
    • 8.3.2. Kenai Therapeutics
    • 8.3.3. Pluristyx
    • 8.3.4. Fujifilm Cellular Dynamics
    • 8.3.5. Mogrify Ltd.
    • 8.3.6. Heartseed, Inc.
    • 8.3.7. Elevate Bio
    • 8.3.9. Aspen Neurosciences
    • 8.3.10. Axol Biosciences
    • 8.3.11. Thyas, Co. Ltd
    • 8.3.12. Synthego
    • 8.3.13. Cellino Biotech, Inc
    • 8.3.14. Curi Bio
    • 8.3.15. Ncardia
    • 8.3.16. Evotec SE
    • 8.3.17. bit.bio
    • 8.3.18. Clade Therapeutics
    • 8.3.19. Shoreline Biosciences
    • 8.3.20. Kytopen
    • 8.3.21. Cytovia Therapeutics & CytoLynx
    • 8.3.22. TreeFrog Therapeutics
    • 8.3.23. HebeCell Corporation
    • 8.3.24. Neukio Biotherapeutics
    • 8.3.25. Stemson Therapeutics
    • 8.3.26. Vita Therapeutics
    • 8.3.27. Century Therapeutics
    • 8.3.28. Heartseed
    • 8.3.29. Mogrify
    • 8.3.30. Metrion Biosciences
    • 8.3.31. Elevate Bio
    • 8.3.32. Vita Therapeutics

9. GENERATION OF INDUCED PLURIPOTENT STEM CELLS (IPSCS)

  • 9.1. OSKM Cocktail
    • 9.1.1. Octamer-binding Transcription Factor 4 (Oct4)
    • 9.1.2. Sry-related Box (SOX) Factor 2
    • 9.1.3. Kruppel-like Factors (Klf4)
    • 9.1.4. C-Myc
  • 9.2. Pluripotency-Associated Transcription Factors and their Functions
    • 9.2.1. Different Combinations of Factors for Different Cell Sources
  • 9.3. Delivery of Reprogramming Factors
    • 9.3.1. Integrating Systems
      • 9.3.1.1. Retroviral Vectors
      • 9.3.1.2. Lentiviral Vectors
      • 9.3.1.3. piggyBack (PB) Transposon Method
    • 9.3.2. Non-Integrative Delivery Systems
      • 9.3.2.1. Adenoviral Vectors
      • 9.3.2.2. Sendai Viral Vectors
      • 9.3.2.3. Plasmid Vectors
      • 9.3.2.4. Minicircles
      • 9.3.2.5. oriP/Epstein-Barr Nuclear Antigen-1 (EBNA1)-based Episomes
      • 9.3.2.6. RNA Delivery Approach
      • 9.3.2.7. Proteins
    • 9.3.3. Comparison of Delivery Methods
  • 9.4. Genome Editing Technologies in iPSC Generation
    • 9.4.1. CRISPR/Cas9
  • 9.5. Available iPSC Lines and their applications

10. HUMAN IPSC BANKING

  • 10.1. Major Biobanks Storing iPSCs & iPSC Lines
    • 10.1.1. RIKEN
      • 10.1.1.1. Human iPS Cells offered by RIKEN
    • 10.1.2. WiCell
      • 10.1.2.1. WiCell's iPSC Lines
    • 10.1.3. Fujifilm Cellular Dynamics, Inc.
      • 10.1.3.1. iPSC Generation
    • 10.1.4. Sampled
      • 10.1.4.1. Biobanking Services
      • 10.1.4.2. Sampled's iPSC Services
    • 10.1.5. Coriell Institute for Medical Research
      • 10.1.5.1. iPSCs at Coriell
      • 10.1.5.2. Coriell's Biobank
        • 10.1.5.2.1. National Institute of General Medical Sciences (NIGMS)
        • 10.1.5.2.2. National Institute on Aging (NIA)
        • 10.1.5.2.3. Allen Cell Collection
        • 10.1.5.2.4. iPSC Collection from Rett Syndrome Research Trust
        • 10.1.5.2.5. Autism Research Resource
        • 10.1.5.2.6. HD Community BioRepository
        • 10.1.5.2.7. CDC Cell and DNA Repository
        • 10.1.5.2.8. NEI-AREDS Genetic Repository
    • 10.1.6. European Bank for Induced Pluripotent Stem Cells (EBiSC)
      • 10.1.6.1. EBiSC Catalogue
      • 10.1.6.2. EBiSC's iPSC Banking Service
  • 10.2. Cell Sources for iPSC Banks
  • 10.3. Reprogramming Methods in iPSC Banks
  • 10.4. Ownership and Investments made in iPSC Banks

11. BIOMEDICAL APPLICATIONS OF IPSCs

  • 11.1. iPSCs in Basic Research
    • 11.1.1. To Understand Cell Fate Control
    • 11.1.2. To Understand Cell Rejuvenation
    • 11.1.3. To Understand Pluripotency
    • 11.1.4. To Study Tissue & Organ Development
    • 11.1.5. To Produce Human Gametes from iPSCs
    • 11.1.6. Providers of iPSC-Related Services for Researchers
  • 11.2. Applications of iPSCs in Drug Discovery
    • 11.2.1. Drugs Tested for Cardiovascular Diseases using iPSCs
    • 11.2.2. Drugs Tested for Neurological Diseases using iPSC Lines
    • 11.2.3. Drugs Tested for Rare Diseases using iPSC Lines
  • 11.3. Applications of iPSCs in Toxicology Studies
    • 11.3.1. Examples of Drugs Tested for their Toxicity using iPSCs
    • 11.3.2. Relative Use of iPSC-Derived Cell Types used in Toxicity Testing Studies
  • 11.4. Applications of iPSCs in Disease Modeling
    • 11.4.1. Cardiovascular Diseases Modeled with iPSC-Derived Cells
      • 11.4.1.1. Percent Utilization of iPSCs for Cardiovascular Disease Modeling
    • 11.4.2. Modeling Liver Diseases using iPSC-Derived Hepatocytes
    • 11.4.3. iPSCs in Neurodegenerative Disease Modeling
    • 11.4.4. iPSC-derived Organoids for Disease Modeling
    • 11.4.5. Cancer-Derived iPSCs
  • 11.5. Applications of iPSCs in Cell-Based Therapies
    • 11.5.2. Companies Focusing only on iPSC-based Therapies
  • 11.6. Other Novel Applications of iPSCs
    • 11.6.1. Applications of iPSCs in Tissue Engineering
      • 11.6.1.1. 3D Bioprinting Techniques
      • 11.6.1.2. Biomaterials
      • 11.6.1.3. 3D Bioprinting Strategies
      • 11.6.1.4. Bioprinting iPSC-Derived Cells
    • 11.6.2. iPSCs from Farm Animals
      • 11.6.2.1. iPSCs Generated from Cattle
      • 11.6.2.2. iPSCs from Sheep
      • 11.6.2.3. iPSCs from Goat
      • 11.6.2.4. iPSCs Generated from Buffalo
      • 11.6.2.5. iPSC Generation from Avians
    • 11.6.3. iPSC Lines for the Preservation of Endangered Species of Animals
    • 11.6.4. iPSCs in Cultured Meat

12. MARKET ANALYSIS

  • 12.1. Global Market for iPSCs by Geography
  • 12.2. Global Market for iPSCs by Technology
  • 12.3. Global Market for iPSCs by Biomedical Application
  • 12.4. Global Market for iPSCs by Derived Cell Type
  • 12.5. Market Drivers
    • 12.5.1. Current Drivers Impacting the iPSC Market Place
  • 12.6. Market Restraints
    • 12.6.1. Economic Issues
    • 12.6.2. Genomic Instability
    • 12.6.3. Immunogenicity
    • 12.6.4. Biobanking

13. COMPANY PROFILES

  • 13.1. AcceGen
    • 13.1.1. ASC-CRISPR iPSC Gene Editing Technology Service
  • 13.2. Acellta, Ltd.
    • 13.2.1. Technology
      • 13.2.1.1. Maxells
      • 13.2.1.2. Singles
      • 13.2.1.3. Differentiation
      • 13.2.1.4. Manufacturing Facility
      • 13.2.1.5. Services
  • 13.3. AddGene, Inc.
    • 13.3.1. Viral Plasmids
  • 13.4. Allele Biotechnology, Inc.
    • 13.4.1. Technologies
      • 13.4.1.1. mRNA Genome Editing
      • 13.4.1.2. Single Cell Cloning
  • 13.5. ALSTEM, Inc.
    • 13.5.1. Cell Line Generation Tools
    • 13.5.2. Cell Immortalization Kits
    • 13.5.3. iPSC Kits
    • 13.5.4. Cell Lines
    • 13.5.5. Gene Editing
    • 13.5.6. iPS Cell Lines
    • 13.5.7. Virus Packaging Tools
  • 13.6. Altos Labs
    • 13.6.1. Altos' Science
  • 13.7. AMS Biotechnology, Ltd. (AMSBIO)
    • 13.7.1. Cell Line Products
      • 13.7.1.1. Disease Models
      • 13.7.1.2. Viral Production Services
  • 13.8. Applied StemCell (ASC)
    • 13.8.1. iPSC-Based Preclinical CRO Services
      • 13.8.1.1. Reprogramming to Differentiation
      • 13.8.1.2. Neurotoxicity Screening
    • 13.8.2. GMP Grade iPSC Services & Products
      • 13.8.2.1. GMP iPSC
      • 13.8.2.2. Knock-In Ready GMP TARGATT iPSCs
    • 13.8.3. GMP TARGATT iPSC-iNK Platform
    • 13.8.4. CRISPR iPSC Genome Editing Service
      • 13.8.4.1. CRISPR Knock-In & Point Matation iPS Cell Generation
      • 13.8.4.2. CRISPR iPSC Gene Knockout
      • 13.8.4.3. TARGATT Knock-In iPS Cells
    • 13.8.5. iPSC Generation Services
    • 13.8.6. iPSC Differentiation Service
    • 13.8.7. Stem Cell Products
  • 13.9. Asgard Therapeutics
  • 13.10. Aspen Neurosciences, Inc.
    • 13.10.1. Aspen's Clinical Pipeline
  • 13.11. Astellas Pharma, Inc.
    • 13.11.1. Allogeneic Cell Therapy
    • 13.11.2. Universal Donor Cell Technology
    • 13.11.3. Astella's Robust Pipeline
  • 13.12. Axol Biosciences, Ltd.
    • 13.12.1. Axol's Genetically Engineered Disease Lines
    • 13.12.2. Custom Human iPSC iPSC Services
    • 13.12.3. Axol's Products
  • 13.13. BioCentriq
    • 13.13.1. LEAP Advanced Therapy Platform
  • 13.14. Bit.bio
    • 13.14.1. Therapeutics
    • 13.14.2. Opti-Ox Reprogramming Technology
      • 13.14.2.1. ioCells
      • 13.14.2.2. ioWild Type Cells
      • 13.14.2.3. ioGlutamatergic Neurons
      • 13.14.2.4. ioSkeletal Myocytes
      • 13.14.2.5. ioGABAergic Neurons
      • 13.14.2.6. ioDisease Models
      • 13.14.2.7. ioGlutamatergic Neurons50CAGWT
  • 13.15. BlueRock Therapeutics LP
    • 13.15.1. BlueRock's Cell Therapy
    • 13.15.2. CELL + GENE Platform
    • 13.15.3. BlueRock's Cell Therapy Programs
  • 13.16. BrainXell
    • 13.16.1. Products
    • 13.16.2. Custom Service Projects
    • 13.16.3. In-House Assay Services
  • 13.17. Cartherics Pty, Ltd.
    • 13.17.1. Allogeneic CAR Immune Cells
  • 13.18. Catalent Biologics
    • 13.18.1. OneBio Integrated Suite
    • 13.18.2. Drug Substance Development
    • 13.18.3. Drug Product Development
    • 13.18.4. Analytical Services
    • 13.18.5. Catalent's iPSC Services
  • 13.19. Cellistic
    • 13.19.1. Pulse Platform
    • 13.19.2. Echo Platform
    • 13.19.3. iPSC-based Allogeneic Approach
      • 13.19.3.1. Model 1
      • 13.19.3.2. Model 2
  • 13.20. CellOrigin Biotech (Hangzhou), Co., Ltd.
  • 13.21. Celogics, Inc.
    • 13.21.1. Celo-Cardiomyocytes
  • 13.22. Cellular Engineering Technologies (CET)
    • 13.22.1. iPS Cell Reprogramming Methods
    • 13.22.2. Applications of CET's Stem Cells
      • 13.22.2.1. Hypoimmune Cell Lines
      • 13.22.2.2. Cell Therapy Development
      • 13.22.2.3. Disease Modeling
      • 13.22.2.4. Drug Development & Discovery
      • 13.22.2.5. Regenerative Medicine
      • 13.22.2.6. Toxicology Studies
    • 13.22.3. Products
  • 13.23. Cellusion, Inc.
    • 13.23.1. Orphan Drug Designation
    • 13.23.2. Bullous Keratopathy
  • 13.24. Century Therapeutics, Inc.
    • 13.24.1. Cell Therapy Platform
    • 13.24.2. Century's Product Pipeline
  • 13.25. Citius Pharmaceuticals, Inc.
    • 13.25.1. Stem Cell Platform
  • 13.26. Creative Bioarray
    • 13.26.1. Pluripotent Stem Cells
    • 13.26.2. iPSC-Derived Cells
    • 13.26.3. Services
  • 13.27. Curi Bio
    • 13.27.1. Disease Model Development Services
  • 13.28. Cynata Therapeutics, Ltd.
    • 13.28.1. Cymerus Platform
    • 13.28.2. Clinical Development for GvHD
    • 13.28.3. Osteoarthritis
    • 13.28.4. ARDS
    • 13.28.5. Diabetic Wounds
  • 13.29. Cytovia Therapeutics
    • 13.29.1. iPSC-derived NK & CAR-NK Cells
  • 13.30. DefiniGEN
    • 13.30.1. DefiniGEN's Platform
    • 13.30.2. Efficacy Screening Services
    • 13.30.3. Toxicology Screening
    • 13.30.4. Disease Models
    • 13.30.5. iPSC Cell Products
  • 13.31. Editas Medicine
    • 13.31.1. SLEEK Gene Editing
    • 13.31.2. iPSC-Derived NK Cells
  • 13.32. Editco Bio., Inc.
    • 13.32.1. Knockout iPS Cell Lines
    • 13.32.2. Knock-in iPS Cell Lines
  • 13.33. ElevateBio
    • 13.33.1. iPSC Technology
  • 13.34. Elixirgen Scientific, Inc.
    • 13.34.1. Technology
    • 13.34.2. Service Offerings
    • 13.34.3. iPSC Products
  • 13.35. Eterna Therapeutics
    • 13.35.1. Gene Editing
    • 13.35.2. Gene Delivery
  • 13.36. Evotec AG
    • 13.36.1. iPS Cell Therapies
    • 13.36.2. Drug Discovery Services
    • 13.36.3. Therapeutic Areas
  • 13.37. Eyestem
    • 13.37.1. Eyecyte-RPE
    • 13.37.2. Eyecyte-PRP
    • 13.37.3. Aircyte-AEC
  • 13.38. Fate Therapeutics
    • 13.38.1. iPSC Platform
    • 13.38.2. iPSC Manufacturing
    • 13.38.3. Product Pipeline
      • 13.38.3.1. FT576
      • 13.38.3.2. FT522
      • 13.38.3.3. FT819
      • 13.38.3.4. FT825
    • 13.38.4. Fate Therapeutics' Collaborations
      • 13.38.4.1. ONO Pharmaceutical, Co., Ltd.
      • 13.38.4.2. Masonic Cancer Center, University of Minnesota
      • 13.38.4.3. Memorial Sloan-Kettering Cancer Center
      • 13.38.4.4. Oslo University Hospital
  • 13.39. FUJIFILM Cellular Dynamics, Inc.
    • 13.39.1. Products
    • 13.39.2. FUJIFILM's Custom Services
    • 13.39.3. iPSC Disease Modeling
    • 13.39.4. Safety Pharmacology/Toxicology Testing
  • 13.40. Gameto
    • 13.40.1. Fertilo
  • 13.41. Greenstone Biosciences
  • 13.42. Heartseed, Inc.
    • 13.42.1. HS-001: The Lead Product Candidate
    • 13.42.2. Technologies
      • 13.42.2.1. Remuscularization
      • 13.42.2.2. Patented iPSC Production
      • 13.42.2.3. Differentiation
      • 13.42.2.4. Purification
      • 13.42.2.5. Spheroid
  • 13.43. HebeCell
    • 13.43.1. ProtoNK
    • 13.43.2. Retinal Photoreceptor Progenitors
    • 13.43.3. Nanoproteins
  • 13.44. Helios K.K.
    • 13.44.1. Research Activities
  • 13.45. Hera BioLabs
    • 13.45.1. Proprietary SRG Rat
    • 13.45.2. Cas-CLOVER Gene Editing Platform
    • 13.45.3. The piggyback Transposon System Platform
    • 13.45.4. Cell Line Development Services
    • 13.45.5. Custom Cell Line Engineering Services
    • 13.45.6. Animal Model Creation
    • 13.45.7. In vivo Research Services
      • 13.45.7.1. Custom Research Models
      • 13.45.7.2. Metabolic Disease Models
      • 13.45.7.3. Xenograft & PDX Services
      • 13.45.7.4. Pharmacology & Toxicology Services
  • 13.46. Hopstem Biotechnology
    • 13.46.1. Pipeline
  • 13.47. Implant Therapeutics, Inc.
    • 13.47.1. Services
  • 13.48. IN8bio
    • 13.48.1. The DeltEx Platform
    • 13.48.2. iPSC Gamma-Delta T Cells
  • 13.49. I Peace, Inc.
    • 13.49.1. GMP Products
    • 13.49.2. Custom Manufacturing Services
  • 13.50. IPS HEART
    • 13.50.1. IPS HEART's Approach
    • 13.50.2. ISX-9 CPC
    • 13.50.3. GIVI-MPC
  • 13.51. iPS Portal, Inc.
    • 13.51.1. Services
      • 13.51.1.1. Development Services
      • 13.51.1.2. Business Support Services
  • 13.52. iPSirius
    • 13.52.1. iPSirius' Platform
  • 13.53. iXCells Biotechnologies
    • 13.53.1. iPS Cell Products
    • 13.53.2. Preclinical Services
  • 13.54. Kenai Therapeutics, Inc.
  • 13.55. Khloris Biosciences, Inc.
  • 13.56. Kytopen
    • 13.56.1. Products
      • 13.56.1.1. Flowfect Discover
      • 13.56.1.2. Flowfect TX
      • 13.56.1.3. Flowfect Connect
  • 13.57. Laverock Therapeutics
    • 13.57.1. GEiGS and iPSCs
    • 13.57.2. Ex Vivo GEiGS-Enabled Cell Therapies
  • 13.58. Lindville Bio, Ltd.
    • 13.58.1. Services
  • 13.59. Lonza Group, Ltd.
    • 13.59.1. iPSC Manufacturing Expertise
    • 13.59.2. Nucleofector Technology
  • 13.60. Matricelf
    • 13.60.1. Solution to Spinal Cord Injury
  • 13.61. Megakaryon Corporation
    • 13.61.1. Production of Platelets from iPSCs
    • 13.61.2. Development of Megakaryocytes from iPSCs
    • 13.61.3. Safe Production of Platelets
    • 13.61.4. Research & Development Pipeline
  • 13.62. Metrion Biosciences, Ltd.
    • 13.62.1. Ion Channel High-Throughput Screening
    • 13.62.2. Clinical QTc/QRS Prediction using hiPSC-Derived Cardiomyocytes
  • 13.63. Mogrify
    • 13.63.1. MOGRIFY Platform
    • 13.63.2. epiMOGRIFY Platform
  • 13.64. Ncardia Services B.V.
    • 13.64.1. Ncyte Astrocytes
    • 13.64.2. Ncyte Endothelial Cells
    • 13.64.3. Ncyte Neural Mix
    • 13.64.4. Ncyte Smooth Muscle Cells
    • 13.64.5. Ncyte vCardiomyocytes
    • 13.64.6. Custom Disease Modeling Services
    • 13.64.7. High-Throughput Screening Services
    • 13.64.8. iPSC-Based Efficacy Assay Services
    • 13.64.9. iPSC-Based Safety & Toxicity Assays
  • 13.65. NeuCyte
    • 13.65.1. Technology
    • 13.65.2. Drug Discovery
  • 13.66. Neukio Biotherapeutics
    • 13.66.1. Allogeneic Immunotherapy Platform
  • 13.67. Newcells Biotech
    • 13.67.1. Retina Models
    • 13.67.2. Retinal Organoids
    • 13.67.3. Retinal Pigment Epithelium (RPE)
    • 13.67.4. Kidney Proximal Tubule Cell Model
    • 13.67.5. Assay-Ready aProximate
    • 13.67.6. Glomerular Toxicity and Disease Modeling
    • 13.67.7. Lung Airway Models
    • 13.67.8. Disease Modeling Services
      • 13.67.8.1. In vitro Retinal Disease Modeling for Retinal Therapy
      • 13.67.8.2. in vitro Evaluation of Retinal Toxicity Services
      • 13.67.8.3. Gene Therapy Services
      • 13.67.8.4. Drug Transporter Interactions & DDI Services
      • 13.67.8.5. Cross Species Comparison Services
      • 13.67.8.6. Kidney Toxicity Services
      • 13.67.8.7. Kidney Disease Modeling Services
      • 13.67.8.8. Fibroblast Assay Services
      • 13.67.8.9. Lung Toxicity Study Services
  • 13.68. NEXEL, Co., Ltd.
    • 13.68.1. Products
      • 13.68.1.1. Cardiosight-S
      • 13.68.1.2. Hepatosight-S
      • 13.68.1.3. Neurosight-S
    • 13.68.2. Curi Bio Systems
      • 13.68.2.1. Mantarray
      • 13.68.2.2. Cytostretcher
      • 13.68.2.3. NanoSurface Plates
    • 13.68.3. Services
      • 13.68.3.1. NeXST (Next Xight Screening Test)
      • 13.68.3.2. Curi Engine SVC
  • 13.69. Notch Therapeutics
    • 13.69.1. Technology
    • 13.69.2. Product Development
  • 13.70. Orizuru Therapeutics, Inc.
    • 13.70.1. iCM Project
  • 13.71. Phenocell SAS
    • 13.71.1. iPSC-derived RPE Cells for Age-related Macular Degeneration (AMD)
    • 13.71.2. R&D Solutions for Acne & Hyperseborrhea
    • 13.71.3. Skin Pigmentation Research & Testing Platform
    • 13.71.4. Cells & Kits
  • 13.72. Pluristyx
    • 13.72.1. The panCELLa Platform
    • 13.72.2. RTD iPSC & GMP Cell Banks
    • 13.72.3. Development Services
    • 13.72.4. Custom Gene Editing
    • 13.72.5. iPSC GMP Manufacturing Expertise
    • 13.72.6. Custom Gene Editing
    • 13.72.7. FailSafe
    • 13.72.8. iACT Stealth Cells
    • 13.72.9. Products
      • 13.72.9.1. PluriBank PSCs
      • 13.72.9.2. ESI Pluripotent Stem Cells
      • 13.72.9.3. Wild Type & Disease Affected PSCs
    • 13.72.10. Differentiated Cells
  • 13.73. ReNeuron
    • 13.73.1. Technology Platform
  • 13.74. Repairon GmbH
    • 13.74.1. Technology
      • 13.74.1.1. Engineered Heart Muscle (EHM)
  • 13.75. REPROCELL USA, Inc.
    • 13.75.1. Services
      • 13.75.1.1. Donor Recruitment and Patient-Derived Cells
      • 13.75.1.2. Example Case Study
      • 13.75.1.3. Target Cell Isolation
      • 13.75.1.4. iPSC Reprograming Service
      • 13.75.1.5. iPSC Expansion, Characterization and Banking Services
      • 13.75.1.6. Neuronal Differentiation Services
      • 13.75.1.7. Gene Editing Services
    • 13.75.2. REPROCELL's iPSC Products
      • 13.75.2.1. Stemgent
  • 13.76. Res Nova Bio, Inc.
    • 13.76.1. Preclinical Study
  • 13.77. Sartorius CellGenix GmbH
    • 13.77.1. Products
  • 13.78. Shinobi Therapeutics
  • 13.79. Shoreline Biosciences
    • 13.79.1. iMACs
  • 13.80. StemSight
    • 13.80.1. Technology
  • 13.81. Stemson Therapeutics
    • 13.81.1. iPSCs for Hair Follicles
  • 13.82. Stemina Biomarker Discovery
    • 13.82.1. Cardio quickPREDICT
    • 13.82.2. devTOX quickPREDICT
  • 13.83. Tempo Bioscience, Inc.
    • 13.83.1. Tempo-iAstro
    • 13.83.2. Tempo-iBMEC
    • 13.83.3. Tempo-iCardio
    • 13.83.4. Tempo-iCort
    • 13.83.5. Tempo-iDopaNer
    • 13.83.6. Tempo-iLSEC
    • 13.83.7. Tempo-iKupffer
    • 13.83.8. Tempo-iHepStellate
    • 13.83.9. Tempo-iHep3D
    • 13.83.10. Tempo-iKer
    • 13.83.11. Tempo-iKidneyPod
    • 13.83.12. Tempo-iMel
    • 13.83.13. Tempo-iMG
    • 13.83.14. Tempo-iMono
    • 13.83.15. Tempo-iMotorNer
    • 13.83.16. Tempo-iMSC
    • 13.83.17. Tempo-iNStem
    • 13.83.18. Tempo-iOligo
    • 13.83.19. Tempo-iOsteo
    • 13.83.20. Tempo-iPeri
    • 13.83.21. Tempo-iPhago
    • 13.83.22. Tempo-iRPE
    • 13.83.23. Tempo-iSchwann
    • 13.83.24. Tempo-iSenso
    • 13.83.25. Tempo StemBank
  • 13.84. Uncommon (Higher Steaks)
    • 13.84.1. iPSC-Based Cultured Pork
  • 13.85. Universal Cells
    • 13.85.1. Technologies
      • 13.85.1.1. Recombinant Adeno-Associated Virus
      • 13.85.1.2. PSCs for Every Organ
      • 13.85.1.3. Universal Donor Cells
      • 13.85.1.4. HLA Engineering
  • 13.86. VCCT, Inc.
    • 13.86.1. Regenerating RPE Cells
  • 13.87. ViaCyte, Inc.
    • 13.87.1. Technology
      • 13.87.1.1. Autologous Approach
      • 13.87.1.2. Allogeneic Approach
    • 13.87.2. Pipeline
  • 13.88. Vita Therapeutics
    • 13.88.1. Technology
  • 13.89. XCell Science
    • 13.89.1. Control Lines
      • 13.89.1.1. XCL-1
      • 13.89.1.2. XCL-6
    • 13.89.2. Cell Products
      • 13.89.2.1. Control Lines
      • 13.89.2.2. Knock-out Lines
      • 13.89.2.3. Reporter Lines
    • 13.89.3. Services
  • 13.90. Yashraj Biotechnology, Ltd.
    • 13.90.1. iPSC Products
    • 13.90.2. Contract Research Services

INDEX OF FIGURES

  • FIGURE 3.1: Development of iPSC-based Autologous Cell Therapy for Canavan Disease
  • FIGURE 3.2: Manufacturing Timeline for Autologous iPSC-derived Cell Products
  • FIGURE 3.3: Cost of iPSC Production
  • FIGURE 3.4: Technical Set Up of the Stem Cell Factory (SCF)
  • FIGURE 3.5: Development of iPSC-based Allogeneic Cell Therapy
  • FIGURE 3.6: Share of iPSC-based Research within the Overall Stem Cell Industry
  • FIGURE 3.7: Major Focus Areas of iPSC Companies
  • FIGURE 3.8: Relative use of iPSC-derived Cell Types in Toxicology Studies
  • FIGURE 3.9: Comparison of Lipofection and Nucleofection Technologies
  • FIGURE 5.1: No. of Research Publications on iPSC in PubMed.gov, 2010-May 29, 2024
  • FIGURE 5.2: Pubmed Publications on Pathophysiological Research using iPSCs
  • FIGURE 5.3: PubMed Publications on Reprogramming Somatic Cells
  • FIGURE 5.4: No. of PubMed Papers on iPSC Differentiation
  • FIGURE 5.5: PubMed Papers on the use of iPSCs in Drug Discovery
  • FIGURE 5.6: PubMed Papers on iPSC-based Cell Therapy
  • FIGURE 5.7: Percent Share of Published Articles by Disease Type
  • FIGURE 5.8: Percent Share of Articles by Country
  • FIGURE 6.1: Number of iPSC Patents Filed by Year, 2000-May 5, 2024
  • FIGURE 7.1: Number of Clinical Trials by Year
  • FIGURE 7.2: iPSC Clinical Trials by Design, May 2024
  • FIGURE 7.3: Therapeutic & Non-Therapeutic iPSC Clinical Trials
  • FIGURE 7.4: Non-Therapeutic Clinical Trials by Use
  • FIGURE 7.5: Percent Share of Diseases Targeted by Therapeutic Studies
  • FIGURE 7.6: Share of Autologous & Allogeneic iPSCs in Clinical Studies
  • FIGURE 7.7: iPSC Clinical Trials by Phase of Study
  • FIGURE 7.8: iPSC Clinical Trials by Funder Type
  • FIGURE 9.1: The Roles of OSKM Factors in the Induction of iPSCs
  • FIGURE 9.2: Delivery Methods for iPSC Induction
  • FIGURE 9.3: Schematic of Retroviral Delivery Method
  • FIGURE 9.4: Schematic of Lentiviral Delivery Method
  • FIGURE 9.5: Schematic of piggyBack Transposon Delivery Method
  • FIGURE 9.6: Shematic of Adenoviral Vector Delivery
  • FIGURE 9.7: oriP/Epstein-Barr Nuclear Antigen-1 (EBNA1)-based Episomes
  • FIGURE 9.8: RNA Delivery Approach
  • FIGURE 9.9: Protein Delivery
  • FIGURE 10.1: PubMed Citations for iPSCs and iPSC Lines registered in hPSCreg
  • FIGURE 10.1: Disease States represented by NIGMS Cell Lines
  • FIGURE 10.2: Subject Age Range in Collections
  • FIGURE 11.1: Biomedical Applications of iPSCs
  • FIGURE 11.1: Advantages of iPSC usage in Drug Discovery
  • FIGURE 11.2: iPSCs and their Potential for Toxicity Testing and Drug Screening
  • FIGURE 11.3: Relative Use of iPSC-Derived Cell Types used in Toxicity Testing Studies
  • FIGURE 11.4: Percent Share Utilization of iPSCs for Cardiovascular Disease Modeling
  • FIGURE 11.5: Techniques used for iPSC Bioprinting
  • FIGURE 12.1: Estimated Global Market for iPSCs by Geography, 2023-2030
  • FIGURE 12.2: Estimated Global Market for iPSCs by Technology, 2023-2030
  • FIGURE 12.3: Estimated Global Market for iPSCs by Biomedical Application, 2023-2030
  • FIGURE 12.4: Global Market for iPSCs by Derived Cell Type, 2023
  • FIGURE 13.1: dCas9-VPR System
  • FIGURE 13.2: Universal Donor Cell Technology
  • FIGURE 13.3: Century's Approach to iPSC Therapy
  • FIGURE 13.4: FT576
  • FIGURE 13.5: FT522
  • FIGURE 13.6: FT819
  • FIGURE 13.7: FT825
  • FIGURE 13.8: Developing iPSC Neurons by SynFire Technology
  • FIGURE 13.9: Mantarray Instrument
  • FIGURE 13.10: Cytostretcher
  • FIGURE 13.11: NanoSurface Plate
  • FIGURE 13.12: Repairon's Engineered Heart Muscle (EHM)
  • FIGURE 13.13: REPROCELL's Example Case Study: Alzheimer's Disese
  • FIGURE 13.14: Cardio quickPREDICT Process
  • FIGURE 13.15: devTOX quickPREDICT Process

INDEX OF TABLES

  • TABLE 3.1: Examples of Autologous iPSC-derived Cell Therapies in Development
  • TABLE 3.2: Examples of Clinical Trials involving Allogeneic iPSCs
  • TABLE 3.3: Commercially Available iPSC-derived Cell Types
  • TABLE 3.4: iPSC-derived Cell Types used in Clinical Trials
  • TABLE 4.1: Timeline of Important Milestones Reached in iPSC Industry
  • TABLE 5.1: No. of Research Publications on iPSC in PubMed.gov, 2006-June 1, 2024
  • TABLE 6.1: iPSC Patent Applications by Jurisdiction as of May 5, 2024
  • TABLE 6.2: Patent Applicants as of May 5, 2024
  • TABLE 6.3: iPSC Patent Inventors
  • TABLE 6.4: iPSC Patent Owners
  • TABLE 6.5: Legal Status of iPSC Patents
  • TABLE 7.1: Recruitment Status of iPSC Clinical Trials, May 2, 2024
  • TABLE 7.2: Examples of iPSC-based Therapeutic Interventional Studies
  • TABLE 7.3: The Promising iPSC-based Product Candidates Developed across the World
  • TABLE 7.4: Examples of Key iPSC-based Preclinical Studies
  • TABLE 8.1: M&A in iPSC Sector
  • TABLE 8.2: Partnership/Collaboration & Licensing Deals in iPSC Sector, 2021-May 2024
  • TABLE 8.3: Venture Capital Funding in iPSC Sector, 2021-May 2024
  • TABLE 9.1: Pluripotency-Associated Transcription Factors and their Functions
  • TABLE 9.2: Diffewrent Combinations of Factors for Different Cell Sources
  • TABLE 9.3: Comparison of Delivery Methods of Reprogramming Factors
  • TABLE 9.4: iPSC Disease Models Generated by CRISPR/Cas9
  • TABLE 9.5: Available iPSC lines and their Major Applications
  • TABLE 10.1: Major Biobanks Storing iPSCs & iPSC Lines
  • TABLE 10.2: Disease-Specific iPSCs offered by RIKEN
  • TABLE 10.3: Types of iPS Cell Lines available with WiCell - a Sample
  • TABLE 10.4: The Four California Institutions recruiting Tissue Donors
  • TABLE 10.5: iPSC Disease Samples with FCDI
  • TABLE 10.6: Examples of Allen's Fluorescently Tagged hiPSC lines
  • TABLE 10.7: Rett Syndrome Trust's iPSC Collection
  • TABLE 10.8: Cell Sources & Reprogramming Methods for iPSC Banks
  • TABLE 10.9: Ownership of iPSC Banks and the Investments Made
  • TABLE 11.1: Providers of iPSC-Related Services and Products for Researchers
  • TABLE 11.2: Drugs Tested for Cardiovascular Diseases using iPSCs
  • TABLE 11.3: Drugs Tested for Neurological Diseases using iPSC Lines
  • TABLE 11.4: Drugs Tested for Rare Diseases using iPSC Lines
  • TABLE 11.5: Examples of Drugs Tested for their Toxicity using iPSC-Derved Cell Lines
  • TABLE 11.6: Published Human iPSC Models
  • TABLE 11.7: Partial List of Cardiovascular & other Diseases Modeled using iPSCs
  • TABLE 11.8: Liver Diseases Modeled using iPSCs
  • TABLE 11.9: Examples of iPSC-Based Neurodegenerative Diseae Modeling
  • TABLE 11.10: Organoid Types and Diseae Modeling Applications
  • TABLE 11.11: Examples of Cancer-Derived iPSCs
  • TABLE 11.12: Major Sponsors of iPSC-based Cell Therapies
  • TABLE 11.13: Selected Interventional Clinical Trials of iPSC-Based Cell Therapy
  • TABLE 11.14: Companies focusing only on iPSC-based Therapies
  • TABLE 11.15: Features of Different iPSC Bioprinting Techniques
  • TABLE 11.16: Bioprinting of iPSC-Derived Cells
  • TABLE 11.17: iPSCs Generation from Cattle
  • TABLE 11.18: iPSCs Generation from Sheep
  • TABLE 11.19: iPSCs Generation from Goat
  • TABLE 11.20: iPSCs Generation from Buffalo
  • TABLE 11.21: iPSC Generation from Avians
  • TABLE 11.22: Timeline of Development of iPSCs Generated from Domestic & Wild Animals
  • TABLE 12.1: Estimated Global Market for iPSCs by Geography, 2023-2030
  • TABLE 12.2: Estimated Global Market for iPSCs by Technology, 2023-2030
  • TABLE 12.3: Estimated Global Market for iPSCs by Biomedical Application, 2023-2030
  • TABLE 12.4: Global Market for iPSCs by Derived Cell Type, 2023-2030
  • TABLE 13.1: Aspen's Clinical Pipeline
  • TABLE 13.2: Astella's Robust & Competitive Pipeline
  • TABLE 13.3: Bit.bio's Cell Therapy Pipeline
  • TABLE 13.4: BlueRock's Pipeline of Cell Therapy Products
  • TABLE 13.5: Cartheric's R&D Pipeline
  • TABLE 13.6: CellOrigin's R&D Pipeline
  • TABLE 13.7: Cellusion's Pipeline
  • TABLE 13.8: Century's Pipeline Products
  • TABLE 13.9: Cytovia's iPSC-Derived CAR-iNK Product Pipeline
  • TABLE 13.10: Eterna's R&D Pipeline
  • TABLE 13.11: Eyestem's Product Pipeline
  • TABLE 13.12: Fate Therapeutic's Product Pipeline
  • TABLE 13.13: Examples of Greenstone's iPSC Line Collections
  • TABLE 13.14: HebeCell's Product Pipeline
  • TABLE 13.15: Helio's Research & Development Status
  • TABLE 13.16: Hopstem's Product Pipeline
  • TABLE 13.17: IPS HEART's R&D Pipeline
  • TABLE 13.18: iPSirius' R&D Pipeline
  • TABLE 13.19: Kenai Therapeutic's Pipeline
  • TABLE 13.20: Khloris Biosciences' iPSC-Based Clinical Programs
  • TABLE 13.21: Laverock's R&D Pipeline
  • TABLE 13.22: Megakaryon's Research & Development Pipeline
  • TABLE 13.23: NEXEL Pipeline
  • TABLE 13.24: Notch Therapeutic's R&D Pipeline
  • TABLE 13.25: Available Stemgent iPSCs with REPROCELL
  • TABLE 13.26: Shinobi Therapeutics' Product Pipeline
  • TABLE 13.27: ViaCyte's Product Pipeline
  • TABLE 13.28: Vita Therapeutic's R&D Pipeline