封面
市场调查报告书
商品编码
1703309

诱导多能干细胞市场-全球产业规模、份额、趋势、机会和预测,按衍生细胞类型、应用、最终用户、地区和竞争情况细分,2020 年至 2030 年

Induced Pluripotent Stem Cells Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Derived Cell Type, By Application, By End user By Region & Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 180 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2024 年全球诱导多能干细胞 (iPSC) 市场价值为 14.5 亿美元,预计在整个预测期内将呈现强劲增长,到 2030 年将以 9.60% 的年复合成长率(CAGR) 扩大。

市场概览
预测期 2026-2030
2024年市场规模 14.5亿美元
2030年市场规模 25.2亿美元
2025-2030 年复合年增长率 9.60%
成长最快的领域 药物开发
最大的市场 北美洲

iPSC 市场已成为更广泛的再生医学和细胞治疗领域中一个充满活力且潜力巨大的领域。 iPSC 是重新编程为多能状态的成体细胞,使其能够分化为几乎任何细胞类型。这种独特的能力使 iPSC 成为治疗开发和生物医学研究的关键资产。

关键市场驱动因素

慢性病发生率上升

这项策略转向凸显了人们对基于 iPSC 的疗法作为传统治疗的可持续、个人化替代方案的信心日益增强。

主要市场挑战

安全性和有效性问题

主要市场趋势

个人化医疗和患者特异性治疗的成长

目录

第 1 章:产品概述

第二章:研究方法

第三章:执行摘要

第四章:顾客之声

第五章:全球诱导性多能干细胞市场展望

  • 市场规模和预测
    • 按价值
  • 市场占有率和预测
    • 依衍生细胞类型(肝细胞、纤维母细胞、角质形成细胞、神经元、其他)
    • 按应用(药物开发、再生医学、毒性测试、组织工程、细胞治疗、疾病建模)
    • 按最终用户(研究机构、其他)
    • 按公司分类(2024)
    • 按地区
  • 市场地图

第六章:北美诱导性多能干细胞市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 北美:国家分析
    • 美国
    • 墨西哥
    • 加拿大

第七章:欧洲诱导性多能干细胞市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 欧洲:国家分析
    • 法国
    • 德国
    • 英国
    • 义大利
    • 西班牙

第八章:亚太诱导性多能干细胞市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 韩国
    • 日本
    • 澳洲

第九章:南美洲诱导性多能干细胞市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第十章:中东与非洲诱导性多能干细胞市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • MEA:国家分析
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第 11 章:市场动态

  • 驱动程式
  • 挑战

第 12 章:市场趋势与发展

  • 最新动态
  • 产品发布
  • 併购

第 13 章: 大环境分析

第 14 章:波特五力分析

  • 产业竞争
  • 新进入者的潜力
  • 供应商的力量
  • 顾客的力量
  • 替代产品的威胁

第 15 章:竞争格局

  • Axol Bioscience Ltd.
  • Cynata Therapeutics Limited
  • Evotec SE
  • Fate Therapeutics, Inc.
  • FUJIFILM Cellular Dynamics, Inc.
  • Ncardia
  • LizarBio Therapeutics (Pluricell Biotech)
  • Reprocell USA, Inc.
  • Sumitomo Dainippon Pharma Co., Ltd.
  • Takara Bio, Inc

第 16 章:策略建议

第17章调查会社について・免责事项

简介目录
Product Code: 16737

Global Induced pluripotent stem cells (iPSCs) market was valued at USD 1.45 billion in 2024 and is projected to exhibit strong growth throughout the forecast period, expanding at a compound annual growth rate (CAGR) of 9.60% through 2030.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 1.45 Billion
Market Size 2030USD 2.52 Billion
CAGR 2025-20309.60%
Fastest Growing SegmentDrug Development
Largest MarketNorth America

The iPSCs market has emerged as a dynamic and high-potential segment within the broader regenerative medicine and cell therapy landscape. iPSCs are adult cells reprogrammed to a pluripotent state, enabling them to differentiate into virtually any cell type. This unique capability makes iPSCs a critical asset in both therapeutic development and biomedical research.

Key Market Drivers

Rising Incidence of Chronic Diseases

The global surge in chronic, non-communicable diseases-including cardiovascular diseases, diabetes, neurodegenerative disorders such as Alzheimer's and Parkinson's, and various cancers-is placing significant strain on healthcare systems. These conditions collectively account for approximately 75% of global mortality and represent substantial clinical and economic burdens across both developed and developing regions.

This trend is directly contributing to the accelerated adoption of iPSCs, which offer transformative potential in disease modeling, drug discovery, and regenerative treatment development. Chronic diseases are typically progressive and require long-term, often lifelong, management. Traditional therapies frequently fall short in addressing the root causes or providing curative solutions.

iPSCs, by contrast, enable the regeneration of damaged or diseased tissues using cells derived from the patient, offering a novel therapeutic pathway. Industry research indicates that a significant portion of biopharmaceutical and medtech executives are prioritizing disruptive innovations-such as cell and gene therapies, including CAR-T and CRISPR-over incremental improvements to existing drugs and devices. Notably, 32% of biopharma leaders are focusing on such innovations, while 30% of medtech stakeholders are shifting investment toward breakthrough platforms, with 24% favoring the development of high-risk, high-reward Class III medical devices.

This strategic redirection underlines the growing confidence in iPSC-based therapies as sustainable, personalized alternatives to conventional treatments.

Key Market Challenges

Safety and Efficacy Concerns

Despite the significant promise of iPSCs, safety and efficacy concerns represent major barriers to their widespread clinical adoption. One of the most critical safety risks involves tumorigenesis; iPSCs, when transplanted, have the potential to form teratomas-tumors comprising various cell types-posing serious safety implications for patients.

Additionally, although iPSCs are often derived from a patient's own cells, issues with immune compatibility can still arise. Particularly in allogeneic applications, where donor-derived iPSC therapies are used, the risk of immune rejection remains a concern and must be carefully managed.

Efficacy also presents a key challenge. Demonstrating consistent and meaningful therapeutic outcomes in both preclinical and clinical settings is essential to gain regulatory approval and clinical trust. Long-term efficacy data, especially for chronic and degenerative conditions, are still being established.

Furthermore, the lack of standardized protocols for iPSC generation, differentiation, and quality control contributes to variability in cell quality and function. This inconsistency can impede reproducibility, scalability, and broader commercialization efforts.

Key Market Trends

Growth of Personalized Medicine and Patient-Specific Therapies

The growing shift toward personalized medicine is among the most significant trends shaping the iPSCs market. The ability to develop therapies tailored to individual genetic and immunological profiles is revolutionizing treatment paradigms, especially for chronic and complex diseases.

iPSCs facilitate the creation of patient-specific therapies by reprogramming somatic cells into a pluripotent state. These cells can then be genetically corrected-if necessary-and differentiated into therapeutic cell types. This personalized approach significantly reduces the risk of immune rejection and enhances therapeutic efficacy, offering hope for conditions that were previously considered untreatable.

In addition, iPSCs are enabling the creation of highly accurate disease models that reflect the patient's unique pathology. These models are invaluable for studying disease mechanisms, evaluating drug responses, and designing customized treatment strategies.

By minimizing the likelihood of adverse reactions and improving clinical outcomes, patient-specific iPSC-based therapies are reshaping expectations in regenerative medicine and significantly advancing the frontier of precision healthcare.

Key Market Players

  • Axol Bioscience Ltd.
  • Cynata Therapeutics Limited
  • Evotec SE
  • Fate Therapeutics, Inc.
  • FUJIFILM Cellular Dynamics, Inc.
  • Ncardia
  • LizarBio Therapeutics (Pluricell Biotech)
  • Reprocell USA, Inc.
  • Sumitomo Dainippon Pharma Co., Ltd.
  • Takara Bio, Inc.

Report Scope:

In this report, the Global Induced Pluripotent Stem Cells Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Induced Pluripotent Stem Cells Market, By Derived Cell Type:

  • Hepatocytes
  • Fibroblasts
  • Keratinocytes
  • Neurons
  • Others

Induced Pluripotent Stem Cells Market, By Application:

  • Drug Development
  • Regenerative Medicine
  • Toxicity Testing
  • Tissue Engineering
  • Cell Therapy
  • Disease Modeling

Induced Pluripotent Stem Cells Market, By End User:

  • Research Institutions
  • Other

Induced Pluripotent Stem Cells Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Induced Pluripotent Stem Cells Market.

Available Customizations:

Global Induced Pluripotent Stem Cells market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Induced Pluripotent Stem Cells Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Derived Cell Type (Hepatocytes, Fibroblasts, Keratinocytes, Neurons, Others)
    • 5.2.2. By Application (Drug Development, Regenerative Medicine, Toxicity Testing, Tissue Engineering, Cell Therapy, Disease Modeling)
    • 5.2.3. By End user (Research Institutions, Other)
    • 5.2.4. By Company (2024)
    • 5.2.5. By Region
  • 5.3. Market Map

6. North America Induced Pluripotent Stem Cells Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Derived Cell Type
    • 6.2.2. By Application
    • 6.2.3. By End user
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Induced Pluripotent Stem Cells Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Derived Cell Type
        • 6.3.1.2.2. By Application
        • 6.3.1.2.3. By End user
    • 6.3.2. Mexico Induced Pluripotent Stem Cells Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Derived Cell Type
        • 6.3.2.2.2. By Application
        • 6.3.2.2.3. By End user
    • 6.3.3. Canada Induced Pluripotent Stem Cells Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Derived Cell Type
        • 6.3.3.2.2. By Application
        • 6.3.3.2.3. By End user

7. Europe Induced Pluripotent Stem Cells Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Derived Cell Type
    • 7.2.2. By Application
    • 7.2.3. By End user
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Induced Pluripotent Stem Cells Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Derived Cell Type
        • 7.3.1.2.2. By Application
        • 7.3.1.2.3. By End user
    • 7.3.2. Germany Induced Pluripotent Stem Cells Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Derived Cell Type
        • 7.3.2.2.2. By Application
        • 7.3.2.2.3. By End user
    • 7.3.3. United Kingdom Induced Pluripotent Stem Cells Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Derived Cell Type
        • 7.3.3.2.2. By Application
        • 7.3.3.2.3. By End user
    • 7.3.4. Italy Induced Pluripotent Stem Cells Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Derived Cell Type
        • 7.3.4.2.2. By Application
        • 7.3.4.2.3. By End user
    • 7.3.5. Spain Induced Pluripotent Stem Cells Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Derived Cell Type
        • 7.3.5.2.2. By Application
        • 7.3.5.2.3. By End user

8. Asia-Pacific Induced Pluripotent Stem Cells Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Derived Cell Type
    • 8.2.2. By Application
    • 8.2.3. By End user
    • 8.2.4. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Induced Pluripotent Stem Cells Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Derived Cell Type
        • 8.3.1.2.2. By Application
        • 8.3.1.2.3. By End user
    • 8.3.2. India Induced Pluripotent Stem Cells Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Derived Cell Type
        • 8.3.2.2.2. By Application
        • 8.3.2.2.3. By End user
    • 8.3.3. South Korea Induced Pluripotent Stem Cells Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Derived Cell Type
        • 8.3.3.2.2. By Application
        • 8.3.3.2.3. By End user
    • 8.3.4. Japan Induced Pluripotent Stem Cells Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Derived Cell Type
        • 8.3.4.2.2. By Application
        • 8.3.4.2.3. By End user
    • 8.3.5. Australia Induced Pluripotent Stem Cells Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Derived Cell Type
        • 8.3.5.2.2. By Application
        • 8.3.5.2.3. By End user

9. South America Induced Pluripotent Stem Cells Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Derived Cell Type
    • 9.2.2. By Application
    • 9.2.3. By End user
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Induced Pluripotent Stem Cells Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Derived Cell Type
        • 9.3.1.2.2. By Application
        • 9.3.1.2.3. By End user
    • 9.3.2. Argentina Induced Pluripotent Stem Cells Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Derived Cell Type
        • 9.3.2.2.2. By Application
        • 9.3.2.2.3. By End user
    • 9.3.3. Colombia Induced Pluripotent Stem Cells Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Derived Cell Type
        • 9.3.3.2.2. By Application
        • 9.3.3.2.3. By End user

10. Middle East and Africa Induced Pluripotent Stem Cells Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Derived Cell Type
    • 10.2.2. By Application
    • 10.2.3. By End user
    • 10.2.4. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Induced Pluripotent Stem Cells Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Derived Cell Type
        • 10.3.1.2.2. By Application
        • 10.3.1.2.3. By End user
    • 10.3.2. Saudi Arabia Induced Pluripotent Stem Cells Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Derived Cell Type
        • 10.3.2.2.2. By Application
        • 10.3.2.2.3. By End user
    • 10.3.3. UAE Induced Pluripotent Stem Cells Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Derived Cell Type
        • 10.3.3.2.2. By Application
        • 10.3.3.2.3. By End user

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Developments
  • 12.2. Product Launches
  • 12.3. Mergers & Acquisitions

13. PESTLE Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Product

15. Competitive Landscape

  • 15.1. Axol Bioscience Ltd.
    • 15.1.1. Business Overview
    • 15.1.2. Product & Service Offerings
    • 15.1.3. Recent Developments
    • 15.1.4. Financials (If Listed)
    • 15.1.5. Key Personnel
    • 15.1.6. SWOT Analysis
  • 15.2. Cynata Therapeutics Limited
  • 15.3. Evotec SE
  • 15.4. Fate Therapeutics, Inc.
  • 15.5. FUJIFILM Cellular Dynamics, Inc.
  • 15.6. Ncardia
  • 15.7. LizarBio Therapeutics (Pluricell Biotech)
  • 15.8. Reprocell USA, Inc.
  • 15.9. Sumitomo Dainippon Pharma Co., Ltd.
  • 15.10. Takara Bio, Inc

16. Strategic Recommendations

17. About Us & Disclaimer