全球诱导性多功能干细胞(iPSC)产业 - 市场规模,趋势,预测(2025年)
市场调查报告书
商品编码
1609194

全球诱导性多功能干细胞(iPSC)产业 - 市场规模,趋势,预测(2025年)

Global Induced Pluripotent Stem Cell (iPSC) Industry Report - Market Size, Trends, & Forecasts, 2025

出版日期: | 出版商: BioInformant | 英文 389 Pages | 订单完成后即时交付

价格
简介目录

摘要整理

自2006年发现诱导多能干细胞(iPSC)技术以来,干细胞生物学和再生医学取得了巨大进展。新的病理机制已经被识别和解释,透过 iPS 细胞筛选鑑定的新药物已经开发出来,并且正在进行使用人类 iPS 细胞衍生细胞的临床试验。 iPS 细胞可用于探索疾病发生和进展的原因,创造和测试新药物和治疗方法,以及治疗以前无法治癒的疾病。

iPSC 市场动态

自从大约 18 年前发现 iPSC 以来,该领域以前所未有的速度发展。仅花了七年时间,第一个 iPSC 衍生细胞产品就于 2013 年被移植到人类患者体内。从那时起,iPSC 衍生细胞在世界各地越来越多地用于临床前研究、研究者发起的研究和临床试验,支持了它们的变革潜力。

iPSC 的发现彻底改变了多个科学领域,包括药物发现、毒性测试和培养皿内疾病建模,同时也对细胞和基因治疗产生了重大影响。 iPS 细胞具有在体外无限增殖并分化为特化细胞的能力,用途广泛,使其成为临床细胞替代疗法和高级疾病建模的理想来源。

首个使用 iPS 细胞的细胞疗法于 2013 年在神户 RIKEN 中心开始。该研究由 Masayo Takahashi 博士领导,调查了 iPSC 衍生的视网膜细胞片在黄斑部病变患者中的安全性。 2016年,Cynata Therapeutics获得了CYP-001临床试验批准,取得了世界第一,CYP-001是一种同种异体iPSC衍生细胞产品,用于治疗类固醇抵抗性急性移植物抗宿主疾病(GvHD)。这种 iPSC 衍生的间质干细胞 (MSC) 製剂在安全性和有效性方面显示出良好的结果,并成功地达到了临床终点。

如今,iPSC 已成为至少 155 项正在进行的针对多种疾病的临床试验的中心。 iPSC 衍生的间质干细胞 (MSC) 正在针对类固醇抗药性急性 GvHD 进行测试,而 iPSC 衍生的多巴胺能祖细胞正在针对帕金森氏症进行评估。在肿瘤学领域,iPSC 衍生的自然杀手 (iNK) 细胞正在被研究作为转移性实体瘤的癌症免疫疗法。其他应用包括用于治疗老年性黄斑部病变 (AMD) 的视网膜色素上皮细胞和用于治疗第 1 型糖尿病的 iPSC 衍生的胰岛素分泌 β 细胞。这些多样化的治疗方案凸显了 iPSC 在治疗各种疾病方面的巨大潜力。

iPSC 的商业潜力也在显着扩大。该公司正在利用 iPSC 衍生产品进行药物开发、疾病建模和毒性测试。 FUJIFILM Cellular Dynamics International (FCDI) 是该领域最大的参与者之一。 Cellular Dynamics International (CDI) 由威斯康辛大学麦迪逊分校的 James Thomson 博士于 2004 年创立,是最早于 2007 年建立人类 iPS 细胞系的公司之一。 2015年,富士软片以3.07亿美元收购CDI,并成立FCDI。 FCDI 目前是全球最大的用于研究和再生医学的 iPSC 衍生人类细胞製造商。

ReproCELL 成立于 2009 年,是东京大学和京都大学的合资企业,是第一家将 iPS 细胞产品商业化的公司。该公司的 iPS 细胞衍生心肌细胞产品线 ReproCardio 为该产业铺平了道路。在欧洲,我们的主要竞争对手是 Evotec 和 Ncardia。 Evotec总部位于德国汉堡,打造了全球最先进的iPSC平台,专注于将基于iPSC的药物筛选产业化。 Ncardia 成立于 2017 年,由 Axiogenesis 和 Pluriomics 合併而成,专注于 iPSC 的心臟和神经应用。其前身之一 Axiogenesis 是欧洲第一家于 2010 年获得 iPSC 技术授权的公司。

本报告提供全球诱导性多功能干细胞(iPSC)产业调查分析,提供有关主要公司、策略合作伙伴关係以及推动该产业的创新的资讯。

目录

第1章 报告概要

第2章 简介

第3章 iPSC产业现状

  • 使用 iPSC 进行自体细胞治疗的进展
  • 使用同种异体 iPSC 进行细胞治疗
  • 整个干细胞产业基于 iPSC 的研究占有率
  • iPSC 公司的主要关注领域
  • 市面上已有的 iPSC 衍生细胞类型
  • iPSC 衍生细胞类型在毒性测试分析中的相对用途
  • 临床试验中使用的 iPSC 衍生细胞类型
  • 目前可用的 iPSC 技术

第四章诱导多能干细胞(iPSC)的历史

  • 从小鼠纤维母细胞产生第一代 iPSC(2006 年)
  • 第一代人类 iPSC(2007 年)
  • CiRA 成立(2010 年)
  • 首次使用 iPSC 进行高通量筛选(2012 年)
  • 首个 iPSC 临床试验在日本获得批准(2013 年)
  • 首次针对 AMD 进行 iPSC-RPE 细胞片移植(2014 年)
  • EBiSC 成立(2014 年)
  • 首次使用同种异体 iPSC 治疗 AMD 的临床试验(2017 年)
  • 使用同种异体 iPSC 治疗帕金森氏症的临床试验(2018 年)
  • 建立商业 iPSC 工厂 SMaRT(2018 年)
  • 日本首家 iPSC 治疗中心(2019 年)
  • 美国国立卫生研究院 (NIH) 赞助的首个使用 iPSC 的临床试验(2019 年)
  • Cynata Therapeutics 全球最大的 3 期临床试验(2020 年)
  • 临床试验中 iPSC 生产的工具和专业知识(2021 年)
  • 使用周边血球进行内部 iPSC 生产(2022 年)

第5章 iPSC相关研究发表

  • iPSC发表迅速的增加

第6章 iPSC:专利形势分析

  • iPSC专利申请:管辖
  • iPSC专利申请者
  • iPSC专利的发明者
  • iPSC专利所有者
  • iPSC专利的法律上的地位

第7章 iPSC:临床试验的形势

  • iPSC 临床试验数量
  • iPSC 临床试验招募情形
  • iPSC 临床试验研究设计
  • 治疗/非治疗 iPSC 临床试验
  • 基于 iPSC 的测试:以研究阶段划分
  • iPSC 临床试验:依资助者类型
  • iPSC 临床试验的地理分布
  • 有前途的 iPSC 产品候选人
  • 拥有临床前 iPSC 资产的公司
    • Aspen Neuroscience
    • Ryne Biotech
    • Bluerock Therapeutics
    • Vita Therapeutics
    • Hopstem Biotechnology
    • Res Nova Bio, Inc.
    • Cytovia Therapeutics
    • Hebecell Corporation
    • Sana Biotechnology
    • SCG Cell Therapy Pte
    • Cytomed
    • Shoreline Biosciences
    • Neukio Biotherapeutics
    • Exacis Biotherapeutics
    • CellOrigin Biotech

第8章 iPSC领域的M&A,联盟,资金筹措活动

  • 合併·收购(M&A)部门
    • Century Therapeutics & Clade Therapeutics
    • Evotech & Rigenerand
    • Fujifilm Corporation & Atara Biotherapeutics
    • Catalent & RheinCell Therapeutics
    • Axol Biosciences & Censo Biotechnologies
    • Bayer AG & Bluerock Therapeutics
    • Pluriomix & Axiogenesis
  • 与iPSC部门的伙伴关係/联盟授权契约
    • Shinobi Therapeutics & Panasonic
    • SCG Cell Therapy and A*STAR
    • Charles River Laboratories & Pluristyx, Inc.
    • Pluristyx, Inc.& National Resilience, Inc.
    • University of Texas & GeneCure
    • Heartseed, Inc.& Undisclosed Biotech
    • Bluerock Therapeutics & Bit.bio
    • Applied Stem Cell, Inc.& CIRM
    • Resolution Therapeutics & OmniaBio, Inc
    • REPROCELL, Inc.& CIRM
    • REPROCELL, Inc.& BioBridge Global
    • Elevate Bio & CIRM
    • Evotec & Sernova
    • Evotec & Almiral
    • Quell Therapeutics & Cellistic
    • MDimmune & YiPSCELL
    • Edigene & Neukio Biotherapeutics
    • Matricelf & Ramot
    • Evotec & Boehringer Ingelheim
    • Pluristyx, Pancella & Implant Therapeutics
    • Century Therapeutics & Bristol Myers Squibb
    • Fujifilm Cellular Dynamics & Pheno Vista Biosciences
    • Metrion Biosciences & Bioqube Ventures
    • Cytovia Therapeutics & Cellectis
    • Exacis Biotherapeutics & CCRM
    • Cynata Therapeutics & Fujifilm Corporation
    • Bone Therapeutics & Implant Therapeutics
    • REPROCELL & TEXCELL
    • Jacobio & Herbecell
    • NeuCyte & KIF1A.ORG
    • Kite & Shoreline Biosciences
    • Neuropath Therapeutics & Hopstem Biotechnology
    • Allele Biotech & Cellatoz
    • Bluerock Therapeutics, Fujifilm Cellular Dynamics & Opsis Therapeutics
    • Newcells & Takeda
    • Biocentriq & Kytopen
    • Fujifilm Cellular Dynamics & Sana Biotechnology
    • Evotec & Medical Center Hamburg-Eppdorf (UKE)
    • NeuCyte & Seaver Autism Center for Research and Treatment
    • Cytovia Therapeutics & National Cancer Institute
    • Mogrify & MRC Laboratory of Molecular Biology
  • iPSC部门的创业投资资金筹措
    • Asgard Therapeutics
    • Kenai Therapeutics
    • Pluristyx
    • Fujifilm Cellular Dynamics
    • Mogrify Ltd.
    • Heartseed, Inc.
    • Elevate Bio
    • Aspen Neurosciences
    • Axol Biosciences
    • Thyas, Co. Ltd
    • Synthego
    • Cellino Biotech, Inc
    • Curi Bio
    • Ncardia
    • Evotec SE
    • bit.bio
    • Clade Therapeutics
    • Shoreline Biosciences
    • Kytopen
    • Cytovia Therapeutics & CytoLynx
    • TreeFrog Therapeutics
    • HebeCell Corporation
    • Neukio Biotherapeutics
    • Stemson Therapeutics
    • Vita Therapeutics
    • Century Therapeutics
    • Heartseed
    • Mogrify
    • Metrion Biosciences
    • Elevate Bio
    • Vita Therapeutics

第9章 诱导性多功能干细胞(iPSC)的生成

  • OSKM 鸡尾酒
  • 多能性相关转录因子及其功能
  • 重编程因子的传递
  • 用于 iPSC 产生的基因组编辑技术
  • 可用的 iPSC 细胞系及其用途

第10章 人iPSC银行

  • 储存 iPSC 和 iPSC 细胞系的主要生物库
  • iPSC 库的细胞来源
  • iPSC 库中的重编程方法
  • 对 iPSC 银行的所有权和投资

第11章 iPSC的生物医学的用途

  • iPSC 在基础研究的应用
  • iPSC 在药物发现的应用
  • iPSC在毒理学研究中的应用
  • iPSC 在疾病模型中的应用
  • iPSC在细胞治疗上的应用
  • 其他新的 iPSC 应用

第12章 市场分析

  • 全球 iPSC 市场:依地区划分
  • 全球 iPSC 市场:依技术分类
  • iPSC 的全球市场:以生物医学应用划分
  • 全球 iPSC 市场:依来源细胞类型划分
  • 市场推动因素
    • 目前影响 iPSC 市场的推动因素
  • 市场阻碍因素
    • 经济问题
    • 基因组不稳定
    • 免疫原性
    • 生物样本库

第13章 企业简介

  • AcceGen
  • Acellta, Ltd.
  • AddGene, Inc.
  • Allele Biotechnology, Inc.
  • ALSTEM, Inc.
  • Altos Labs
  • AMS Biotechnology, Ltd. (AMSBIO)
  • Applied StemCell (ASC)
  • Asgard Therapeutics
  • Aspen Neurosciences, Inc.
  • Astellas Pharma, Inc.
  • Axol Biosciences, Ltd.
  • BioCentriq
  • Bit.bio
  • BlueRock Therapeutics LP
  • BrainXell
  • Cartherics Pty, Ltd.
  • Catalent Biologics
  • Cellistic
  • CellOrigin Biotech (Hangzhou),Co., Ltd
  • Celogics, Inc.
  • Cellular Engineering Technologies (CET)
  • Cellusion, Inc.
  • Century Therapeutics, Inc.
  • Citius Pharmaceuticals, Inc.
  • Creative Bioarray
  • Curi Bio
  • Cynata Therapeutics, Ltd.
  • Cytovia Therapeutics
  • DefiniGEN
  • Editas Medicine
  • Editco Bio., Inc.
  • ElevateBio
  • Elixirgen Scientific, Inc.
  • Eterna Therapeutics
  • Evotec AG
  • Eyestem
  • Fate Therapeutics
  • FUJIFILM Cellular Dynamics, Inc.
  • Gameto
  • Greenstone Biosciences
  • Heartseed, Inc.
  • HebeCell
  • Helios K.K.
  • Hera BioLabs
  • Hopstem Biotechnology
  • Implant Therapeutics, Inc.
  • IN8bio
  • I Peace, Inc.
  • IPS HEART
  • iPS Portal, Inc.
  • iPSirius
  • iXCells Biotechnologies
  • Kenai Therapeutics, Inc.
  • Khloris Biosciences, Inc.
  • Kytopen
  • Laverock Therapeutics
  • Lindville Bio, Ltd.
  • Lonza Group, Ltd.
  • Matricelf
  • Megakaryon Corporation
  • Metrion Biosciences, Ltd.
  • Mogrify
  • Ncardia Services B.V.
  • NeuCyte
  • Neukio Biotherapeutics
  • Newcells Biotech
  • NEXEL, Co., Ltd.
  • Notch Therapeutics
  • Orizuru Therapeutics, Inc.
  • Phenocell SAS
  • Pluristyx
  • ReNeuron
  • Repairon GmbH
  • REPROCELL USA, Inc.
  • Res Nova Bio, Inc.
  • Sartorius CellGenix GmbH
  • Shinobi Therapeutics
  • Shoreline Biosciences
  • StemSight
  • Stemson Therapeutics
  • Stemina Biomarker Discovery
  • Tempo Bioscience, Inc
  • Uncommon (Higher Steaks)
  • Universal Cells
  • VCCT, Inc.
  • ViaCyte, Inc.
  • Vita Therapeutics
  • XCell Science
  • Yashraj Biotechnology, Ltd.

图的索引

表的索引

简介目录

EXECUTIVE SUMMARY:

Since the discovery of induced pluripotent stem cell (iPSC) technology in 2006, significant progress has been made in stem cell biology and regenerative medicine. New pathological mechanisms have been identified and explained, new drugs identified by iPSC screens are in the pipeline, and clinical trials employing human iPSC-derived cell types have been undertaken. iPSCs can be used to explore the causes of disease onset and progression, create and test new drugs and therapies, and treat previously incurable diseases.

Today, methods of commercializing induced pluripotent stem cells (iPSCs) include:

  • Cellular Therapy: iPSCs are being investigated for use in a wide range of cell therapy applications aimed at reversing injuries or curing diseases by replacing damaged or lost cells.
  • Disease Modeling: iPSCs derived from patients with specific disorders can be differentiated into disease-specific cell types, enabling the creation of accurate, functional disease models "in a dish" for research and therapeutic development.
  • Drug Development and Discovery: iPSCs provide physiologically relevant cells for drug discovery processes, including compound identification, target validation, compound screening, and tool development, significantly improving the efficiency and relevance of these efforts.
  • Personalized Medicine: By combining iPSCs with genome-editing technologies like CRISPR, scientists can introduce precise genetic modifications, such as knock-outs, knock-ins, or single base changes, paving the way for customized treatments tailored to individual genetic profiles.
  • Toxicology Testing: iPSCs or their derivatives (tissue-specific cells) are used for toxicology screening to assess the safety and efficacy of compounds or drugs in living cells, reducing reliance on animal testing.
  • Tissue Engineering: iPSCs can be cultured on biocompatible scaffolds that mimic the structure and properties of target tissues, providing a supportive environment for cell growth and differentiation and aiding the development of engineered tissues for transplantation.
  • Organoid Production: iPSCs can self-organize into 3D structures called organoids, which closely resemble the structure and function of human organs. Organoids are valuable for studying organ development, modeling diseases, and testing drug candidates.
  • Gene Editing: iPSCs can be modified using techniques like CRISPR-Cas9 to correct disease-causing mutations or introduce specific genetic alterations. These edited iPSCs can then be differentiated into functional cells for transplantation or advanced disease studies.
  • Research Tools: iPSCs and their derivatives are extensively used in both basic and applied research to study cellular processes, understand diseases, and test experimental therapies.
  • Stem Cell Banking: iPSC repositories store and provide access to diverse iPSC-derived cell types, offering researchers valuable resources to investigate conditions using cells from both healthy and affected donors.
  • Cultured Meat Production: iPSCs are utilized in lab-grown meat production, serving as a cellular foundation for creating clean, sustainable meat products without the need for traditional animal farming.
  • 3D Bioprinting: iPSCs can be differentiated into specific cell types, such as skin, heart, or liver cells, and incorporated into bioinks for use in 3D bioprinting applications, enabling the creation of complex tissue structures.

iPSC Market Dynamics

Since the discovery of iPSCs approximately 18 years ago, the field has advanced at an unprecedented pace. It took just seven years for the first iPSC-derived cell product to be transplanted into a human patient in 2013. Since then, iPSC-derived cells have been increasingly used in preclinical studies, physician-led research, and clinical trials worldwide, underscoring their transformative potential.

The discovery of iPSCs has revolutionized several scientific fields, including drug discovery, toxicity testing, and in-a-dish disease modeling, while also having a profound impact on cell and gene therapy. Their ability to multiply indefinitely in vitro and differentiate into specialized cells has made them a highly versatile and ideal source for clinical cell replacement therapies and advanced disease modeling.

The first cellular therapy involving iPSCs began in 2013 at the RIKEN Center in Kobe, Japan. Led by Dr. Masayo Takahashi, this trial investigated the safety of iPSC-derived retinal cell sheets in patients with macular degeneration. In 2016, Cynata Therapeutics achieved a world first by gaining approval for a clinical trial of an allogeneic iPSC-derived cell product, CYP-001, for treating steroid-resistant acute graft-versus-host disease (GvHD). This iPSC-derived mesenchymal stem cell (MSC) product demonstrated positive safety and efficacy results, successfully meeting its clinical endpoints.

Today, iPSCs are at the center of at least 155 ongoing clinical trials targeting a range of conditions. iPSC-derived MSCs are being tested for steroid-resistant acute GvHD, while dopaminergic progenitors derived from iPSCs are being evaluated for Parkinson's disease. In oncology, iPSC-derived natural killer (iNK) cells are being studied as cancer immunotherapies for metastatic solid tumors. Other applications include the use of retinal pigment epithelial cells for age-related macular degeneration (AMD) and insulin-secreting beta cells derived from iPSCs for Type 1 diabetes. These diverse therapeutic programs highlight the vast potential of iPSCs in treating a variety of diseases.

The commercial potential of iPSCs has also expanded significantly. Companies are leveraging iPSC-derived products in drug development, disease modeling, and toxicology testing. FUJIFILM Cellular Dynamics International (FCDI) stands out as one of the largest players in the field. Cellular Dynamics International (CDI), founded in 2004 by Dr. James Thomson at the University of Wisconsin-Madison, became one of the first companies to derive human iPSC lines in 2007. In 2015, FUJIFILM acquired CDI for $307 million, creating FCDI, which is now the world's largest producer of human cells derived from iPSCs for research and regenerative medicine.

ReproCELL, founded in 2009 as a venture from the University of Tokyo and Kyoto University, was the first company to commercialize iPSC products. Its ReproCardio line of iPSC-derived cardiomyocytes paved the way for the industry. In Europe, leading competitors include Evotec and Ncardia. Evotec, based in Hamburg, Germany, has built one of the most advanced iPSC platforms in the world, focusing on industrializing iPSC-based drug screening. Ncardia, formed through the merger of Axiogenesis and Pluriomics in 2017, specializes in cardiac and neural applications of iPSCs. Axiogenesis, one of its predecessors, was the first European company to license iPSC technology in 2010.

Large research supply companies are also playing a major role in the commercialization of iPSC-derived products. These include Lonza, BD Biosciences, Thermo Fisher Scientific, Merck, Takara Bio, and numerous others. Collectively, more than 90 companies are active in the iPSC market, offering a broad range of products, services, and technologies that cater to both research and therapeutic applications.

The global iPSC market continues to grow rapidly. A comprehensive report on the field provides an overview of key players, strategic partnerships, and innovations driving the sector. The report explores the current status of iPSC research, manufacturing technologies, and clinical developments. It highlights the rates of iPSC-related patents, publications, and trials, detailing all known therapeutic programs involving iPSC-derived cells. Additionally, the report covers the funding landscape, examining fundraising efforts, IPOs, and co-development agreements that are shaping the market's trajectory.

The report also delves into the expanding use of iPSCs in drug discovery and the strategic partnerships that are driving growth in this sector. It presents a detailed breakdown of market size by application, technology, cell type, and geography (North America, Europe, Asia-Pacific, and the rest of the world). Total market size figures, along with projected growth rates through 2030, provide insights into the future of the iPSC industry.

With their remarkable versatility, iPSCs are set to redefine medicine and biotechnology. From disease modeling and drug discovery to advanced cell replacement therapies, iPSCs are driving innovation at every level. As companies continue to refine manufacturing technologies and expand therapeutic applications, the future of iPSCs holds immense promise for transforming healthcare and scientific research.

TABLE OF CONTENTS

1. REPORT OVERVIEW

  • 1.1. Statement of the Report
  • 1.2. Executive Summary

2. INTRODUCTION

3. CURRENT STATUS OF IPSC INDUSTRY

  • 3.1. Progress made in Autologous Cell Therapy using iPSCs
    • 3.1.1. Examples of Autologous iPSC-derived Cell Therapies in Development
    • 3.1.2. Manufacturing Timeline for Autologous iPSC-derived Cell Products
    • 3.1.3. Cost of iPSC Production
    • 3.1.4. Automation in iPSC Production
  • 3.2. Allogeneic iPSC-based Cell Therapies
  • 3.3. Share of iPSC-based Research within the Overall Stem Cell Industry
  • 3.4. Major Focus Areas of iPSC Companies
  • 3.5. Commercially Available iPSC-derived Cell Types
  • 3.6. Relative use of iPSC-derived Cell Types in Toxicology Testing Assays
  • 3.7. iPSC-derived Cell Types used in Clinical Trials
  • 3.8. Currently Available iPSC Technologies
    • 3.8.1. Brief Descriptions of some iPSC-related Technologies
      • 3.8.1.1. Nucleofector Technology
      • 3.8.1.2. Opti-ox Technology
      • 3.8.1.3. MOGRIFY Technology
      • 3.8.1.4. Transcription Factor-based iPSC Differentiation Technology
      • 3.8.1.5. Flowfect Technology
      • 3.8.1.6. Technology for Mass Production of Platelets
      • 3.8.1.7. SynFire Technology

4. HISTORY OF INDUCED PLURIPOTENT STEM CELLS (IPSCS)

  • 4.1. First iPSC Generation from Mouse Fibroblasts, 2006
  • 4.2. First Human iPSC Generation, 2007
  • 4.3. Creation of CiRA, 2010
  • 4.4. First High-Throughput Screening using iPSCs, 2012
  • 4.5. First iPSC Clinical Trial Approved in Japan, 2013
  • 4.6. First iPSC-RPE Cell Sheet Transplantation for AMD, 2014
  • 4.7. EBiSC Founded, 2014
  • 4.8. First Clinical Trial using Allogeneic iPSCs for AMD, 2017
  • 4.9. Clinical Trial for Parkinson's Disease using Allogeneic iPSCs, 2018
  • 4.10. Commercial iPSC Plant SMaRT Established, 2018
  • 4.11. First iPSC Therapy Center in Japan, 2019
  • 4.12. First U.S.-based NIH-Sponsored Clinical Trial using iPSCs, 2019
  • 4.13. Cynata Therapeutics' World's Largest Phase III Clinical Trial, 2020
  • 4.14. Tools and Know-how to Manufacture iPSCs in Clinical Trials, 2021
  • 4.15. Production of in-house iPSCs using Peripheral Blood Cells, 2022

5. RESEARCH PUBLICATIONS ON IPSCS

  • 5.1. Rapid Growth in iPSC Publications
    • 5.1.1. PubMd Publications on Pathophysiological Research using iPSCs
    • 5.1.2. PubMed Papers on Reprogramming
    • 5.1.3. PubMed Papers on iPSC Differentiation
    • 5.1.4. PubMed Papers on the use of iPSCs in Drug Discovery
    • 5.1.5. PubMed Papers on iPSC-based Cell Therapy
      • 5.1.5.1. Percent Share of Published Articles by Disease Type
      • 5.1.5.2. Percent Share of Articles by Country

6. IPSC: PATENT LANDSCAPE ANALYSIS

  • 6.1. iPSC Patent Applications by Jurisdiction
  • 6.2. iPSC Patent Applicants
  • 6.3. Inventors of iPSC Patents
  • 6.4. iPSC Patent Owners
  • 6.5. Legal Status of iPSC Patents

7. IPSC: CLINICAL TRIAL LANDSCAPE

  • 7.1. Number of iPSC Clinical Trials
  • 7.1. Recruitment Status of iPSC Clinical Trials
  • 7.3. iPSC Clinical Trials Stydy Designs
  • 7.4. Therapeutic & Non-Therapeutic iPSC Clinical Trials
    • 7.4.1. Non-Therapeutic Clinical Studies by Use
    • 7.4.2. Diseases Targeted by Therapeutic Studies
      • 7.4.2.1. Therapeutic Clinical Studies by Autologous & Allogeneic Sources of iPSCs
    • 7.4.3. Examples of iPSC-based Therapeutic Studies
  • 7.5. iPSC-based Trials by Phase of Study
  • 7.6. iPSC Clinical Trials by Funder Type
  • 7.7. Geographic Distribution of iPSC-based Clinical Trials
  • 7.8. Promising iPSC Product Candidates
    • 7.8.1. CYP-001, CYP-004 & CYP-006 from Cynata Therapeutics
    • 7.8.2. BioVAT-HF from Repairon GmbH
    • 7.8.3. HS-001 from Heartseed
    • 7.8.4. CNTY-101 from Century Therapeutics
    • 7.8.5. FT-576 & FT-819 from Fate Therapeutics
    • 7.8.6. RPE from National Eye Institute
    • 7.8.7. QN-019a from Qihan Biotech
    • 7.8.8. iPSC-CL from Heartworks, Inc.
  • 7.9. Companies having Preclinical iPSC Assets
    • 7.9.1. Aspen Neuroscience
    • 7.9.2. Ryne Biotech
    • 7.9.2. Bluerock Therapeutics
    • 7.9.4. Vita Therapeutics
    • 7.9.5. Hopstem Biotechnology
    • 7.9.6. Res Nova Bio, Inc.
    • 7.9.7. Cytovia Therapeutics
    • 7.9.8. Hebecell Corporation
    • 7.9.9. Sana Biotechnology
    • 7.9.10. SCG Cell Therapy Pte
    • 7.9.11. Cytomed
    • 7.9.12. Shoreline Biosciences
    • 7.9.13. Neukio Biotherapeutics
    • 7.9.14. Exacis Biotherapeutics
    • 7.9.15. CellOrigin Biotech

8. M&A, COLLABORATIONS & FUNDING ACTIVITIES IN IPSC SECTOR

  • 8.1. Mergers and Acquisitions (M&A) Sector
    • 8.1.1. Century Therapeutics & Clade Therapeutics
    • 8.1.2. Evotech & Rigenerand
    • 8.1.3. Fujifilm Corporation & Atara Biotherapeutics
    • 8.1.4. Catalent & RheinCell Therapeutics
    • 8.1.5. Axol Biosciences & Censo Biotechnologies
    • 8.1.6. Bayer AG & Bluerock Therapeutics
    • 8.1.7. Pluriomix & Axiogenesis
  • 8.2. Partnership/Collaboration & Licensing Deals in iPSC Sector
    • 8.2.1. Shinobi Therapeutics & Panasonic
    • 8.2.2. SCG Cell Therapy and A*STAR
    • 8.2.3. Charles River Laboratories & Pluristyx, Inc.
    • 8.2.4. Pluristyx, Inc. & National Resilience, Inc.
    • 8.2.5. University of Texas & GeneCure
    • 8.2.6. Heartseed, Inc. & Undisclosed Biotech
    • 8.2.7. Bluerock Therapeutics & Bit.bio
    • 8.2.8. Applied Stem Cell, Inc. & CIRM
    • 8.2.9. Resolution Therapeutics & OmniaBio, Inc
    • 8.2.10. REPROCELL, Inc. & CIRM
    • 8.2.11. REPROCELL, Inc. & BioBridge Global
    • 8.2.12. Elevate Bio & CIRM
    • 8.2.13. Evotec & Sernova
    • 8.2.14. Evotec & Almiral
    • 8.2.15. Quell Therapeutics & Cellistic
    • 8.2.16. MDimmune & YiPSCELL
    • 8.2.17. Edigene & Neukio Biotherapeutics
    • 8.2.18. Matricelf & Ramot
    • 8.2.19. Evotec & Boehringer Ingelheim
    • 8.2.20. Pluristyx, Pancella & Implant Therapeutics
    • 8.2.21. Century Therapeutics & Bristol Myers Squibb
    • 8.2.22. Fujifilm Cellular Dynamics & Pheno Vista Biosciences
    • 8.2.23. Metrion Biosciences & Bioqube Ventures
    • 8.2.24. Cytovia Therapeutics & Cellectis
    • 8.2.25. Exacis Biotherapeutics & CCRM
    • 8.2.26. Cynata Therapeutics & Fujifilm Corporation
    • 8.2.27. Bone Therapeutics & Implant Therapeutics
    • 8.2.28. REPROCELL & TEXCELL
    • 8.2.29. Jacobio & Herbecell
    • 8.2.30. NeuCyte & KIF1A.ORG
    • 8.2.31. Kite & Shoreline Biosciences
    • 8.2.32. Neuropath Therapeutics & Hopstem Biotechnology
    • 8.2.33. Allele Biotech & Cellatoz
    • 8.2.34. Bluerock Therapeutics, Fujifilm Cellular Dynamics & Opsis Therapeutics
    • 8.2.35. Newcells & Takeda
    • 8.2.36. Biocentriq & Kytopen
    • 8.2.37. Fujifilm Cellular Dynamics & Sana Biotechnology
    • 8.2.38. Evotec & Medical Center Hamburg-Eppdorf (UKE)
    • 8.2.39. NeuCyte & Seaver Autism Center for Research and Treatment
    • 8.2.40. Cytovia Therapeutics & National Cancer Institute
    • 8.2.41. Mogrify & MRC Laboratory of Molecular Biology
  • 8.3. Venture Capital Funding in iPSC Sector
    • 8.3.1. Asgard Therapeutics
    • 8.3.2. Kenai Therapeutics
    • 8.3.3. Pluristyx
    • 8.3.4. Fujifilm Cellular Dynamics
    • 8.3.5. Mogrify Ltd.
    • 8.3.6. Heartseed, Inc.
    • 8.3.7. Elevate Bio
    • 8.3.9. Aspen Neurosciences
    • 8.3.10. Axol Biosciences
    • 8.3.11. Thyas, Co. Ltd
    • 8.3.12. Synthego
    • 8.3.13. Cellino Biotech, Inc
    • 8.3.14. Curi Bio
    • 8.3.15. Ncardia
    • 8.3.16. Evotec SE
    • 8.3.17. bit.bio
    • 8.3.18. Clade Therapeutics
    • 8.3.19. Shoreline Biosciences
    • 8.3.20. Kytopen
    • 8.3.21. Cytovia Therapeutics & CytoLynx
    • 8.3.22. TreeFrog Therapeutics
    • 8.3.23. HebeCell Corporation
    • 8.3.24. Neukio Biotherapeutics
    • 8.3.25. Stemson Therapeutics
    • 8.3.26. Vita Therapeutics
    • 8.3.27. Century Therapeutics
    • 8.3.28. Heartseed
    • 8.3.29. Mogrify
    • 8.3.30. Metrion Biosciences
    • 8.3.31. Elevate Bio
    • 8.3.32. Vita Therapeutics

9. GENERATION OF INDUCED PLURIPOTENT STEM CELLS (IPSCS)

  • 9.1. OSKM Cocktail
    • 9.1.1. Octamer-binding Transcription Factor 4 (Oct4)
    • 9.1.2. Sry-related Box (SOX) Factor 2
    • 9.1.3. Kruppel-like Factors (Klf4)
    • 9.1.4. C-Myc
  • 9.2. Pluripotency-Associated Transcription Factors and their Functions
    • 9.2.1. Different Combinations of Factors for Different Cell Sources
  • 9.3. Delivery of Reprogramming Factors
    • 9.3.1. Integrating Systems
      • 9.3.1.1. Retroviral Vectors
      • 9.3.1.2. Lentiviral Vectors
      • 9.3.1.3. piggyBack (PB) Transposon Method
    • 9.3.2. Non-Integrative Delivery Systems
      • 9.3.2.1. Adenoviral Vectors
      • 9.3.2.2. Sendai Viral Vectors
      • 9.3.2.3. Plasmid Vectors
      • 9.3.2.4. Minicircles
      • 9.3.2.5. oriP/Epstein-Barr Nuclear Antigen-1 (EBNA1)-based Episomes
      • 9.3.2.6. RNA Delivery Approach
      • 9.3.2.7. Proteins
    • 9.3.3. Comparison of Delivery Methods
  • 9.4. Genome Editing Technologies in iPSC Generation
    • 9.4.1. CRISPR/Cas9
  • 9.5. Available iPSC Lines and their applications

10. HUMAN IPSC BANKING

  • 10.1. Major Biobanks Storing iPSCs & iPSC Lines
    • 10.1.1. RIKEN
      • 10.1.1.1. Human iPS Cells offered by RIKEN
    • 10.1.2. WiCell
      • 10.1.2.1. WiCell's iPSC Lines
    • 10.1.3. Fujifilm Cellular Dynamics, Inc.
      • 10.1.3.1. iPSC Generation
    • 10.1.4. Sampled
      • 10.1.4.1. Biobanking Services
      • 10.1.4.2. Sampled's iPSC Services
    • 10.1.5. Coriell Institute for Medical Research
      • 10.1.5.1. iPSCs at Coriell
      • 10.1.5.2. Coriell's Biobank
        • 10.1.5.2.1. National Institute of General Medical Sciences (NIGMS)
        • 10.1.5.2.2. National Institute on Aging (NIA)
        • 10.1.5.2.3. Allen Cell Collection
        • 10.1.5.2.4. iPSC Collection from Rett Syndrome Research Trust
        • 10.1.5.2.5. Autism Research Resource
        • 10.1.5.2.6. HD Community BioRepository
        • 10.1.5.2.7. CDC Cell and DNA Repository
        • 10.1.5.2.8. NEI-AREDS Genetic Repository
    • 10.1.6. European Bank for Induced Pluripotent Stem Cells (EBiSC)
      • 10.1.6.1. EBiSC Catalogue
      • 10.1.6.2. EBiSC's iPSC Banking Service
  • 10.2. Cell Sources for iPSC Banks
  • 10.3. Reprogramming Methods in iPSC Banks
  • 10.4. Ownership and Investments made in iPSC Banks

11. BIOMEDICAL APPLICATIONS OF IPSCs

  • 11.1. iPSCs in Basic Research
    • 11.1.1. To Understand Cell Fate Control
    • 11.1.2. To Understand Cell Rejuvenation
    • 11.1.3. To Understand Pluripotency
    • 11.1.4. To Study Tissue & Organ Development
    • 11.1.5. To Produce Human Gametes from iPSCs
    • 11.1.6. Providers of iPSC-Related Services for Researchers
  • 11.2. Applications of iPSCs in Drug Discovery
    • 11.2.1. Drugs Tested for Cardiovascular Diseases using iPSCs
    • 11.2.2. Drugs Tested for Neurological Diseases using iPSC Lines
    • 11.2.3. Drugs Tested for Rare Diseases using iPSC Lines
  • 11.3. Applications of iPSCs in Toxicology Studies
    • 11.3.1. Examples of Drugs Tested for their Toxicity using iPSCs
    • 11.3.2. Relative Use of iPSC-Derived Cell Types used in Toxicity Testing Studies
  • 11.4. Applications of iPSCs in Disease Modeling
    • 11.4.1. Cardiovascular Diseases Modeled with iPSC-Derived Cells
      • 11.4.1.1. Percent Utilization of iPSCs for Cardiovascular Disease Modeling
    • 11.4.2. Modeling Liver Diseases using iPSC-Derived Hepatocytes
    • 11.4.3. iPSCs in Neurodegenerative Disease Modeling
    • 11.4.4. iPSC-derived Organoids for Disease Modeling
    • 11.4.5. Cancer-Derived iPSCs
  • 11.5. Applications of iPSCs in Cell-Based Therapies
    • 11.5.2. Companies Focusing only on iPSC-based Therapies
  • 11.6. Other Novel Applications of iPSCs
    • 11.6.1. Applications of iPSCs in Tissue Engineering
      • 11.6.1.1. 3D Bioprinting Techniques
      • 11.6.1.2. Biomaterials
      • 11.6.1.3. 3D Bioprinting Strategies
      • 11.6.1.4. Bioprinting iPSC-Derived Cells
    • 11.6.2. iPSCs from Farm Animals
      • 11.6.2.1. iPSCs Generated from Cattle
      • 11.6.2.2. iPSCs from Sheep
      • 11.6.2.3. iPSCs from Goat
      • 11.6.2.4. iPSCs Generated from Buffalo
      • 11.6.2.5. iPSC Generation from Avians
    • 11.6.3. iPSC Lines for the Preservation of Endangered Species of Animals
    • 11.6.4. iPSCs in Cultured Meat

12. MARKET ANALYSIS

  • 12.1. Global Market for iPSCs by Geography
  • 12.2. Global Market for iPSCs by Technology
  • 12.3. Global Market for iPSCs by Biomedical Application
  • 12.4. Global Market for iPSCs by Derived Cell Type
  • 12.5. Market Drivers
    • 12.5.1. Current Drivers Impacting the iPSC Market Place
  • 12.6. Market Restraints
    • 12.6.1. Economic Issues
    • 12.6.2. Genomic Instability
    • 12.6.3. Immunogenicity
    • 12.6.4. Biobanking

13. COMPANY PROFILES

  • 13.1. AcceGen
    • 13.1.1. ASC-CRISPR iPSC Gene Editing Technology Service
  • 13.2. Acellta, Ltd.
    • 13.2.1. Technology
      • 13.2.1.1. Maxells
      • 13.2.1.2. Singles
      • 13.2.1.3. Differentiation
      • 13.2.1.4. Manufacturing Facility
      • 13.2.1.5. Services
  • 13.3. AddGene, Inc.
    • 13.3.1. Viral Plasmids
  • 13.4. Allele Biotechnology, Inc.
    • 13.4.1. Technologies
      • 13.4.1.1. mRNA Genome Editing
      • 13.4.1.2. Single Cell Cloning
  • 13.5. ALSTEM, Inc.
    • 13.5.1. Cell Line Generation Tools
    • 13.5.2. Cell Immortalization Kits
    • 13.5.3. iPSC Kits
    • 13.5.4. Cell Lines
    • 13.5.5. Gene Editing
    • 13.5.6. iPS Cell Lines
    • 13.5.7. Virus Packaging Tools
  • 13.6. Altos Labs
    • 13.6.1. Altos' Science
  • 13.7. AMS Biotechnology, Ltd. (AMSBIO)
    • 13.7.1. Cell Line Products
      • 13.7.1.1. Disease Models
      • 13.7.1.2. Viral Production Services
  • 13.8. Applied StemCell (ASC)
    • 13.8.1. iPSC-Based Preclinical CRO Services
      • 13.8.1.1. Reprogramming to Differentiation
      • 13.8.1.2. Neurotoxicity Screening
    • 13.8.2. GMP Grade iPSC Services & Products
      • 13.8.2.1. GMP iPSC
      • 13.8.2.2. Knock-In Ready GMP TARGATT iPSCs
    • 13.8.3. GMP TARGATT iPSC-iNK Platform
    • 13.8.4. CRISPR iPSC Genome Editing Service
      • 13.8.4.1. CRISPR Knock-In & Point Matation iPS Cell Generation
      • 13.8.4.2. CRISPR iPSC Gene Knockout
      • 13.8.4.3. TARGATT Knock-In iPS Cells
    • 13.8.5. iPSC Generation Services
    • 13.8.6. iPSC Differentiation Service
    • 13.8.7. Stem Cell Products
  • 13.9. Asgard Therapeutics
  • 13.10. Aspen Neurosciences, Inc.
    • 13.10.1. Aspen's Clinical Pipeline
  • 13.11. Astellas Pharma, Inc.
    • 13.11.1. Allogeneic Cell Therapy
    • 13.11.2. Universal Donor Cell Technology
    • 13.11.3. Astella's Robust Pipeline
  • 13.12. Axol Biosciences, Ltd.
    • 13.12.1. Axol's Genetically Engineered Disease Lines
    • 13.12.2. Custom Human iPSC iPSC Services
    • 13.12.3. Axol's Products
  • 13.13. BioCentriq
    • 13.13.1. LEAP Advanced Therapy Platform
  • 13.14. Bit.bio
    • 13.14.1. Therapeutics
    • 13.14.2. Opti-Ox Reprogramming Technology
      • 13.14.2.1. ioCells
      • 13.14.2.2. ioWild Type Cells
      • 13.14.2.3. ioGlutamatergic Neurons
      • 13.14.2.4. ioSkeletal Myocytes
      • 13.14.2.5. ioGABAergic Neurons
      • 13.14.2.6. ioDisease Models
      • 13.14.2.7. ioGlutamatergic Neurons50CAGWT
  • 13.15. BlueRock Therapeutics LP
    • 13.15.1. BlueRock's Cell Therapy
    • 13.15.2. CELL + GENE Platform
    • 13.15.3. BlueRock's Cell Therapy Programs
  • 13.16. BrainXell
    • 13.16.1. Products
    • 13.16.2. Custom Service Projects
    • 13.16.3. In-House Assay Services
  • 13.17. Cartherics Pty, Ltd.
    • 13.17.1. Allogeneic CAR Immune Cells
  • 13.18. Catalent Biologics
    • 13.18.1. OneBio Integrated Suite
    • 13.18.2. Drug Substance Development
    • 13.18.3. Drug Product Development
    • 13.18.4. Analytical Services
    • 13.18.5. Catalent's iPSC Services
  • 13.19. Cellistic
    • 13.19.1. Pulse Platform
    • 13.19.2. Echo Platform
    • 13.19.3. iPSC-based Allogeneic Approach
      • 13.19.3.1. Model 1
      • 13.19.3.2. Model 2
  • 13.20. CellOrigin Biotech (Hangzhou), Co., Ltd
  • 13.21. Celogics, Inc.
    • 13.21.1. Celo-Cardiomyocytes
  • 13.22. Cellular Engineering Technologies (CET)
    • 13.22.1. iPS Cell Reprogramming Methods
    • 13.22.2. Applications of CET's Stem Cells
      • 13.22.2.1. Hypoimmune Cell Lines
      • 13.22.2.2. Cell Therapy Development
      • 13.22.2.3. Disease Modeling
      • 13.22.2.4. Drug Development & Discovery
      • 13.22.2.5. Regenerative Medicine
      • 13.22.2.6. Toxicology Studies
    • 13.22.3. Products
  • 13.23. Cellusion, Inc.
    • 13.23.1. Orphan Drug Designation
    • 13.23.2. Bullous Keratopathy
  • 13.24. Century Therapeutics, Inc.
    • 13.24.1. Cell Therapy Platform
    • 13.24.2. Century's Product Pipeline
  • 13.25. Citius Pharmaceuticals, Inc.
    • 13.25.1. Stem Cell Platform
  • 13.26. Creative Bioarray
    • 13.26.1. Pluripotent Stem Cells
    • 13.26.2. iPSC-Derived Cells
    • 13.26.3. Services
  • 13.27. Curi Bio
    • 13.27.1. Disease Model Development Services
  • 13.28. Cynata Therapeutics, Ltd.
    • 13.28.1. Cymerus Platform
    • 13.28.2. Clinical Development for GvHD
    • 13.28.3. Osteoarthritis
    • 13.28.4. ARDS
    • 13.28.5. Diabetic Wounds
  • 13.29. Cytovia Therapeutics
    • 13.29.1. iPSC-derived NK & CAR-NK Cells
  • 13.30. DefiniGEN
    • 13.30.1. DefiniGEN's Platform
    • 13.30.2. Efficacy Screening Services
    • 13.30.3. Toxicology Screening
    • 13.30.4. Disease Models
    • 13.30.5. iPSC Cell Products
  • 13.31. Editas Medicine
    • 13.31.1. SLEEK Gene Editing
    • 13.31.2. iPSC-Derived NK Cells
  • 13.32. Editco Bio., Inc.
    • 13.32.1. Knockout iPS Cell Lines
    • 13.32.2. Knock-in iPS Cell Lines
  • 13.33. ElevateBio
    • 13.33.1. iPSC Technology
  • 13.34. Elixirgen Scientific, Inc.
    • 13.34.1. Technology
    • 13.34.2. Service Offerings
    • 13.34.3. iPSC Products
  • 13.35. Eterna Therapeutics
    • 13.35.1. Gene Editing
    • 13.35.2. Gene Delivery
  • 13.36. Evotec AG
    • 13.36.1. iPS Cell Therapies
    • 13.36.2. Drug Discovery Services
    • 13.36.3. Therapeutic Areas
  • 13.37. Eyestem
    • 13.37.1. Eyecyte-RPE
    • 13.37.2. Eyecyte-PRP
    • 13.37.3. Aircyte-AEC
  • 13.38. Fate Therapeutics
    • 13.38.1. iPSC Platform
    • 13.38.2. iPSC Manufacturing
    • 13.38.3. Product Pipeline
      • 13.38.3.1. FT576
      • 13.38.3.2. FT522
      • 13.38.3.3. FT819
      • 13.38.3.4. FT825
    • 13.38.4. Fate Therapeutics' Collaborations
      • 13.38.4.1. ONO Pharmaceutical, Co., Ltd.
      • 13.38.4.2. Masonic Cancer Center, University of Minnesota
      • 13.38.4.3. Memorial Sloan-Kettering Cancer Center
      • 13.38.4.4. Oslo University Hospital
  • 13.39. FUJIFILM Cellular Dynamics, Inc.
    • 13.39.1. Products
    • 13.39.2. FUJIFILM's Custom Services
    • 13.39.3. iPSC Disease Modeling
    • 13.39.4. Safety Pharmacology/Toxicology Testing
  • 13.40. Gameto
    • 13.40.1. Fertilo
  • 13.41. Greenstone Biosciences
  • 13.42. Heartseed, Inc.
    • 13.42.1. HS-001: The Lead Product Candidate
    • 13.42.2. Technologies
      • 13.42.2.1. Remuscularization
      • 13.42.2.2. Patented iPSC Production
      • 13.42.2.3. Differentiation
      • 13.42.2.4. Purification
      • 13.42.2.5. Spheroid
  • 13.43. HebeCell
    • 13.43.1. ProtoNK
    • 13.43.2. Retinal Photoreceptor Progenitors
    • 13.43.3. Nanoproteins
  • 13.44. Helios K.K.
    • 13.44.1. Research Activities
  • 13.45. Hera BioLabs
    • 13.45.1. Proprietary SRG Rat
    • 13.45.2. Cas-CLOVER Gene Editing Platform
    • 13.45.3. The piggyback Transposon System Platform
    • 13.45.4. Cell Line Development Services
    • 13.45.5. Custom Cell Line Engineering Services
    • 13.45.6. Animal Model Creation
    • 13.45.7. In vivo Research Services
      • 13.45.7.1. Custom Research Models
      • 13.45.7.2. Metabolic Disease Models
      • 13.45.7.3. Xenograft & PDX Services
      • 13.45.7.4. Pharmacology & Toxicology Services
  • 13.46. Hopstem Biotechnology
    • 13.46.1. Pipeline
  • 13.47. Implant Therapeutics, Inc.
    • 13.47.1. Services
  • 13.48. IN8bio
    • 13.48.1. The DeltEx Platform
    • 13.48.2. iPSC Gamma-Delta T Cells
  • 13.49. I Peace, Inc.
    • 13.49.1. GMP Products
    • 13.49.2. Custom Manufacturing Services
  • 13.50. IPS HEART
    • 13.50.1. IPS HEART's Approach
    • 13.50.2. ISX-9 CPC
    • 13.50.3. GIVI-MPC
  • 13.51. iPS Portal, Inc.
    • 13.51.1. Services
      • 13.51.1.1. Development Services
      • 13.51.1.2. Business Support Services
  • 13.52. iPSirius
    • 13.52.1. iPSirius' Platform
  • 13.53. iXCells Biotechnologies
    • 13.53.1. iPS Cell Products
    • 13.53.2. Preclinical Services
  • 13.54. Kenai Therapeutics, Inc.
  • 13.55. Khloris Biosciences, Inc.
  • 13.56. Kytopen
    • 13.56.1. Products
      • 13.56.1.1. Flowfect Discover
      • 13.56.1.2. Flowfect TX
      • 13.56.1.3. Flowfect Connect
  • 13.57. Laverock Therapeutics
    • 13.57.1. GEiGS and iPSCs
    • 13.57.2. Ex Vivo GEiGS-Enabled Cell Therapies
  • 13.58. Lindville Bio, Ltd.
    • 13.58.1. Services
  • 13.59. Lonza Group, Ltd.
    • 13.59.1. iPSC Manufacturing Expertise
    • 13.59.2. Nucleofector Technology
  • 13.60. Matricelf
    • 13.60.1. Solution to Spinal Cord Injury
  • 13.61. Megakaryon Corporation
    • 13.61.1. Production of Platelets from iPSCs
    • 13.61.2. Development of Megakaryocytes from iPSCs
    • 13.61.3. Safe Production of Platelets
    • 13.61.4. Research & Development Pipeline
  • 13.62. Metrion Biosciences, Ltd.
    • 13.62.1. Ion Channel High-Throughput Screening
    • 13.62.2. Clinical QTc/QRS Prediction using hiPSC-Derived Cardiomyocytes
  • 13.63. Mogrify
    • 13.63.1. MOGRIFY Platform
    • 13.63.2. epiMOGRIFY Platform
  • 13.64. Ncardia Services B.V.
    • 13.64.1. Ncyte Astrocytes
    • 13.64.2. Ncyte Endothelial Cells
    • 13.64.3. Ncyte Neural Mix
    • 13.64.4. Ncyte Smooth Muscle Cells
    • 13.64.5. Ncyte vCardiomyocytes
    • 13.64.6. Custom Disease Modeling Services
    • 13.64.7. High-Throughput Screening Services
    • 13.64.8. iPSC-Based Efficacy Assay Services
    • 13.64.9. iPSC-Based Safety & Toxicity Assays
  • 13.65. NeuCyte
    • 13.65.1. Technology
    • 13.65.2. Drug Discovery
  • 13.66. Neukio Biotherapeutics
    • 13.66.1. Allogeneic Immunotherapy Platform
  • 13.67. Newcells Biotech
    • 13.67.1. Retina Models
    • 13.67.2. Retinal Organoids
    • 13.67.3. Retinal Pigment Epithelium (RPE)
    • 13.67.4. Kidney Proximal Tubule Cell Model
    • 13.67.5. Assay-Ready aProximate
    • 13.67.6. Glomerular Toxicity and Disease Modeling
    • 13.67.7. Lung Airway Models
    • 13.67.8. Disease Modeling Services
      • 13.67.8.1. In vitro Retinal Disease Modeling for Retinal Therapy
      • 13.67.8.2. in vitro Evaluation of Retinal Toxicity Services
      • 13.67.8.3. Gene Therapy Services
      • 13.67.8.4. Drug Transporter Interactions & DDI Services
      • 13.67.8.5. Cross Species Comparison Services
      • 13.67.8.6. Kidney Toxicity Services
      • 13.67.8.7. Kidney Disease Modeling Services
      • 13.67.8.8. Fibroblast Assay Services
      • 13.67.8.9. Lung Toxicity Study Services
  • 13.68. NEXEL, Co., Ltd.
    • 13.68.1. Products
      • 13.68.1.1. Cardiosight-S
      • 13.68.1.2. Hepatosight-S
      • 13.68.1.3. Neurosight-S
    • 13.68.2. Curi Bio Systems
      • 13.68.2.1. Mantarray
      • 13.68.2.2. Cytostretcher
      • 13.68.2.3. NanoSurface Plates
    • 13.68.3. Services
      • 13.68.3.1. NeXST (Next Xight Screening Test)
      • 13.68.3.2. Curi Engine SVC
  • 13.69. Notch Therapeutics
    • 13.69.1. Technology
    • 13.69.2. Product Development
  • 13.70. Orizuru Therapeutics, Inc.
    • 13.70.1. iCM Project
  • 13.71. Phenocell SAS
    • 13.71.1. iPSC-derived RPE Cells for Age-related Macular Degeneration (AMD)
    • 13.71.2. R&D Solutions for Acne & Hyperseborrhea
    • 13.71.3. Skin Pigmentation Research & Testing Platform
    • 13.71.4. Cells & Kits
  • 13.72. Pluristyx
    • 13.72.1. The panCELLa Platform
    • 13.72.2. RTD iPSC & GMP Cell Banks
    • 13.72.3. Development Services
    • 13.72.4. Custom Gene Editing
    • 13.72.5. iPSC GMP Manufacturing Expertise
    • 13.72.6. Custom Gene Editing
    • 13.72.7. FailSafe
    • 13.72.8. iACT Stealth Cells
    • 13.72.9. Products
      • 13.72.9.1. PluriBank PSCs
      • 13.72.9.2. ESI Pluripotent Stem Cells
      • 13.72.9.3. Wild Type & Disease Affected PSCs
    • 13.72.10. Differentiated Cells
  • 13.73. ReNeuron
    • 13.73.1. Technology Platform
  • 13.74. Repairon GmbH
    • 13.74.1. Technology
      • 13.74.1.1. Engineered Heart Muscle (EHM)
  • 13.75. REPROCELL USA, Inc.
    • 13.75.1. Services
      • 13.75.1.1. Donor Recruitment and Patient-Derived Cells
      • 13.75.1.2. Example Case Study
      • 13.75.1.3. Target Cell Isolation
      • 13.75.1.4. iPSC Reprograming Service
      • 13.75.1.5. iPSC Expansion, Characterization and Banking Services
      • 13.75.1.6. Neuronal Differentiation Services
      • 13.75.1.7. Gene Editing Services
    • 13.75.2. REPROCELL's iPSC Products
      • 13.75.2.1. Stemgent
  • 13.76. Res Nova Bio, Inc.
    • 13.76.1. Preclinical Study
  • 13.77. Sartorius CellGenix GmbH
    • 13.77.1. Products
  • 13.78. Shinobi Therapeutics
  • 13.79. Shoreline Biosciences
    • 13.79.1. iMACs
  • 13.80. StemSight
    • 13.80.1. Technology
  • 13.81. Stemson Therapeutics
    • 13.81.1. iPSCs for Hair Follicles
  • 13.82. Stemina Biomarker Discovery
    • 13.82.1. Cardio quickPREDICT
    • 13.82.2. devTOX quickPREDICT
  • 13.83. Tempo Bioscience, Inc
    • 13.83.1. Tempo-iAstro
    • 13.83.2. Tempo-iBMEC
    • 13.83.3. Tempo-iCardio
    • 13.83.4. Tempo-iCort
    • 13.83.5. Tempo-iDopaNer
    • 13.83.6. Tempo-iLSEC
    • 13.83.7. Tempo-iKupffer
    • 13.83.8. Tempo-iHepStellate
    • 13.83.9. Tempo-iHep3D
    • 13.83.10. Tempo-iKer
    • 13.83.11. Tempo-iKidneyPod
    • 13.83.12. Tempo-iMel
    • 13.83.13. Tempo-iMG
    • 13.83.14. Tempo-iMono
    • 13.83.15. Tempo-iMotorNer
    • 13.83.16. Tempo-iMSC
    • 13.83.17. Tempo-iNStem
    • 13.83.18. Tempo-iOligo
    • 13.83.19. Tempo-iOsteo
    • 13.83.20. Tempo-iPeri
    • 13.83.21. Tempo-iPhago
    • 13.83.22. Tempo-iRPE
    • 13.83.23. Tempo-iSchwann
    • 13.83.24. Tempo-iSenso
    • 13.83.25. Tempo StemBank
  • 13.84. Uncommon (Higher Steaks)
    • 13.84.1. iPSC-Based Cultured Pork
  • 13.85. Universal Cells
    • 13.85.1. Technologies
      • 13.85.1.1. Recombinant Adeno-Associated Virus
      • 13.85.1.2. PSCs for Every Organ
      • 13.85.1.3. Universal Donor Cells
      • 13.85.1.4. HLA Engineering
  • 13.86. VCCT, Inc.
    • 13.86.1. Regenerating RPE Cells
  • 13.87. ViaCyte, Inc.
    • 13.87.1. Technology
      • 13.87.1.1. Autologous Approach
      • 13.87.1.2. Allogeneic Approach
    • 13.87.2. Pipeline
  • 13.88. Vita Therapeutics
    • 13.88.1. Technology
  • 13.89. XCell Science
    • 13.89.1. Control Lines
      • 13.89.1.1. XCL-1
      • 13.89.1.2. XCL-6
    • 13.89.2. Cell Products
      • 13.89.2.1. Control Lines
      • 13.89.2.2. Knock-out Lines
      • 13.89.2.3. Reporter Lines
    • 13.89.3. Services
  • 13.90. Yashraj Biotechnology, Ltd.
    • 13.90.1. iPSC Products
    • 13.90.2. Contract Research Services

INDEX OF FIGURES

  • FIGURE 3.1: Development of iPSC-based Autologous Cell Therapy for Canavan Disease
  • FIGURE 3.2: Manufacturing Timeline for Autologous iPSC-derived Cell Products
  • FIGURE 3.3: Cost of iPSC Production
  • FIGURE 3.4: Technical Set Up of the Stem Cell Factory (SCF)
  • FIGURE 3.5: Development of iPSC-based Allogeneic Cell Therapy
  • FIGURE 3.6: Share of iPSC-based Research within the Overall Stem Cell Industry
  • FIGURE 3.7: Major Focus Areas of iPSC Companies
  • FIGURE 3.8: Relative use of iPSC-derived Cell Types in Toxicology Studies
  • FIGURE 3.9: Comparison of Lipofection and Nucleofection Technologies
  • FIGURE 5.1: No. of Research Publications on iPSC in PubMed.gov, 2010-May 29, 2024
  • FIGURE 5.2: Pubmed Publications on Pathophysiological Research using iPSCs
  • FIGURE 5.3: PubMed Publications on Reprogramming Somatic Cells
  • FIGURE 5.4: No. of PubMed Papers on iPSC Differentiation
  • FIGURE 5.5: PubMed Papers on the use of iPSCs in Drug Discovery
  • FIGURE 5.6: PubMed Papers on iPSC-based Cell Therapy
  • FIGURE 5.7: Percent Share of Published Articles by Disease Type
  • FIGURE 5.8: Percent Share of Articles by Country
  • FIGURE 6.1: Number of iPSC Patents Filed by Year, 2000-May 5, 2024
  • FIGURE 7.1: Number of Clinical Trials by Year
  • FIGURE 7.2: iPSC Clinical Trials by Design, May 2024
  • FIGURE 7.3: Therapeutic & Non-Therapeutic iPSC Clinical Trials
  • FIGURE 7.4: Non-Therapeutic Clinical Trials by Use
  • FIGURE 7.5: Percent Share of Diseases Targeted by Therapeutic Studies
  • FIGURE 7.6: Share of Autologous & Allogeneic iPSCs in Clinical Studies
  • FIGURE 7.7: iPSC Clinical Trials by Phase of Study
  • FIGURE 7.8: iPSC Clinical Trials by Funder Type
  • FIGURE 9.1: The Roles of OSKM Factors in the Induction of iPSCs
  • FIGURE 9.2: Delivery Methods for iPSC Induction
  • FIGURE 9.3: Schematic of Retroviral Delivery Method
  • FIGURE 9.4: Schematic of Lentiviral Delivery Method
  • FIGURE 9.5: Schematic of piggyBack Transposon Delivery Method
  • FIGURE 9.6: Shematic of Adenoviral Vector Delivery
  • FIGURE 9.7: oriP/Epstein-Barr Nuclear Antigen-1 (EBNA1)-based Episomes
  • FIGURE 9.8: RNA Delivery Approach
  • FIGURE 9.9: Protein Delivery
  • FIGURE 10.1: PubMed Citations for iPSCs and iPSC Lines registered in hPSCreg
  • FIGURE 10.1: Disease States represented by NIGMS Cell Lines
  • FIGURE 10.2: Subject Age Range in Collections
  • FIGURE 11.1: Biomedical Applications of iPSCs
  • FIGURE 11.1: Advantages of iPSC usage in Drug Discovery
  • FIGURE 11.2: iPSCs and their Potential for Toxicity Testing and Drug Screening
  • FIGURE 11.3: Relative Use of iPSC-Derived Cell Types used in Toxicity Testing Studies
  • FIGURE 11.4: Percent Share Utilization of iPSCs for Cardiovascular Disease Modeling
  • FIGURE 11.5: Techniques used for iPSC Bioprinting
  • FIGURE 12.1: Estimated Global Market for iPSCs by Geography, 2023-2030
  • FIGURE 12.2: Estimated Global Market for iPSCs by Technology, 2023-2030
  • FIGURE 12.3: Estimated Global Market for iPSCs by Biomedical Application, 2023-2030
  • FIGURE 12.4: Global Market for iPSCs by Derived Cell Type, 2023
  • FIGURE 13.1: dCas9-VPR System
  • FIGURE 13.2: Universal Donor Cell Technology
  • FIGURE 13.3: Century's Approach to iPSC Therapy
  • FIGURE 13.4: FT576
  • FIGURE 13.5: FT522
  • FIGURE 13.6: FT819
  • FIGURE 13.7: FT825
  • FIGURE 13.8: Developing iPSC Neurons by SynFire Technology
  • FIGURE 13.9: Mantarray Instrument
  • FIGURE 13.10: Cytostretcher
  • FIGURE 13.11: NanoSurface Plate
  • FIGURE 13.12: Repairon's Engineered Heart Muscle (EHM)
  • FIGURE 13.13: REPROCELL's Example Case Study: Alzheimer's Disese
  • FIGURE 13.14: Cardio quickPREDICT Process
  • FIGURE 13.15: devTOX quickPREDICT Process

INDEX OF TABLES

  • TABLE 3.1: Examples of Autologous iPSC-derived Cell Therapies in Development
  • TABLE 3.2: Examples of Clinical Trials involving Allogeneic iPSCs
  • TABLE 3.3: Commercially Available iPSC-derived Cell Types
  • TABLE 3.4: iPSC-derived Cell Types used in Clinical Trials
  • TABLE 4.1: Timeline of Important Milestones Reached in iPSC Industry
  • TABLE 5.1: No. of Research Publications on iPSC in PubMed.gov, 2006-June 1, 2024
  • TABLE 6.1: iPSC Patent Applications by Jurisdiction as of May 5, 2024
  • TABLE 6.2: Patent Applicants as of May 5, 2024
  • TABLE 6.3: iPSC Patent Inventors
  • TABLE 6.4: iPSC Patent Owners
  • TABLE 6.5: Legal Status of iPSC Patents
  • TABLE 7.1: Recruitment Status of iPSC Clinical Trials, May 2, 2024
  • TABLE 7.2: Examples of iPSC-based Therapeutic Interventional Studies
  • TABLE 7.3: The Promising iPSC-based Product Candidates Developed across the World
  • TABLE 7.4: Examples of Key iPSC-based Preclinical Studies
  • TABLE 8.1: M&A in iPSC Sector
  • TABLE 8.2: Partnership/Collaboration & Licensing Deals in iPSC Sector, 2021-May 2024
  • TABLE 8.3: Venture Capital Funding in iPSC Sector, 2021-May 2024
  • TABLE 9.1: Pluripotency-Associated Transcription Factors and their Functions
  • TABLE 9.2: Diffewrent Combinations of Factors for Different Cell Sources
  • TABLE 9.3: Comparison of Delivery Methods of Reprogramming Factors
  • TABLE 9.4: iPSC Disease Models Generated by CRISPR/Cas9
  • TABLE 9.5: Available iPSC lines and their Major Applications
  • TABLE 10.1: Major Biobanks Storing iPSCs & iPSC Lines
  • TABLE 10.2: Disease-Specific iPSCs offered by RIKEN
  • TABLE 10.3: Types of iPS Cell Lines available with WiCell - a Sample
  • TABLE 10.4: The Four California Institutions recruiting Tissue Donors
  • TABLE 10.5: iPSC Disease Samples with FCDI
  • TABLE 10.6: Examples of Allen's Fluorescently Tagged hiPSC lines
  • TABLE 10.7: Rett Syndrome Trust's iPSC Collection
  • TABLE 10.8: Cell Sources & Reprogramming Methods for iPSC Banks
  • TABLE 10.9: Ownership of iPSC Banks and the Investments Made
  • TABLE 11.1: Providers of iPSC-Related Services and Products for Researchers
  • TABLE 11.2: Drugs Tested for Cardiovascular Diseases using iPSCs
  • TABLE 11.3: Drugs Tested for Neurological Diseases using iPSC Lines
  • TABLE 11.4: Drugs Tested for Rare Diseases using iPSC Lines
  • TABLE 11.5: Examples of Drugs Tested for their Toxicity using iPSC-Derved Cell Lines
  • TABLE 11.6: Published Human iPSC Models
  • TABLE 11.7: Partial List of Cardiovascular & other Diseases Modeled using iPSCs
  • TABLE 11.8: Liver Diseases Modeled using iPSCs
  • TABLE 11.9: Examples of iPSC-Based Neurodegenerative Diseae Modeling
  • TABLE 11.10: Organoid Types and Diseae Modeling Applications
  • TABLE 11.11: Examples of Cancer-Derived iPSCs
  • TABLE 11.12: Major Sponsors of iPSC-based Cell Therapies
  • TABLE 11.13: Selected Interventional Clinical Trials of iPSC-Based Cell Therapy
  • TABLE 11.14: Companies focusing only on iPSC-based Therapies
  • TABLE 11.15: Features of Different iPSC Bioprinting Techniques
  • TABLE 11.16: Bioprinting of iPSC-Derived Cells
  • TABLE 11.17: iPSCs Generation from Cattle
  • TABLE 11.18: iPSCs Generation from Sheep
  • TABLE 11.19: iPSCs Generation from Goat
  • TABLE 11.20: iPSCs Generation from Buffalo
  • TABLE 11.21: iPSC Generation from Avians
  • TABLE 11.22: Timeline of Development of iPSCs Generated from Domestic & Wild Animals
  • TABLE 12.1: Estimated Global Market for iPSCs by Geography, 2023-2030
  • TABLE 12.2: Estimated Global Market for iPSCs by Technology, 2023-2030
  • TABLE 12.3: Estimated Global Market for iPSCs by Biomedical Application, 2023-2030
  • TABLE 12.4: Global Market for iPSCs by Derived Cell Type, 2023-2030
  • TABLE 13.1: Aspen's Clinical Pipeline
  • TABLE 13.2: Astella's Robust & Competitive Pipeline
  • TABLE 13.3: Bit.bio's Cell Therapy Pipeline
  • TABLE 13.4: BlueRock's Pipeline of Cell Therapy Products
  • TABLE 13.5: Cartheric's R&D Pipeline
  • TABLE 13.6: CellOrigin's R&D Pipeline
  • TABLE 13.7: Cellusion's Pipeline
  • TABLE 13.8: Century's Pipeline Products
  • TABLE 13.9: Cytovia's iPSC-Derived CAR-iNK Product Pipeline
  • TABLE 13.10: Eterna's R&D Pipeline
  • TABLE 13.11: Eyestem's Product Pipeline
  • TABLE 13.12: Fate Therapeutic's Product Pipeline
  • TABLE 13.13: Examples of Greenstone's iPSC Line Collections
  • TABLE 13.14: HebeCell's Product Pipeline
  • TABLE 13.15: Helio's Research & Development Status
  • TABLE 13.16: Hopstem's Product Pipeline
  • TABLE 13.17: IPS HEART's R&D Pipeline
  • TABLE 13.18: iPSirius' R&D Pipeline
  • TABLE 13.19: Kenai Therapeutic's Pipeline
  • TABLE 13.20: Khloris Biosciences' iPSC-Based Clinical Programs
  • TABLE 13.21: Laverock's R&D Pipeline
  • TABLE 13.22: Megakaryon's Research & Development Pipeline
  • TABLE 13.23: NEXEL Pipeline
  • TABLE 13.24: Notch Therapeutic's R&D Pipeline
  • TABLE 13.25: Available Stemgent iPSCs with REPROCELL
  • TABLE 13.26: Shinobi Therapeutics' Product Pipeline
  • TABLE 13.27: ViaCyte's Product Pipeline
  • TABLE 13.28: Vita Therapeutic's R&D Pipeline