封面
市场调查报告书
商品编码
1789335

全球人工光合作用市场规模研究与预测,按应用(碳氢化合物、氢气、化学品)按技术(共电解、光电催化、奈米技术、混合製程)划分,以及 2025 年至 2035 年区域预测

Global Artificial Photosynthesis Market Size Study & Forecast, by Application (Hydrocarbon, Hydrogen, Chemicals) by Technology (Co-Electrolysis, Photo-Electro Catalysis, Nanotechnology, Hybrid Process) and Regional Forecasts 2025-2035

出版日期: | 出版商: Bizwit Research & Consulting LLP | 英文 285 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球人工光合作用市场价值约为 0.8 亿美元,预计在 2025-2035 年预测期内将以 14.60% 的显着复合年增长率增长。人工光合作用是一项革命性的科学创新,它复製了光合作用的自然过程,将太阳能、二氧化碳和水转化为再生燃料和化学物质。这项未来技术有可能透过提供可持续的碳中性途径来生产氢气、碳氢化合物和有价值的化学原料,从根本上改变能源模式。在日益增长的环境问题和减少温室气体排放的监管压力不断增加的背景下,对更清洁能源替代品的需求激增——人工光合作用成为全球能源转型的关键推动因素。这激发了公共和私营部门对研发和中试规模部署的投资。

对实现净零目标的日益关注,促使各国政府和各行各业优先考虑突破性的能源解决方案。人工光合作用正处于这一前沿,它释放了无需依赖化石中间体即可直接利用阳光进行燃料合成的潜力。奈米技术、光催化和共电解领域的最新进展正在加速可扩展、高效且具有商业可行性的系统的开发。根据国际能源总署 (IEA) 的报告,到 2030 年,低碳氢化合物产量必须大幅增加才能实现气候目标,这将直接惠及人工光合作用等新兴技术。此外,绿色氢能作为已开发经济体清洁能源策略的基石,正在为该市场的蓬勃发展创造肥沃的土壤。

从地理分布来看,北美凭藉其强大的创新生态系统、对清洁技术研发的高投入以及支持脱碳的积极政策框架,目前在人工光合作用领域占据主导地位。尤其在美国,越来越多的国家实验室和研究机构参与探索可扩展的人工光合作用系统。在雄心勃勃的绿色协议和氢能战略的推动下,欧洲也正在蓬勃发展。德国和荷兰等国家正致力于将人工光合作用融入循环碳经济。同时,亚太地区正在崛起成为一个高成长区域,这得益于不断增长的能源需求、日本和韩国等国政府的支持性倡议以及该地区对采用新型可持续技术的重视。

本研究旨在确定近年来不同细分市场和国家的市场规模,并预测未来几年的市场规模。报告旨在结合研究对象国家/地区的产业定性和定量分析。报告还提供了决定市场未来成长的关键因素(例如驱动因素和挑战)的详细资讯。此外,报告还涵盖了微观市场中利害关係人的潜在投资机会,以及对竞争格局和主要参与者产品供应的详细分析。市场区隔和子细分市场的详细解释如下:

目录

第一章:全球人工光合作用市场报告范围与方法

  • 研究目标
  • 研究方法
    • 预测模型
    • 案头研究
    • 自上而下和自下而上的方法
  • 研究属性
  • 研究范围
    • 市场定义
    • 市场区隔
  • 研究假设
    • 包容与排斥
    • 限制
    • 研究考虑的年份

第二章:执行摘要

  • CEO/CXO 立场
  • 战略洞察
  • ESG分析
  • 主要发现

第三章:全球人工光合作用市场力量分析

  • 影响全球人工光合作用市场的市场力量(2024-2035)
  • 驱动程式
    • 对清洁和永续氢能及燃料的需求激增
    • 奈米科技与光电催化技术创新
  • 限制
    • 资金投入高,转换效率低
    • 大规模商业部署和基础设施准备不足
  • 机会
    • 政府激励措施和绿色氢能路线图
    • 脱碳重点产业和循环经济的需求不断增长

第四章:全球人工光合作用产业分析

  • 波特五力模型
    • 买方议价能力
    • 供应商的议价能力
    • 新进入者的威胁
    • 替代品的威胁
    • 竞争对手
  • 波特五力预测模型(2024-2035)
  • PESTEL分析
    • 政治的
    • 经济
    • 社会的
    • 科技
    • 环境的
    • 合法的
  • 最佳投资机会
  • 最佳制胜策略(2025年)
  • 市占率分析(2024-2025)
  • 2025年全球定价分析与趋势
  • 分析师建议与结论

第五章:全球人工光合作用市场规模与预测:按应用 - 2025-2035 年

  • 市场概览
  • 全球人工光合作用市场表现-潜力分析(2025年)
  • 化学品

第六章:全球人工光合作用市场规模与预测:依技术分类 - 2025-2035 年

  • 市场概览
  • 全球人工光合作用市场表现-潜力分析(2025年)
  • 共电解
  • 光电催化
  • 奈米科技
  • 混合工艺

第七章:全球人工光合作用市场规模与预测:按地区 - 2025-2035

  • 区域市场概况
  • 领先国家和新兴国家
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 西班牙
    • 义大利
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
    • 亚太其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
  • 中东和非洲
    • 阿联酋
    • 沙乌地阿拉伯
    • 南非
    • 中东和非洲其他地区

第 8 章:竞争情报

  • 顶级市场策略
  • BASF SE
    • 公司概况
    • 主要高阶主管
    • 公司概况
    • 财务表现(取决于数据可用性)
    • 产品/服务端口
    • 近期发展
    • 市场策略
    • SWOT分析
  • TotalEnergies SE
  • Siemens Energy
  • Chevron Phillips Chemical Company
  • Panasonic Corporation
  • Toshiba Corporation
  • Halliburton Company
  • Schlumberger Limited
  • Baker Hughes Company
  • Croda International Plc.
  • Trican Well Service Ltd.
  • Impact Fluid Solutions
  • M&D Industries Of Louisiana, Inc.
  • Aubin Group
  • Air Liquide
简介目录

The Global Artificial Photosynthesis Market is valued at approximately USD 0.08 billion in 2024 and is projected to grow at a remarkable CAGR of 14.60% over the forecast period 2025-2035. Artificial photosynthesis is a revolutionary scientific innovation that replicates the natural process of photosynthesis to convert solar energy, carbon dioxide, and water into renewable fuels and chemicals. This futuristic technology has the potential to radically transform the energy landscape by offering a sustainable and carbon-neutral pathway for producing hydrogen, hydrocarbons, and valuable chemical feedstocks. Amid mounting environmental concerns and increasing regulatory pressure to reduce greenhouse gas emissions, the demand for cleaner energy alternatives has skyrocketed-positioning artificial photosynthesis as a key enabler in the global energy transition. This has galvanized investments across R&D and pilot-scale deployments from public and private sectors alike.

The escalating focus on achieving net-zero targets has driven governments and industries to prioritize breakthrough energy solutions. Artificial photosynthesis stands at this frontier, unlocking the potential to harness sunlight directly for fuel synthesis without relying on fossil intermediaries. Recent advancements in nanotechnology, photocatalysis, and co-electrolysis are accelerating the development of scalable, efficient systems with commercial viability. According to a report from the International Energy Agency (IEA), low-carbon hydrogen production must increase significantly by 2030 to meet climate goals, which directly benefits emerging technologies like artificial photosynthesis. Furthermore, the rise of green hydrogen as a cornerstone of clean energy strategies in developed economies is creating a fertile ground for this market to flourish.

From a geographical standpoint, North America currently dominates the artificial photosynthesis landscape owing to its robust innovation ecosystem, high investment in clean technology R&D, and proactive policy framework supporting decarbonization. The United States, in particular, has witnessed growing participation from national labs and research institutions in exploring scalable artificial photosynthesis systems. Europe is also gaining momentum, driven by its ambitious Green Deal and hydrogen strategy. Countries such as Germany and the Netherlands are focusing on integrating artificial photosynthesis into circular carbon economies. Meanwhile, the Asia Pacific region is emerging as a high-growth zone, propelled by rising energy demand, supportive government initiatives in countries like Japan and South Korea, and the region's focus on adopting novel sustainable technologies.

Major market player included in this report are:

  • BASF SE
  • Chevron Phillips Chemical Company
  • Baker Hughes Company
  • Halliburton Company
  • Schlumberger Limited
  • Croda International Plc.
  • Trican Well Service Ltd.
  • Impact Fluid Solutions
  • Aubin Group
  • M&D Industries Of Louisiana, Inc.
  • Air Liquide
  • Siemens Energy
  • Panasonic Corporation
  • Toshiba Corporation
  • TotalEnergies SE

Global Artificial Photosynthesis Market Report Scope:

  • Historical Data - 2023, 2024
  • Base Year for Estimation - 2024
  • Forecast period - 2025-2035
  • Report Coverage - Revenue forecast, Company Ranking, Competitive Landscape, Growth factors, and Trends
  • Regional Scope - North America; Europe; Asia Pacific; Latin America; Middle East & Africa
  • Customization Scope - Free report customization (equivalent up to 8 analysts' working hours) with purchase. Addition or alteration to country, regional & segment scope*

The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values for the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within the countries involved in the study. The report also provides detailed information about crucial aspects, such as driving factors and challenges, which will define the future growth of the market. Additionally, it incorporates potential opportunities in micro-markets for stakeholders to invest, along with a detailed analysis of the competitive landscape and product offerings of key players. The detailed segments and sub-segments of the market are explained below:

By Application:

  • Hydrocarbon
  • Hydrogen
  • Chemicals

By Technology:

  • Co-Electrolysis
  • Photo-Electro Catalysis
  • Nanotechnology
  • Hybrid Process

By Region:

  • North America
  • U.S.
  • Canada
  • Europe
  • UK
  • Germany
  • France
  • Spain
  • Italy
  • Rest of Europe
  • Asia Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • Rest of Asia Pacific
  • Latin America
  • Brazil
  • Mexico
  • Middle East & Africa
  • UAE
  • Saudi Arabia
  • South Africa
  • Rest of Middle East & Africa

Key Takeaways:

  • Market Estimates & Forecast for 10 years from 2025 to 2035.
  • Annualized revenues and regional level analysis for each market segment.
  • Detailed analysis of geographical landscape with Country level analysis of major regions.
  • Competitive landscape with information on major players in the market.
  • Analysis of key business strategies and recommendations on future market approach.
  • Analysis of competitive structure of the market.
  • Demand side and supply side analysis of the market.

Table of Contents

Chapter 1. Global Artificial Photosynthesis Market Report Scope & Methodology

  • 1.1. Research Objective
  • 1.2. Research Methodology
    • 1.2.1. Forecast Model
    • 1.2.2. Desk Research
    • 1.2.3. Top Down and Bottom-Up Approach
  • 1.3. Research Attributes
  • 1.4. Scope of the Study
    • 1.4.1. Market Definition
    • 1.4.2. Market Segmentation
  • 1.5. Research Assumption
    • 1.5.1. Inclusion & Exclusion
    • 1.5.2. Limitations
    • 1.5.3. Years Considered for the Study

Chapter 2. Executive Summary

  • 2.1. CEO/CXO Standpoint
  • 2.2. Strategic Insights
  • 2.3. ESG Analysis
  • 2.4. Key Findings

Chapter 3. Global Artificial Photosynthesis Market Forces Analysis

  • 3.1. Market Forces Shaping the Global Artificial Photosynthesis Market (2024-2035)
  • 3.2. Drivers
    • 3.2.1. Surging demand for clean and sustainable hydrogen and fuels
    • 3.2.2. Technological innovation in nanotechnology and photo-electro catalysis
  • 3.3. Restraints
    • 3.3.1. High capital investment and low conversion efficiency
    • 3.3.2. Limited large-scale commercial deployment and infrastructure readiness
  • 3.4. Opportunities
    • 3.4.1. Government incentives and green hydrogen roadmaps
    • 3.4.2. Rising demand from decarbonization-focused sectors and circular economies

Chapter 4. Global Artificial Photosynthesis Industry Analysis

  • 4.1. Porter's 5 Forces Model
    • 4.1.1. Bargaining Power of Buyer
    • 4.1.2. Bargaining Power of Supplier
    • 4.1.3. Threat of New Entrants
    • 4.1.4. Threat of Substitutes
    • 4.1.5. Competitive Rivalry
  • 4.2. Porter's 5 Force Forecast Model (2024-2035)
  • 4.3. PESTEL Analysis
    • 4.3.1. Political
    • 4.3.2. Economical
    • 4.3.3. Social
    • 4.3.4. Technological
    • 4.3.5. Environmental
    • 4.3.6. Legal
  • 4.4. Top Investment Opportunities
  • 4.5. Top Winning Strategies (2025)
  • 4.6. Market Share Analysis (2024-2025)
  • 4.7. Global Pricing Analysis and Trends 2025
  • 4.8. Analyst Recommendation & Conclusion

Chapter 5. Global Artificial Photosynthesis Market Size & Forecasts by Application 2025-2035

  • 5.1. Market Overview
  • 5.2. Global Artificial Photosynthesis Market Performance - Potential Analysis (2025)
  • 5.3. Hydrocarbon
    • 5.3.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
    • 5.3.2. Market Size Analysis, by Region, 2025-2035
  • 5.4. Hydrogen
    • 5.4.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
    • 5.4.2. Market Size Analysis, by Region, 2025-2035
  • 5.5. Chemicals
    • 5.5.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
    • 5.5.2. Market Size Analysis, by Region, 2025-2035

Chapter 6. Global Artificial Photosynthesis Market Size & Forecasts by Technology 2025-2035

  • 6.1. Market Overview
  • 6.2. Global Artificial Photosynthesis Market Performance - Potential Analysis (2025)
  • 6.3. Co-Electrolysis
    • 6.3.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
    • 6.3.2. Market Size Analysis, by Region, 2025-2035
  • 6.4. Photo-Electro Catalysis
    • 6.4.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
    • 6.4.2. Market Size Analysis, by Region, 2025-2035
  • 6.5. Nanotechnology
    • 6.5.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
    • 6.5.2. Market Size Analysis, by Region, 2025-2035
  • 6.6. Hybrid Process
    • 6.6.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
    • 6.6.2. Market Size Analysis, by Region, 2025-2035

Chapter 7. Global Artificial Photosynthesis Market Size & Forecasts by Region 2025-2035

  • 7.1. Regional Market Snapshot
  • 7.2. Top Leading & Emerging Countries
  • 7.3. North America Artificial Photosynthesis Market
    • 7.3.1. U.S.
      • 7.3.1.1. Application Breakdown Size & Forecasts, 2025-2035
      • 7.3.1.2. Technology Breakdown Size & Forecasts, 2025-2035
    • 7.3.2. Canada
      • 7.3.2.1. Application Breakdown Size & Forecasts, 2025-2035
      • 7.3.2.2. Technology Breakdown Size & Forecasts, 2025-2035
  • 7.4. Europe Artificial Photosynthesis Market
    • 7.4.1. UK
      • 7.4.1.1. Application Breakdown Size & Forecasts, 2025-2035
      • 7.4.1.2. Technology Breakdown Size & Forecasts, 2025-2035
    • 7.4.2. Germany
    • 7.4.3. France
    • 7.4.4. Spain
    • 7.4.5. Italy
    • 7.4.6. Rest of Europe
  • 7.5. Asia Pacific Artificial Photosynthesis Market
    • 7.5.1. China
    • 7.5.2. India
    • 7.5.3. Japan
    • 7.5.4. Australia
    • 7.5.5. South Korea
    • 7.5.6. Rest of Asia Pacific
  • 7.6. Latin America Artificial Photosynthesis Market
    • 7.6.1. Brazil
    • 7.6.2. Mexico
  • 7.7. Middle East & Africa Artificial Photosynthesis Market
    • 7.7.1. UAE
    • 7.7.2. Saudi Arabia
    • 7.7.3. South Africa
    • 7.7.4. Rest of Middle East & Africa

Chapter 8. Competitive Intelligence

  • 8.1. Top Market Strategies
  • 8.2. BASF SE
    • 8.2.1. Company Overview
    • 8.2.2. Key Executives
    • 8.2.3. Company Snapshot
    • 8.2.4. Financial Performance (Subject to Data Availability)
    • 8.2.5. Product/Services Port
    • 8.2.6. Recent Development
    • 8.2.7. Market Strategies
    • 8.2.8. SWOT Analysis
  • 8.3. TotalEnergies SE
  • 8.4. Siemens Energy
  • 8.5. Chevron Phillips Chemical Company
  • 8.6. Panasonic Corporation
  • 8.7. Toshiba Corporation
  • 8.8. Halliburton Company
  • 8.9. Schlumberger Limited
  • 8.10. Baker Hughes Company
  • 8.11. Croda International Plc.
  • 8.12. Trican Well Service Ltd.
  • 8.13. Impact Fluid Solutions
  • 8.14. M&D Industries Of Louisiana, Inc.
  • 8.15. Aubin Group
  • 8.16. Air Liquide