封面
市场调查报告书
商品编码
1813467

2032年人工光合作用催化剂市场预测:按催化剂类型、技术、应用、最终用户和地区的全球分析

Artificial Photosynthesis Catalysts Market Forecasts to 2032 - Global Analysis By Catalyst Type, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球人工光合作用催化剂市场预计在 2025 年达到 1.3674 亿美元,到 2032 年将达到 3.6152 亿美元,预测期内复合年增长率为 14.9%。

人工光合作用催化剂模拟自然光合作用,将阳光、水和二氧化碳转化为燃料和有价值的化学物质。这些催化剂通常基于金属错合或半导体,能够在温和条件下实现高效的光吸收、电荷分离和催化反应。其应用目标为永续氢气生产、二氧化碳减排和可再生能源储存。透过提高催化剂的效率、稳定性和扩充性,人工光合作用技术旨在减少对石化燃料的依赖,减少温室气体排放,并透过高效的太阳能-化学能转换系统支持循环碳经济。

根据《科学进展》2024 年发表的一篇文章,Ni-O-Ag 光热催化剂将达到 103 平方公尺的人工光合作用,太阳能到化学能的转换效率将超过 17%。

政府为氢和二氧化碳转化提供研发资金

政府对氢能和二氧化碳转化的研发投入是关键的市场催化剂。美国能源局的「氢能@规模」计画和欧洲绿色交易等措施提供的大量公共投资降低了早期技术开发的风险。这些资金支持了新型电催化剂和分子组装体的基础研究,加速了从实验室发现到中试规模示范的过程。透过津贴高成本研究,政府有效地降低了私人企业的进入门槛,并刺激了整个价值链的创新。这种资金支持对于克服早期的技术经济障碍,并创造以推进人工光合作用技术为重点的竞争格局,以实现永续能源解决方案至关重要。

转换效率低,扩充性

许多催化系统,尤其是使用贵金属的催化系统,其太阳能转化为燃料 (STF) 的效率较低,无法与现有能源来源竞争。此外,将这些系统从小规模实验室环境转化为工业规模运行,在催化剂耐久性、反应器设计和质量传输方面面临重大的工程挑战。无法持续实现长期稳定性和高性能,这构成了重大的技术经济障碍,阻碍了大规模投资并延迟了商业性可行性,从而限制了整体市场的成长和应用时间表。

绿色氢能和合成燃料生产

随着工业和交通运输部门寻求脱碳解决方案,人工光合作用提供了一条直接利用阳光、水和二氧化碳生产碳中和燃料的途径。这项技术可望成为永续循环碳经济的基石,协助生产电子燃料和绿色氨。此外,它还提供了一种大规模储能机制,解决了太阳能和风能等再生能源来源的间歇性问题。因此,AP催化剂被定位为实现全球脱碳和能源安全目标的关键推动因素。

合成燃料的法规结构不明确

缺乏普遍接受的电子燃料定义、永续性标准或认证机制,造成了投资不确定性。政治优先事项的潜在转变可能会突然改变补贴结构和碳定价,从而损害计划的长期经济效益。这种监管的不可预测性阻碍了能源巨头和投资者的资本密集型投资,因为他们需要稳定、长期的政策讯号来证明为大规模示范工厂提供资金的合理性。如果没有明确、一致的法规来认可合成燃料的价值,市场成长可能会受到严重阻碍。

COVID-19的影响:

新冠疫情最初扰乱了人工光合作用催化剂市场,导致关键原料供应链延迟,并因实验室关闭而导致研究停滞。政府资金被暂时用于应对当前的医疗危机,新的能源计划津贴核准也被推迟。然而,疫情也起到了催化剂的作用,凸显了建立永续的能源系统的重要性。在疫情后期,全球加快了绿色復苏的步伐,作为更广泛的经济奖励策略的一部分,对包括人工光合作用在内的清洁能源技术的政策支持得到了更新甚至加强。

预计氢气(H2)生产领域在预测期内将占据最大份额

由于全球政策的广泛关注以及对绿色氢能作为脱碳关键推动因素的投资不断增加,氢气 (H2) 生产领域预计将在预测期内占据最大的市场份额。与生物或化学还原途径不同,透过水分解进行人工光合作用生产氢气是一种直接、以阳光为动力的单步工艺,因此更具吸引力。该领域占据主导地位的原因在于其在炼油、氨生产、工业零碳燃料和燃料电池电动车领域的潜在应用,使其成为高效能製氢系统最直接、最具商业性价值的产出。

光电化学(PEC)电池领域预计将在预测期内以最高复合年增长率成长

预计光电化学 (PEC) 电池领域在预测期内将呈现最高成长率。此加速成长得益于专注于提高半导体-电催化剂介面效率和耐久性的深入研发。与光伏电解槽(PV-E) 系统相比,PEC 系统可望提供更简单、更整合的架构,从而有可能长期降低氢气产生的平准化成本。新型吸光材料和用于减轻光腐蚀的保护涂层的进步是推动这一极具前景的技术方法创新和投资的关键因素。

占比最大的地区:

预计北美地区将在预测期内占据最大的市场份额。这一领先地位的前提是,美国能源局及其国家实验室等机构提供了充足的联邦和私人研发资金,这些机构在催化剂研发和设备工程领域处于领先地位。此外,顶尖学术研究机构和科技新兴企业的存在也培育了充满活力的创新生态系统。尤其是美国和加拿大的支持性政策和早期氢能策略的实施,为人工光合作用技术的早期商业化应用提供了有利环境。

复合年增长率最高的地区:

预计亚太地区在预测期内的复合年增长率最高。推动这一快速成长的因素是政府对氢能经济的大量投资,尤其是日本、韩国和中国,这些国家都制定了旨在引领未来能源格局的国家氢能战略。该地区拥有强大的电子和半导体製造基础,在生产光电化学系统关键零件方面具有战略优势。此外,随着人口成长,解决空气污染问题和能源安全需求也推动人工光合作用等创新清洁能源技术的积极应用。

免费客製化服务:

此报告的订阅者可以使用以下免费自订选项之一:

  • 公司简介
    • 对最多三家其他市场公司进行全面分析
    • 主要企业的SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户兴趣对主要国家进行的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球人工光合作用催化剂市场(依催化剂类型)

  • 分子催化剂(均相)
    • 金属错合
    • 有机催化剂
  • 非均相催化剂
    • 金属氧化物催化剂
    • 非氧化物半导体催化剂
    • 金属有机骨架(MOF)
    • 碳基催化剂
    • 助催化剂及助催化剂材料
  • 生物催化(生物混合系统)

6. 全球人工光合作用催化剂市场(依技术)

  • 光电化学(PEC)电池
  • 光催化(PC)系统(悬浮型)
  • 混合和整合系统
  • 其他技术

第七章全球人工光合作用催化剂市场(依应用)

  • 氢气(H2)生产
  • 碳基燃料
    • 碳氢化合物
    • 酒精
    • 合成气(CO+H2)
  • 化学品和原料

第八章全球人工光合作用催化剂市场(依最终用户)

  • 能源(燃料生产公司)
  • 化学和石化产品
  • 研究开发研究所
  • 其他最终用户

9. 全球人工光合作用催化剂市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十章:重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十一章 公司概况

  • A-LEAF
  • BASF SE
  • Evonik Industries
  • ENGIE
  • Fujifilm
  • JX Advanced Metals Corporation
  • Mitsubishi Chemical Group
  • NTT Corporation
  • Panasonic Corporation
  • Siemens Energy
  • SunHydrogen
  • Sunfire GmbH
  • Toshiba Corporation
  • Toyota Central R&D Labs., Inc.
  • Twelve
Product Code: SMRC30916

According to Stratistics MRC, the Global Artificial Photosynthesis Catalysts Market is accounted for $136.74 million in 2025 and is expected to reach $361.52 million by 2032 growing at a CAGR of 14.9% during the forecast period. Artificial photosynthesis catalysts mimic natural photosynthesis to convert sunlight, water, and carbon dioxide into fuels or valuable chemicals. These catalysts, often based on metal complexes or semiconductors, enable efficient light absorption, charge separation, and catalytic reactions under mild conditions. Applications target sustainable hydrogen production, carbon dioxide reduction, and renewable energy storage. By advancing catalyst efficiency, stability, and scalability, artificial photosynthesis technologies aim to reduce reliance on fossil fuels, lower greenhouse gas emissions, and support a circular carbon economy through efficient solar-to-chemical energy conversion systems.

According to Science Advances journal, published in 2024, a Ni-O-Ag photothermal catalyst enables 103-m2 artificial photosynthesis with greater than 17% solar-to-chemical energy conversion efficiency.

Market Dynamics:

Driver:

Government R&D funding for hydrogen and CO2 conversion

Government R&D funding for hydrogen and CO2 conversion is a primary market catalyst. Substantial public investments from initiatives like the U.S. Department of Energy's H2@Scale and the European Green Deal are de-risking early-stage technology development. This funding enables foundational research into novel electrocatalysts and molecular assemblies, accelerating the path from laboratory discovery to pilot-scale demonstrations. By subsidizing high-cost research, governments are effectively lowering the barrier to entry for private entities and stimulating innovation across the value chain. This financial support is crucial for overcoming initial techno-economic hurdles and fostering a competitive landscape dedicated to advancing artificial photosynthesis technologies for sustainable energy solutions.

Restraint:

Low conversion efficiency and scalability

Many catalyst systems, particularly those utilizing precious metals, suffer from inadequate solar-to-fuel (STF) efficiency rates that remain non-competitive with incumbent energy sources. Moreover, transitioning these systems from small-scale laboratory environments to industrial-scale operations introduces profound engineering challenges related to catalyst durability, reactor design, and mass transport. The inability to consistently achieve long-term stability and high performance at scale creates a major techno-economic barrier, deterring large-scale investment and postponing commercial viability, thus restraining overall market growth and adoption timelines.

Opportunity:

Green hydrogen and synthetic fuel production

As hard-to-abate industrial and transportation sectors seek decarbonization solutions, artificial photosynthesis offers a pathway to produce carbon-neutral fuels directly from sunlight, water, and CO2. This technology can serve as a cornerstone for a sustainable circular carbon economy, enabling the production of e-fuels and green ammonia. Furthermore, it provides a mechanism for large-scale energy storage, addressing the intermittency of renewable sources like solar and wind. This position AP catalysts as a critical enabler for achieving deep decarbonization and energy security goals globally.

Threat:

Uncertain regulatory frameworks for synthetic fuels

The absence of universally accepted definitions, sustainability criteria, and certification mechanisms for electrofuels (e-fuels) creates investment ambiguity. Potential shifts in political priorities can abruptly alter subsidy structures or carbon pricing, undermining long-term project economics. This regulatory unpredictability discourages capital-intensive commitments from energy majors and investors who require stable, long-term policy signals to justify funding large-scale demonstration plants. Without clear and consistent regulations that recognize the value of synthetic fuels, market growth could be significantly hampered.

Covid-19 Impact:

The COVID-19 pandemic initially disrupted the artificial photosynthesis catalysts market, causing supply chain delays for critical raw materials and halting laboratory research due to lockdowns. Government funding was temporarily redirected towards immediate healthcare crises, slowing down new grant approvals for energy projects. However, the pandemic also acted as a catalyst, underscoring the need for resilient and sustainable energy systems. In its latter stages, it accelerated the global commitment to a green recovery, leading to renewed and even enhanced policy support for clean energy technologies, including artificial photosynthesis, as part of broader economic stimulus packages.

The hydrogen (H2) production segment is expected to be the largest during the forecast period

The hydrogen (H2) production segment is expected to account for the largest market share during the forecast period due to the overwhelming global policy focus and increasing investment in green hydrogen as a cornerstone of decarbonization. Unlike biological or chemical reduction pathways, artificial photosynthesis for H2 production via water splitting offers a direct, single-step process using sunlight, enhancing its appeal. The segment's dominance is driven by its application potential in refining, ammonia production, and as a zero-carbon fuel for industries and fuel cell electric vehicles, making it the most immediate and commercially relevant output for AP systems.

The photoelectrochemical (PEC) cells segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the photoelectrochemical (PEC) cells segment is predicted to witness the highest growth rate. This accelerated growth is attributed to intensive R&D focused on improving the efficiency and durability of semiconductor-electrocatalyst interfaces. PEC systems offer a potentially simpler and more integrated architecture compared to coupled photovoltaic-electrolyzer (PV-E) systems, which could lead to lower levelized costs for hydrogen production in the long term. Advances in novel light-absorbing materials and protective coatings that mitigate photocorrosion are key factors driving innovation and investment in this particularly promising technological approach.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share. This leadership is predicated on robust federal and private R&D funding from institutions like the U.S. Department of Energy and its National Laboratories, which are at the forefront of catalyst discovery and device engineering. Furthermore, a strong presence of leading academic research institutions and technology startups fosters a vibrant innovation ecosystem. Supportive policies and early adoption of hydrogen strategies, particularly in the U.S. and Canada, create a conducive environment for the initial commercial deployment of artificial photosynthesis technologies.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. This rapid growth is fueled by massive governmental investments in hydrogen economies, notably from Japan, South Korea, and China, all of which have national hydrogen strategies aiming for leadership in the future energy landscape. The region's strong manufacturing base for electronics and semiconductors provides a strategic advantage in producing critical components for photoelectrochemical systems. Additionally, the pressing need to address air pollution and ensure energy security for its large population drives aggressive adoption of innovative clean energy technologies like artificial photosynthesis.

Key players in the market

Some of the key players in Artificial Photosynthesis Catalysts Market include A-LEAF, BASF SE, Evonik Industries, ENGIE, Fujifilm, JX Advanced Metals Corporation, Mitsubishi Chemical Group, NTT Corporation, Panasonic Corporation, Siemens Energy, SunHydrogen, Sunfire GmbH, Toshiba Corporation, Toyota Central R&D Labs., Inc., and Twelve.

Key Developments:

In November 2024, BASF announced plans to build a first-of-its-kind plant in Ludwigshafen to produce catalysts using its X3D(R) shaping technology. This initiative aims to enhance catalyst performance and efficiency, supporting green transformation projects, including artificial photosynthesis applications.

In October 2024, Mitsubishi Chemical Group Corporation's KAITEKI Report emphasized the company's efforts in utilizing catalytic technology for artificial photosynthesis. The report outlines the development of various inorganic materials contributing to a sustainable society through CO2 and methane separation and recovery processes.

In February 2022, JX Advanced Metals joined the Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem) Phase 2 activities. The company is developing photocatalysts for artificial photosynthesis, focusing on hydrogen generation and CO2 reduction. They are conducting joint research with Shinshu University and contributing high purity metals like tantalum and titanium for catalyst development.

Product Types Covered:

  • Molecular Catalysts (Homogeneous)
  • Heterogeneous Catalysts
  • Biological Catalysts (Bio-Hybrid Systems)

Technologies Covered:

  • Photoelectrochemical (PEC) Cells
  • Photocatalytic (PC) Systems (Suspension-based)
  • Hybrid & Integrated Systems
  • Other Technologies

Applications Covered:

  • Hydrogen (H2) Production
  • Carbon-Based Fuels
  • Chemicals and Feedstocks

End Users Covered:

  • Energy (Fuel Production Companies)
  • Chemicals and Petrochemicals
  • Research and Development Institutions
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Artificial Photosynthesis Catalysts Market, By Catalyst Type

  • 5.1 Introduction
  • 5.2 Molecular Catalysts (Homogeneous)
    • 5.2.1 Metal Complexes
    • 5.2.2 Organic Catalysts / Organocatalysts
  • 5.3 Heterogeneous Catalysts
    • 5.3.1 Metal Oxide Catalysts
    • 5.3.2 Non-Oxide Semiconductor Catalysts
    • 5.3.3 Metal-Organic Frameworks (MOFs)
    • 5.3.4 Carbon-Based Catalysts
    • 5.3.5 Co-catalysts and Co-catalyst Materials
  • 5.4 Biological Catalysts (Bio-Hybrid Systems)

6 Global Artificial Photosynthesis Catalysts Market, By Technology

  • 6.1 Introduction
  • 6.2 Photoelectrochemical (PEC) Cells
  • 6.3 Photocatalytic (PC) Systems (Suspension-based)
  • 6.4 Hybrid & Integrated Systems
  • 6.5 Other Technologies

7 Global Artificial Photosynthesis Catalysts Market, By Application

  • 7.1 Introduction
  • 7.2 Hydrogen (H2) Production
  • 7.3 Carbon-Based Fuels
    • 7.3.1 Hydrocarbons
    • 7.3.2 Alcohols
    • 7.3.3 Syngas (CO + H2)
  • 7.4 Chemicals and Feedstocks

8 Global Artificial Photosynthesis Catalysts Market, By End User

  • 8.1 Introduction
  • 8.2 Energy (Fuel Production Companies)
  • 8.3 Chemicals and Petrochemicals
  • 8.4 Research and Development Institutions
  • 8.5 Other End Users

9 Global Artificial Photosynthesis Catalysts Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 A-LEAF
  • 11.2 BASF SE
  • 11.3 Evonik Industries
  • 11.4 ENGIE
  • 11.5 Fujifilm
  • 11.6 JX Advanced Metals Corporation
  • 11.7 Mitsubishi Chemical Group
  • 11.8 NTT Corporation
  • 11.9 Panasonic Corporation
  • 11.10 Siemens Energy
  • 11.11 SunHydrogen
  • 11.12 Sunfire GmbH
  • 11.13 Toshiba Corporation
  • 11.14 Toyota Central R&D Labs., Inc.
  • 11.15 Twelve

List of Tables

  • Table 1 Global Artificial Photosynthesis Catalysts Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Artificial Photosynthesis Catalysts Market Outlook, By Catalyst Type (2024-2032) ($MN)
  • Table 3 Global Artificial Photosynthesis Catalysts Market Outlook, By Molecular Catalysts (Homogeneous) (2024-2032) ($MN)
  • Table 4 Global Artificial Photosynthesis Catalysts Market Outlook, By Metal Complexes (2024-2032) ($MN)
  • Table 5 Global Artificial Photosynthesis Catalysts Market Outlook, By Organic Catalysts / Organocatalysts (2024-2032) ($MN)
  • Table 6 Global Artificial Photosynthesis Catalysts Market Outlook, By Heterogeneous Catalysts (2024-2032) ($MN)
  • Table 7 Global Artificial Photosynthesis Catalysts Market Outlook, By Metal Oxide Catalysts (2024-2032) ($MN)
  • Table 8 Global Artificial Photosynthesis Catalysts Market Outlook, By Non-Oxide Semiconductor Catalysts (2024-2032) ($MN)
  • Table 9 Global Artificial Photosynthesis Catalysts Market Outlook, By Metal-Organic Frameworks (MOFs) (2024-2032) ($MN)
  • Table 10 Global Artificial Photosynthesis Catalysts Market Outlook, By Carbon-Based Catalysts (2024-2032) ($MN)
  • Table 11 Global Artificial Photosynthesis Catalysts Market Outlook, By Co-catalysts and Co-catalyst Materials (2024-2032) ($MN)
  • Table 12 Global Artificial Photosynthesis Catalysts Market Outlook, By Biological Catalysts (Bio-Hybrid Systems) (2024-2032) ($MN)
  • Table 13 Global Artificial Photosynthesis Catalysts Market Outlook, By Technology (2024-2032) ($MN)
  • Table 14 Global Artificial Photosynthesis Catalysts Market Outlook, By Photoelectrochemical (PEC) Cells (2024-2032) ($MN)
  • Table 15 Global Artificial Photosynthesis Catalysts Market Outlook, By Photocatalytic (PC) Systems (Suspension-based) (2024-2032) ($MN)
  • Table 16 Global Artificial Photosynthesis Catalysts Market Outlook, By Hybrid & Integrated Systems (2024-2032) ($MN)
  • Table 17 Global Artificial Photosynthesis Catalysts Market Outlook, By Other Technologies (2024-2032) ($MN)
  • Table 18 Global Artificial Photosynthesis Catalysts Market Outlook, By Application (2024-2032) ($MN)
  • Table 19 Global Artificial Photosynthesis Catalysts Market Outlook, By Hydrogen (H2) Production (2024-2032) ($MN)
  • Table 20 Global Artificial Photosynthesis Catalysts Market Outlook, By Carbon-Based Fuels (2024-2032) ($MN)
  • Table 21 Global Artificial Photosynthesis Catalysts Market Outlook, By Hydrocarbons (2024-2032) ($MN)
  • Table 22 Global Artificial Photosynthesis Catalysts Market Outlook, By Alcohols (2024-2032) ($MN)
  • Table 23 Global Artificial Photosynthesis Catalysts Market Outlook, By Syngas (CO + H2) (2024-2032) ($MN)
  • Table 24 Global Artificial Photosynthesis Catalysts Market Outlook, By Chemicals and Feedstocks (2024-2032) ($MN)
  • Table 25 Global Artificial Photosynthesis Catalysts Market Outlook, By End User (2024-2032) ($MN)
  • Table 26 Global Artificial Photosynthesis Catalysts Market Outlook, By Energy (Fuel Production Companies) (2024-2032) ($MN)
  • Table 27 Global Artificial Photosynthesis Catalysts Market Outlook, By Chemicals and Petrochemicals (2024-2032) ($MN)
  • Table 28 Global Artificial Photosynthesis Catalysts Market Outlook, By Research and Development Institutions (2024-2032) ($MN)
  • Table 29 Global Artificial Photosynthesis Catalysts Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.