全球功率半导体市场 - 2023-2030
市场调查报告书
商品编码
1279702

全球功率半导体市场 - 2023-2030

Global Power Semiconductor Market - 2023-2030

出版日期: | 出版商: DataM Intelligence | 英文 195 Pages | 商品交期: 约2个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

市场概览

全球功率半导体市场预计将实现利润丰厚的增长,到 2022 年将达到 561.55 亿美元,到 2030 年将达到 1717.9 亿美元。 预计在预测期内(2023-2030 年),该市场将以 15.0% 的复合年增长率增长。

功率半导体是设计用于处理高功率和高电压电平的电子元件。 功率半导体广泛用于各种应用,例如电源、电机控制、照明和可再生能源系统,通常由硅、氮化镓 (GaN) 和碳化硅 (SiC) 等材料製成。 由于汽车和家电等各个行业的发展,对功率半导体的需求不断增加。

市场动态

功率半导体材料技术进展

新型功率半导体是使用各种竞争技术(如 GaN、SiC 和硅)的专用晶体管。 GaN 和 SiC 都是宽带隙技术,这意味着它们比硅基器件更高效、更快。 硅基器件现在占整个功率半导体市场的 90% 以上。 GaN 和 SiC 器件的采用率较低,但预计将在未来几年内超过硅。 材料技术的进步将带来更快、更高效和更耐用的芯片,预计这将成为推动全球功率半导体市场增长的主要因素。

电动汽车 (EV) 的扩张

随着政府政策转向交通脱碳以遏制全球变暖,电动汽车 (EV) 的全球采用率正在迅速增长。 功率半导体在 EV 动力总成开发中发挥着重要作用。 功率半导体用于 EV 组件,例如电动机和电池管理系统,对 EV 市场的增长至关重要。

COVID-19 影响分析

COVID-19 分析包括 COVID 之前、COVID 和 COVID 之后的情景、价格动态(例如,与 COVID 之前的情景相比,大流行期间和之后的价格变化)、供需范围(由于贸易限制、封锁和随之而来的问题);努力)也进行了解释。

内容

第一章调查方法及范围

  • 调查方法
  • 调查目的和范围

第 2 章定义和概述

第 3 章执行摘要

  • 组件片段
  • 按材料摘录
  • 片段:按用途
  • 区域摘要

第四章市场动态

  • 影响因素
    • 主持人
      • 用于功率半导体的材料技术的进步
    • 约束因素
      • 与功率半导体製造相关的环境污染
    • 机会
      • 电动汽车 (EV) 的扩展
    • 影响分析

第五章行业分析

  • 波特的五力分析
  • 供应链分析
  • 价格分析
  • 法律法规分析

第 6 章 COVID-19 分析

  • COVID-19 分析
    • COVID-19 之前的情景
    • COVID-19 期间的情景
    • COVID-19 后或未来情景
  • COVID-19 期间的价格和动态
  • 供需范围
  • 大流行期间与市场相关的政府举措
  • 製造商的战略举措
  • 总结

第 7 章(按组件)

  • 离散
    • 硅 (Si)
    • 碳化硅 (SiC)
    • 氮化镓 (GaN)
    • IGBT
    • MOSFET
  • 模块
    • 硅 (Si)
    • 碳化硅 (SiC)
    • 氮化镓 (GaN)
    • IGBT
    • MOSFET
  • 功率集成电路
    • 硅 (Si)
    • 碳化硅 (SiC)
    • 氮化镓 (GaN)
    • IGBT
    • MOSFET

第八章材料

  • 硅 (Si)
  • 碳化硅 (SiC)
  • 氮化镓 (GaN)
  • IGBT
  • MOSFET

第9章应用

  • 汽车
    • 硅 (Si)
    • 碳化硅 (SiC)
    • 氮化镓 (GaN)
    • IGBT
    • MOSFET
  • 消费类电子产品
    • 硅 (Si)
    • 碳化硅 (SiC)
    • 氮化镓 (GaN)
    • IGBT
    • MOSFET
  • 军事/航天
    • 硅 (Si)
    • 碳化硅 (SiC)
    • 氮化镓 (GaN)
    • IGBT
    • MOSFET
  • 工业
    • 硅 (Si)
    • 碳化硅 (SiC)
    • 氮化镓 (GaN)
    • IGBT
    • MOSFET

第10章按地区

  • 北美
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 其他欧洲
  • 南美洲
    • 巴西
    • 阿根廷
    • 其他南美洲
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳大利亚
    • 其他亚太地区
  • 中东和非洲

第11章竞争格局

  • 竞争场景
  • 市场定位/份额分析
  • 併购分析

第12章公司简介

  • 英飞凌科技股份公司
    • 公司简介
    • 产品组合和说明
    • 财务摘要
    • 主要发展状况
  • STMicroelectronics
  • NXP Semiconductor
  • Renesas Electronics Corporation
  • Robert Bosch GmbH
  • Mitsubishi Electric Corporation
  • Semiconductor Components Industries, LLC
  • Toshiba Corporation
  • Fuji Electric Co., Ltd.
  • Semikron Elektronik GmbH & Co. KG
  • ROHM Semiconductor
  • Littelfuse
  • Texas Instruments
  • Analog Devices
  • Qualcomm

第13章 附录

简介目录
Product Code: ICT691

Market Overview

The global power semiconductor market reached US$ 56,155 million in 2022 and is projected to witness lucrative growth by reaching up to US$ 171,709 million by 2030. The market is growing at a CAGR of 15.0% during the forecast period (2023-2030).

Power semiconductors are electronic components that are designed to handle high power and high voltage levels. Power semiconductors are widely used in a variety of applications such as power supplies, motor control, lighting, and renewable energy systems and are typically made of materials such as silicon, gallium nitride (GaN), and silicon carbide (SiC). The growth in various industries such as automotive and consumer electronics is driving increasing demand for power semiconductors.

Market Dynamics

Advancements in Material Technologies Used In Power Semiconductors

New power semiconductors are specialized transistors using various competitive technologies such as GaN, SiC, and silicon. GaN and SiC are both wide-bandgap technologies, which means they are more efficient and faster than silicon-based devices. Today, silicon-based devices account for over 90% of the total power semiconductor market. Although GaN and SiC devices have low adoption rates, they are expected to displace silicon in the coming years. Advancements in material technologies could develop faster, more efficient, and long-lasting chips and make them a key factor in driving the global power semiconductor market growth.

Growing Adoption Of Electric Vehicles (EVs)

The adoption of electric vehicles (EVs) is rapidly increasing globally as government policies shift towards decarbonization of transportation to limit global warming. Power semiconductors play a crucial role in the development of EV powertrains. Power semiconductors are used in electric motors, battery management systems, and other components of EVs, making them essential for the growth of the EV market.

COVID-19 Impact Analysis

The COVID-19 analysis includes Pre-COVID Scenario, COVID Scenario and Post-COVID Scenario along with pricing dynamics (including pricing change during and post-pandemic comparing it with pre-COVID scenarios), demand-supply spectrum (shift in demand and supply owing to trading restrictions, lockdown and subsequent issues), government initiatives (initiatives to revive market, sector or industry by government bodies) and manufacturers strategic initiatives (what manufacturers did to mitigate the COVID issues will be covered here).

Segment Analysis

The global power semiconductors market is segmented based on component, material, application and region.

Due to High Volume Demand, Automotive Dominates The Application Segment

The automotive segment dominates the application segment with a market share of 35%. The rising expansion of the automotive sector in emerging nations, such as India and China is positively impacting the market's growth in upcoming years. Additionally, growth in the power semiconductor is also driven by the increasing sales of advanced driver assistance systems (ADAS) and electrified powertrains used in various automotive vehicles, bolstering the global market growth.

Geographical Analysis

Increase in Government Support Helps North America Retain A Strong Position In The Global Market

North America comes in second with a share of nearly 22%, only behind Asia-Pacific, which has a share of 56% in the global power semiconductor market. The U.S. proclaimed its goal to maintain its attractiveness as a manufacturing destination and to reduce the country's reliance on imports from Asia. Among other things, U.S. President Joe Biden aims to introduce legislation providing US$ 50 billion for the chip industry to avoid future bottlenecks in chip production. The industry group SEMI (Semiconductor Equipment and Materials International) had previously urged increased government funding for the U.S. semiconductor industry.

Competitive Landscape

The major global players include: Infineon Technologies AG, STMicroelectronics, NXP Semiconductors, Renesas Electronics Corporation, Robert Bosch GmbH, Mitsubishi Electric Corporation, Semiconductor Components Industries, LLC, LittelFuse, Texas Instruments, Analog Devices, Qualcomm, Semikron Elektronik GmbH & Co. KG, Toshiba Corporation and Fuji Electric Co., Ltd.

Why Purchase the Report?

  • To visualize the global power semiconductors market segmentation based on product, application and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of power semiconductors market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global power semiconductors market report would provide approximately 79 tables, 60 figures and 195 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Component
  • 3.2. Snippet by Material
  • 3.3. Snippet by Application
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Advancement in material technologies used in power semiconductors
    • 4.1.2. Restraints
      • 4.1.2.1. Environmental pollution associated with power semiconductor manufacturing
    • 4.1.3. Opportunity
      • 4.1.3.1. Growing adoption of electric vehicles (EVs)
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Forces Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID-19
    • 6.1.2. Scenario During COVID-19
    • 6.1.3. Post COVID-19 or Future Scenario
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Component

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 7.1.2. Market Attractiveness Index, By Component
  • 7.2. Discrete*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
    • 7.2.3. Silicon (Si)
    • 7.2.4. Silicon Carbide (SiC)
    • 7.2.5. Gallium Nitride (GaN)
    • 7.2.6. IGBT
    • 7.2.7. MOSFET
  • 7.3. Module
    • 7.3.1. Silicon (Si)
    • 7.3.2. Silicon Carbide (SiC)
    • 7.3.3. Gallium Nitride (GaN)
    • 7.3.4. IGBT
    • 7.3.5. MOSFET
  • 7.4. Power Integrated Circuit
    • 7.4.1. Silicon (Si)
    • 7.4.2. Silicon Carbide (SiC)
    • 7.4.3. Gallium Nitride (GaN)
    • 7.4.4. IGBT
    • 7.4.5. MOSFET

8. By Material

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 8.1.2. Market Attractiveness Index, By Material
  • 8.2. Silicon (Si)*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Silicon Carbide (SiC)
  • 8.4. Gallium Nitride (GaN)
  • 8.5. IGBT
  • 8.6. MOSFET

9. By Application

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.1.2. Market Attractiveness Index, By Application
  • 9.2. Automotive*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
    • 9.2.3. Silicon (Si)
    • 9.2.4. Silicon Carbide (SiC)
    • 9.2.5. Gallium Nitride (GaN)
    • 9.2.6. IGBT
    • 9.2.7. MOSFET
  • 9.3. Consumer Electronics
    • 9.3.1. Silicon (Si)
    • 9.3.2. Silicon Carbide (SiC)
    • 9.3.3. Gallium Nitride (GaN)
    • 9.3.4. IGBT
    • 9.3.5. MOSFET
  • 9.4. Military & Aerospace
    • 9.4.1. Silicon (Si)
    • 9.4.2. Silicon Carbide (SiC)
    • 9.4.3. Gallium Nitride (GaN)
    • 9.4.4. IGBT
    • 9.4.5. MOSFET
  • 9.5. Industrial
    • 9.5.1. Silicon (Si)
    • 9.5.2. Silicon Carbide (SiC)
    • 9.5.3. Gallium Nitride (GaN)
    • 9.5.4. IGBT
    • 9.5.5. MOSFET

10. By Region

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2. Market Attractiveness Index, By Region
  • 10.2. North America
    • 10.2.1. Introduction
    • 10.2.2. Key Region-Specific Dynamics
    • 10.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 10.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.5.1. The U.S.
      • 10.2.5.2. Canada
      • 10.2.5.3. Mexico
  • 10.3. Europe
    • 10.3.1. Introduction
    • 10.3.2. Key Region-Specific Dynamics
    • 10.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 10.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.5.1. Germany
      • 10.3.5.2. The U.K.
      • 10.3.5.3. France
      • 10.3.5.4. Rest of Europe
  • 10.4. South America
    • 10.4.1. Introduction
    • 10.4.2. Key Region-Specific Dynamics
    • 10.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 10.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.5.1. Brazil
      • 10.4.5.2. Argentina
      • 10.4.5.3. Rest of South America
  • 10.5. Asia-Pacific
    • 10.5.1. Introduction
    • 10.5.2. Key Region-Specific Dynamics
    • 10.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 10.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.5.1. China
      • 10.5.5.2. India
      • 10.5.5.3. Japan
      • 10.5.5.4. Australia
      • 10.5.5.5. Rest of Asia-Pacific
  • 10.6. Middle East and Africa
    • 10.6.1. Introduction
    • 10.6.2. Key Region-Specific Dynamics
    • 10.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 10.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application

11. Competitive Landscape

  • 11.1. Competitive Scenario
  • 11.2. Market Positioning/Share Analysis
  • 11.3. Mergers and Acquisitions Analysis

12. Company Profiles

  • 12.1. Infineon Technologies AG *
    • 12.1.1. Company Overview
    • 12.1.2. Product Portfolio and Description
    • 12.1.3. Financial Overview
    • 12.1.4. Key Developments
  • 12.2. STMicroelectronics
  • 12.3. NXP Semiconductor
  • 12.4. Renesas Electronics Corporation
  • 12.5. Robert Bosch GmbH
  • 12.6. Mitsubishi Electric Corporation
  • 12.7. Semiconductor Components Industries, LLC
  • 12.8. Toshiba Corporation
  • 12.9. Fuji Electric Co., Ltd.
  • 12.10. Semikron Elektronik GmbH & Co. KG
  • 12.11. ROHM Semiconductor
  • 12.12. Littelfuse
  • 12.13. Texas Instruments
  • 12.14. Analog Devices
  • 12.15. Qualcomm

LIST NOT EXHAUSTIVE

13. Appendix

  • 13.1. About Us and Services
  • 13.2. Contact Us