封面
市场调查报告书
商品编码
1575794

全球离子交换树脂市场 - 2024-2031

Global Ion-Exchange Resins Market - 2024-2031

出版日期: | 出版商: DataM Intelligence | 英文 204 Pages | 商品交期: 最快1-2个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

报告概述

全球离子交换树脂市场2023年达到18.7亿美元,预计2031年将达到26.2亿美元,2024-2031年预测期间复合年增长率为4.31%。

离子交换树脂 (IER) 是具有可逆化学反应的聚合物,其中溶解的离子从溶液中去除并被具有相同或相似电荷的其他离子取代。这些树脂通常是小型多孔珠,用于各行业的纯化、分离和净化过程。在水处理、製药和工业应用需求成长的推动下,离子交换树脂市场正在稳步成长。

由于人们越来越重视水净化和处理,特别是工业和市政应用,离子交换树脂市场正在快速成长,这是一个主要贡献者。美国环保署 (EPA) 和欧盟委员会已实施限制在水处理中使用有害化学物质的法规,促进采用离子交换树脂作为更安全、更有效的替代品。

亚太地区在全球离子交换树脂市场中占有成长最快的份额。这项需求主要是由于市政和工业部门对清洁水的需求不断增长,特别是在中国、日本和印度等国家。在亚太地区,世界卫生组织/联合国儿童基金会供水、环境卫生和个人卫生联合监测计画 (JMP) 估计,有 5 亿人无法获得基本供水,这凸显了离子交换树脂的重要性。

市场动态

工业成长和发电需求

快速的工业化和发电,特别是在中国、印度和中东等新兴市场,大大推动了对离子交换树脂的需求。离子交换树脂对于发电厂的水脱盐至关重要,这对于蒸汽发生和涡轮机效率至关重要。这些地区再生能源专案和发电厂的扩张增加了对优质水的需求,进一步推动了市场成长。

根据国际能源总署预测,到2028年,再生能源将占全球发电量的42%以上,其中风能和太阳能光电发电的份额将翻倍,达到25%。再生能源在清洁能源转型中发挥关键作用。离子交换树脂透过确保发电所需的优质水的可用性,在支持全球向清洁能源转型方面发挥着至关重要的作用。

水处理需求不断成长

水处理仍然是离子交换树脂的主要应用。美国环保署 (EPA) 和欧盟水框架指令等环境机构制定的严格法规导致市政和工业水处理设施越来越多地采用这些树脂。美国环保署对工业废水排放提出了具体标准,增加了对离子交换树脂等高效净化技术的需求。

在欧洲,也正在进行大量投资来解决 PFAS 污染和改善饮用水品质。例如,义大利的 Acque del Chiampo SpA 在 2013 年至 2018 年间投资了约 56 万欧元,用于安装活性碳过滤器并改善供水网路。这鼓励先进的水处理技术,包括离子交换树脂

原料供应有限,且有替代技术的竞争

离子交换树脂的生产通常依赖特定的石化材料,这些材料可能因地缘政治紧张或自然灾害而面临供应链中断。这会影响树脂的可用性和价格。根据美国能源资讯署(EIA)统计,2004年至2023年,原油成本约占美国公路柴油零售月平均价格的50%左右,这直接影响了离子交换树脂的生产成本。

此外,替代技术(例如薄膜过滤和吸附方法)的存在可能会限制离子交换树脂市场的成长。在某些应用中,替代方案可能更具成本效益或效率更高。

细分市场分析

全球离子交换树脂市场根据类型、应用、最终用户和地区进行细分。

太阳能需求激增以尽量减少生态足迹

由于对水净化的迫切需求,发电是离子交换树脂市场的重要驱动力。在发电厂,特别是使用蒸汽涡轮机的发电厂中,水质对于确保设备的效率和寿命至关重要。离子交换树脂在除矿物质和软化水方面发挥关键作用,有助于防止锅炉和涡轮机结垢和腐蚀。

根据国际原子能总署的研究,对于火力发电厂,例如使用化石燃料或核能的火力发电厂,离子交换树脂可确保水蒸汽迴路中冷却水和补充水的脱矿质。这对于防止结垢至关重要,结垢会显着影响传热效率。

此外,美国环保署和欧盟委员会等监管机构制定了越来越严格的水质标准,发电厂面临着透过有效的水处理技术来满足这些要求的压力。离子交换树脂对于实现发电设施所需的高纯度至关重要,特别是在核电厂和火力发电厂中,即使是微量杂质也会导致严重的操作问题。

美国环保署 (EPA) 和国际原子能总署 (IAEA) 已发布技术文件,强调离子交换树脂在这些过程中的关键功能。此类树脂被认为是确保发电设施符合水质标准的标准技术,从而推动了市场需求。

市场地域占有率

亚太地区的水资源短缺和监管支持

由于快速工业化、人口成长以及有效管理水资源的监管压力日益增加,亚太地区拥有广泛的水处理和净化需求,因此在离子交换树脂市场中占据最大份额。亚洲基础设施投资银行(AIIB)强调,亚洲正面临严重的水危机,亚洲五个国家的地下水开采量占全球地下水开采量的50%以上。印度和中国等国家的农业和饮用水严重依赖地下水,导致水资源消耗率高。

亚洲开发银行 (ADB) 估计,从 2017 年到 2030 年,亚洲发展中国家将需要约 8,000 亿美元的投资用于水和卫生设施。离子交换树脂在当代水处理厂中发挥着至关重要的作用,特别是在消除水源中的硬度、硝酸盐和其他污染物方面。随着政府和组织投资建造新的水处理厂或增强现有的水处理厂,对离子交换树脂的需求正在增加。

市场竞争格局

市场的主要全球参与者包括杜邦、Lanxess AG、Purolite Corporation、Mitsubishi Chemical Holdings Corporation、Samyang Corporation、Ecolab、JACOBI RESINS、Sunresin New Materials Co. Ltd、Thermax Limited 和 ResinTech Inc。

可持续性分析

在对环保产品和实践的需求的推动下,离子交换树脂市场越来越与永续发展倡议保持一致。随着各行业面临越来越大的减少碳足迹和满足监管标准的压力,一些製造商正在透过开发可持续的树脂选择来应对。例如,朗盛提供其 Scopeblue 系列树脂。这些树脂由丙烯酸酯和聚苯乙烯等可再生资源製成,并已获得国际永续发展和碳认证 (ISCC) PLUS 的批准。此认证保证材料是以负责任的方式获得的,并且可以在生产的各个阶段进行追踪。朗盛表示,与传统离子交换树脂相比,其Scopeblue树脂可减少高达76%的碳排放。

据美国水厂协会 (AWWA) 称,对永续水处理解决方案的需求已成为自来水公司营运的首要任务。该组织强调了离子交换技术在改善水质和实现永续发展目标的重要性。水务公司可以透过采用永续树脂来提高营运效率并减少环境足迹,这符合 AWWA 倡导永续水管理实践的努力。

俄罗斯-乌克兰战争影响

持续不断的俄罗斯-乌克兰战争对离子交换树脂市场产生了重大影响,特别是在欧洲,地缘政治紧张局势导致供应链中断和原材料价格波动。西方对俄罗斯的製裁导致获得俄罗斯聚合物和其他化学品投入的机会减少,迫使欧洲製造商寻求替代供应商。

土耳其和中国等国家已成为俄罗斯材料的主要进口国,这使欧洲企业的供应情况更加复杂。这场衝突加剧了欧洲本已高企的通货膨胀,特别是化学工业。能源成本大幅上涨起到了至关重要的作用;依赖天然气和石油的製造业务费用激增是2022年衝突引发的能源危机的直接结果。

按类型

阳离子交换树脂

强酸性阳离子树脂

弱酸性阳离子树脂

阴离子交换树脂

强碱性阴离子树脂

弱碱性阴离子树脂

其他的

吸附树脂

螯合树脂

混床树脂

其他的

按申请

非水

终端用户

发电

化学品和肥料

食品和饮料

电气和电子

製药

生活水和废水处理

纸和纸浆

其他的

地区

北美洲

我们

加拿大

墨西哥

欧洲

德国

英国

法国

义大利

西班牙

欧洲其他地区

南美洲

巴西

阿根廷

南美洲其他地区

亚太

中国

印度

日本

澳洲

亚太其他地区

中东和非洲

主要进展

2024 年 4 月,美国环保署最终确定了国家主要饮用水法规 (NPDWR),设定了饮用水中六种 PFAS 化合物的最大污染物含量 (MCL),范围为每公升 4 至 10 奈克。这项严格的法规推动了对有效 PFAS 去除技术的需求,而离子交换树脂 (IEX) 正在成为现有饮用水处理厂 (DWTP) 的一种经济高效的解决方案

2024年2月,Thermax Limited以900万美元收购TSA Process Equipments,增强其在製程设备领域的能力,特别是在能源和环境解决方案方面的能力。此次策略性收购预计将加强 Thermax 的产品组合和市场能力,这可能会影响其在离子交换树脂市场的成长和能力。

2024年4月,朗盛推出了Lewatit UltraPure,这是一系列新的离子交换树脂牌号,专为水处理和质子交换膜(PEM)电解应用而设计。新的Lewatit UltraPure牌号,包括1242 MD(强碱阴离子交换树脂)、1212 MD(强酸阳离子交换树脂)和1295 MD,旨在最大限度地减少总有机碳水平,从而支持PEM系统的完整性并推进氢基能源解决方案。

为什么购买报告?

根据类型、应用、最终用户和地区可视化全球离子交换树脂市场细分。

透过分析趋势和共同开发来识别商业机会。

Excel 电子表格包含离子交换树脂市场的综合资料集,涵盖各个细分市场。

PDF 报告由详尽的质性访谈和深入研究后的综合分析组成。

产品映射以 Excel 形式提供,包含所有主要参与者的关键产品。

全球离子交换树脂市场报告将提供约 62 个表格、56 张图表和 204 页。

2024 年目标受众

製造商/买家

产业投资者/投资银行家

研究专业人员

新兴公司

目录

第 1 章:方法与范围

第 2 章:定义与概述

第 3 章:执行摘要

第 4 章:动力学

  • 影响因素
    • 司机
      • 工业成长和发电需求
      • 水处理需求不断成长
    • 限制
      • 原料供应有限,且有替代技术的竞争
    • 机会
    • 影响分析

第 5 章:产业分析

  • 波特五力分析
  • 供应链分析
  • 定价分析
  • 监管分析
  • 俄乌战争影响分析
  • DMI 意见

第 6 章:COVID-19 分析

第 7 章:按类型

  • 阳离子交换树脂
    • 强酸性阳离子树脂
    • 弱酸性阳离子树脂
  • 阴离子交换树脂
    • 强碱性阴离子树脂
    • 弱碱性阴离子树脂
  • 其他的

第 8 章:按申请

  • 非水

第 9 章:最终用户

  • 发电
  • 化学品和肥料
  • 食品和饮料
  • 电气和电子
  • 製药
  • 生活及废水处理
  • 纸和纸浆
  • 其他的

第 10 章:可持续性分析

  • 环境分析
  • 经济分析
  • 治理分析

第 11 章:按地区

  • 北美洲
    • 我们
    • 加拿大
    • 墨西哥
  • 欧洲
      • 德国
      • 英国
      • 法国
      • 义大利
      • 西班牙
      • 欧洲其他地区
    • 南美洲
      • 巴西
      • 阿根廷
      • 南美洲其他地区
  • 亚太
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 亚太其他地区
  • 中东和非洲

第 12 章:竞争格局

  • 竞争场景
  • 市场定位/份额分析
  • 併购分析

第 13 章:公司简介

  • DuPont
    • 公司概况
    • 类型组合和描述
    • 财务概览
    • 主要进展
  • Lanxess AG
  • Purolite Corporation
  • Mitsubishi Chemical Holdings Corporation
  • Samyang Corporation
  • Ecolab
  • JACOBI RESINS
  • Sunresin New Materials Co.Ltd.
  • Thermax Limited
  • ResinTech Inc. (LIST NOT EXHAUSTIVE)

第 14 章:附录

简介目录
Product Code: CH647

Report Overview

Global Ion-Exchange Resins Market reached US$ 1.87 billion in 2023 and is expected to reach US$ 2.62 billion by 2031, growing with a CAGR of 4.31% during the forecast period 2024-2031.

Ion-exchange resins (IERs) are polymers with reversible chemical reactions where dissolved ions are removed from the solution and replaced with other ions of the same or similar electrical charge. These resins are typically small, porous beads used for purification, separation and decontamination processes in various industries. The market for ion exchange resins is growing steadily, driven by increased demand in water treatment, pharmaceuticals and industrial applications.

The ion-exchange resins market is growing rapidly due to the increasing emphasis on water purification and treatment, particularly for industrial and municipal applications, is a major contributor. The Environmental Protection Agency (EPA) in US and the European Commission have implemented regulations that restrict the use of harmful chemicals in water treatment, promoting the adoption of ion-exchange resins as a safer and more efficient alternative.

Asia-Pacific holds the fastest-growing share in the global ion-exchange resins market. The demand is primarily fueled by the increasing need for clean water in municipal and industrial sectors, especially in countries such as China, Japan and India. In Asia-Pacific, the WHO/UNICEF Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (JMP) estimates that 500 million people lack access to a basic water supply, highlighting the importance of ion-exchange resins.

Market Dynamics

Industrial Growth and Power Generation Needs

Rapid industrialization and power generation, particularly in emerging markets like China, India and the Middle East significantly drive the demand for ion-exchange resins. Ion-exchange resins are essential in power plants for water demineralization, which is crucial for steam generation and turbine efficiency. The expansion of renewable energy projects and power plants in these regions increases the need for high-quality water, further fueling market growth.

According to the International Energy Agency, in 2028, renewable energy sources account for over 42% of global electricity generation, with the share of wind and solar PV doubling to 25%. Renewables play a critical role in clean energy transitions. Ion-exchange resins play a vital role in supporting the global transition to clean energy by ensuring the availability of high-quality water for power generation.

Rising Demand for Water Treatment

Water treatment remains the primary application for ion-exchange resins. Stringent regulations set by environmental agencies, such as US Environmental Protection Agency (EPA) and the European Union's Water Framework Directive, have led to increased adoption of these resins in both municipal and industrial water treatment facilities. The EPA requires specific standards for industrial water discharge, increasing the need for efficient purification technologies such as ion-exchange resins.

In Europe, significant investments are also being made to address PFAS contamination and improve drinking water quality. For instance, Italy involved Acque del Chiampo S.p.A., which invested approximately EUR 560,000 between 2013 and 2018 to install activated carbon filters and improve their water supply network. This encourages advanced water treatment technologies, including ion-exchange resins

Limited Availability of Raw Materials with Competition from the Presence of Alternative Technologies

The production of ion-exchange resins often relies on specific petrochemical-based materials, which may face supply chain disruptions due to geopolitical tensions or natural disasters. This can affect the availability and price of resins. According to US Energy Information Administration (EIA), the cost of crude oil accounted for about 50% of the monthly average US retail on-highway diesel fuel prices from 2004 through 2023, which directly impacted the cost of ion-exchange resin production.

Furthermore, the presence of alternative technologies, such as membrane filtration and adsorption methods, can limit the growth of the ion-exchange resin market. The alternatives can be more cost-effective or efficient in certain applications.

Market Segment Analysis

The global ion-exchange resins market is segmented based on type, application, end-user and region.

Surge in Solar Energy Demand to Minimize Ecological Footprint

Power generation is a significant driver of the ion exchange resin market due to its crucial need for water purification. In power plants, especially those utilizing steam turbines, water quality is vital to ensure the efficiency and longevity of equipment. Ion exchange resins play a pivotal role in demineralizing and softening water, which helps prevent scaling and corrosion in boilers and turbines.

According to the research done by the International Atomic Energy Agency, for thermal power plants, such as those using fossil fuels or nuclear energy, ion exchange resins ensure the demineralization of cooling and make-up water in water-steam circuits. This is crucial to prevent scale formation, which can significantly impact heat transfer efficiency.

Furthermore, regulatory bodies such as the EPA and the European Commission set increasingly strict water quality standards, power plants are under pressure to meet these requirements through effective water treatment technologies. Ion exchange resins are integral in achieving the high levels of purity needed in power generation facilities, especially in nuclear and thermal plants, where even trace impurities can cause significant operational issues.

US Environmental Protection Agency (EPA) and the International Atomic Energy Agency (IAEA) have published technical documents emphasizing the critical function of ion exchange resins in these processes. Such resins are recognized as a standard technology for ensuring compliance with water quality standards in power generation facilities, hence, driving the market demand.

Market Geographical Share

Water Scarcity and Regulatory Support in Asia-Pacific

Asia-Pacific holds the largest share of the ion exchange resin market due to its extensive water treatment and purification needs, driven by rapid industrialization, population growth and increasing regulatory pressures to manage water resources effectively. The Asian Infrastructure Investment Bank (AIIB) highlights that Asia is facing a severe water crisis, with five Asian countries accounting for over 50% of global groundwater withdrawals. Countries such as India, and China rely heavily on groundwater for agriculture and drinking water, leading to significant depletion rates.

The Asian Development Bank (ADB) estimates that developing Asia will require around US$ 800 billion in investment for water and sanitation from 2017 to 2030. A significant investment is necessary to meet the increasing water demands of both urban and rural communities. Ion-exchange resins play a crucial role in contemporary water treatment plants, particularly in eliminating hardness, nitrates and other contaminants from water sources. The need for ion- exchange resins is increasing as governments and organizations invest in constructing new water treatment plants or enhancing current ones.

Market Competitive Landscape

The major global players in the market include DuPont, Lanxess AG, Purolite Corporation, Mitsubishi Chemical Holdings Corporation, Samyang Corporation, Ecolab, JACOBI RESINS, Sunresin New Materials Co. Ltd., Thermax Limited and ResinTech Inc.

Sustainability Analysis

The ion-exchange resin market is increasingly aligning with sustainability initiatives, driven by the need for environmentally friendly products and practices. As industries face growing pressure to reduce their carbon footprints and meet regulatory standards, several manufacturers are responding by developing sustainable resin options. For instance, LANXESS, provides its Scopeblue range of resins. These resins are made from renewable sources such as acrylate and polystyrene and have been approved by the International Sustainability and Carbon Certification (ISCC) PLUS. This certification guarantees that the materials are responsibly obtained and can be traced during all stages of production. LANXESS states that its Scopeblue resins can reduce carbon emissions by as much as 76% when compared to traditional ion-exchange resins.

According to the American Water Works Association (AWWA), the demand for sustainable water treatment solutions has become a priority in water utility operations. The importance of ion-exchange technologies in improving water quality and achieving sustainability objectives is highlighted by the organization. Water utilities can enhance their operational efficiency and decrease their environmental footprint by incorporating sustainable resins, in line with AWWA's efforts to advocate for sustainable water management practices.

Russia-Ukraine War Impact

The ongoing Russia-Ukraine war has significantly impacted the ion-exchange resin market, particularly in Europe, where geopolitical tensions have led to supply chain disruptions and fluctuating raw material prices. Western sanctions on Russia have led to decreased access to Russian polymers and other chemical inputs, pushing European manufacturers to seek alternative suppliers.

Countries such as Turkey and China have stepped in as key importers of Russian materials, further complicating the supply landscape for European firms. The conflict has worsened already high inflation in Europe, specifically in the chemical industry. The substantial increase in energy costs played a crucial role; the surge in expenses for manufacturing operations dependent on natural gas and petroleum was a direct result of the energy crisis in 2022 triggered by the conflict.

By Type

Cation Exchange Resins

Strong Acid Cation Resins

Weak Acid Cation Resins

Anion Exchange Resins

Strong Base Anion Resins

Weak Base Anion Resins

Others

Adsorbent Resins

Chelating Resins

Mixed Bed Resins

Others

By Application

Water

Non-water

End-User

Power Generation

Chemical and Fertilizer

Food and Beverage

Electrical and Electronics

Pharmaceutical

Domestic and waste water treatment

Paper and Pulp

Others

Region

North America

US

Canada

Mexico

Europe

Germany

UK

France

Italy

Spain

Rest of Europe

South America

Brazil

Argentina

Rest of South America

Asia-Pacific

China

India

Japan

Australia

Rest of Asia-Pacific

Middle East and Africa

Key Developments

In April 2024, the EPA finalized a National Primary Drinking Water Regulation (NPDWR) setting Maximum Contaminant Levels (MCLs) for six PFAS compounds in drinking water, ranging from 4 to 10 nanograms per liter. This stringent regulation is driving demand for effective PFAS removal technologies and ion exchange resin (IEX) is emerging as a cost-effective solution for existing drinking water treatment plants (DWTPs)

February 2024, Thermax Limited acquired TSA Process Equipments for US$ 9 million, enhancing its capabilities in the process equipment sector, particularly in energy and environment solutions. This strategic acquisition is expected to strengthen Thermax's product portfolio and market capabilities, potentially impacting its growth and capabilities in the ion exchange resin market.

April 2024, LANXESS launched Lewatit UltraPure, a new range of ion exchange resin grades designed for water treatment and Proton Exchange Membrane (PEM) electrolysis applications. The new Lewatit UltraPure grades, including 1242 MD (Strong Base Anion exchange resin), 1212 MD (Strong Acid Cation exchange resin) and 1295 MD, aim to minimize total organic carbon levels, thereby supporting the integrity of PEM systems and advancing hydrogen-based energy solutions.

Why Purchase the Report?

To visualize the global ion-exchange resin market segmentation based on type, application, end-user and region.

Identify commercial opportunities by analyzing trends and co-development.

Excel spreadsheet containing a comprehensive dataset of the ion-exchange resin market, covering all levels of segmentation.

PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.

Product mapping available as excel consisting of key products of all the major players.

The global ion-exchange resins market report would provide approximately 62 tables, 56 figures and 204 pages.

Target Audience 2024

Manufacturers/ Buyers

Industry Investors/Investment Bankers

Research Professionals

Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Type
  • 3.2. Snippet by Application
  • 3.3. Snippet by End-User
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Industrial Growth and Power Generation Needs
      • 4.1.1.2. Rising Demand for Water Treatment
    • 4.1.2. Restraints
      • 4.1.2.1. Limited Availability of Raw Materials with Competition from the Presence of Alternative Technologies
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 7.1.2. Market Attractiveness Index, By Type
  • 7.2. Cation Exchange Resins*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
      • 7.2.2.1. Strong Acid Cation Resins
      • 7.2.2.2. Weak Acid Cation Resins
  • 7.3. Anion Exchange Resins
    • 7.3.1. Introduction
    • 7.3.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
      • 7.3.2.1. Strong Base Anion Resins
      • 7.3.2.2. Weak Base Anion Resins
  • 7.4. Others

8. By Application

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 8.1.2. Market Attractiveness Index, By Application
  • 8.2. Water*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Non-water

9. By End-User

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.1.2. Market Attractiveness Index, By End-User
  • 9.2. Power Generation*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Chemical and Fertilizer
  • 9.4. Food and Beverage
  • 9.5. Electrical and Electronics
  • 9.6. Pharmaceutical
  • 9.7. Domestic and wastewater treatment
  • 9.8. Paper and Pulp
  • 9.9. Others

10. Sustainability Analysis

  • 10.1. Environmental Analysis
  • 10.2. Economic Analysis
  • 10.3. Governance Analysis

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.6.1. US
      • 11.2.6.2. Canada
      • 11.2.6.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.6.1. Germany
      • 11.3.6.2. UK
      • 11.3.6.3. France
      • 11.3.6.4. Italy
      • 11.3.6.5. Spain
      • 11.3.6.6. Rest of Europe
    • 11.3.7. South America
    • 11.3.8. Introduction
    • 11.3.9. Key Region-Specific Dynamics
    • 11.3.10. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.3.11. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.3.12. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.13. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.13.1. Brazil
      • 11.3.13.2. Argentina
      • 11.3.13.3. Rest of South America
  • 11.4. Asia-Pacific
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.6.1. China
      • 11.4.6.2. India
      • 11.4.6.3. Japan
      • 11.4.6.4. Australia
      • 11.4.6.5. Rest of Asia-Pacific
  • 11.5. Middle East and Africa
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. DuPont*
    • 13.1.1. Company Overview
    • 13.1.2. Type Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. Lanxess AG
  • 13.3. Purolite Corporation
  • 13.4. Mitsubishi Chemical Holdings Corporation
  • 13.5. Samyang Corporation
  • 13.6. Ecolab
  • 13.7. JACOBI RESINS
  • 13.8. Sunresin New Materials Co.Ltd.
  • 13.9. Thermax Limited
  • 13.10. ResinTech Inc. (LIST NOT EXHAUSTIVE)

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us