Industrial biomanufacturing utilizes biological systems (e.g., living microorganisms, resting cells, animal cells, plant cells, tissues, enzymes, or in vitro synthetic (enzymatic) systems) to produce commercial biomolecules for use in the agricultural, food, materials, energy, and pharmaceutical industries. Products are isolated from natural sources, such as blood, cultures of microbes, animal cells, or plant cells grown in specialized equipment or dedicated cultivation environments. The cells/tissues or enzymes used may be natural or modified by genetic engineering, metabolic engineering, synthetic biology, and protein engineering.
It is rapidly emerging as a transformative force in the global manufacturing landscape, promising sustainable solutions to meet the world's growing demand for materials, chemicals, and energy. As we enter a new era of biotechnology and sustainable manufacturing, industrial biomanufacturing stands at the forefront of innovation. By harnessing the power of living organisms, particularly microorganisms and cell cultures, this field offers a path to produce a wide range of products with greater efficiency, reduced environmental impact, and enhanced performance characteristics.
This comprehensive market report provides an in-depth analysis of the rapidly growing industrial biomanufacturing sector, covering key technologies, market trends, and growth projections from 2025 to 2035. As industries worldwide shift towards more sustainable and bio-based production methods, industrial biomanufacturing is poised to play a pivotal role in the future of manufacturing across multiple sectors.
Report contents include:
- Detailed market size estimates and growth forecasts for the global industrial biomanufacturing market from 2025 to 2035
- Analysis of key application sectors including:
- Biopharmaceuticals: Including monoclonal antibodies, recombinant proteins, vaccines, cell and gene therapies, and more. Emerging technologies like synthetic biology and cell-free systems revolutionizing biopharmaceutical production.
- Industrial Enzymes: Analysis of enzymes used in detergents, food processing, biofuels, textiles, and other industries. The report examines how engineered enzymes are enabling new industrial applications.
- Biofuels: In-depth look at bioethanol, biodiesel, biogas, and advanced biofuels. The report analyzes feedstocks, conversion technologies, and emerging trends like algae-based biofuels.
- Bioplastics: Coverage of bio-based and biodegradable plastics like PLA, PHA, bio-PE, and others. The report examines how bioplastics are transforming packaging, automotive, and other industries.
- Biochemicals: Analysis of bio-based organic acids, alcohols, polymers, and other platform chemicals. The report looks at how biochemicals are replacing petrochemicals in various applications.
- Bio-Agritech: Examination of biopesticides, biofertilizers, and other biological crop inputs. The report covers emerging technologies like RNA interference for crop protection.
- Comprehensive overview of biomanufacturing technologies, processes, and production methods
- Profiles of over 1,100 companies active in the industrial biomanufacturing space. Companies profiled include Aanika Biosciences, Allozymes, Amyris, Aralez Bio, BBGI, Biomatter, Biovectra, Bucha Bio, Byogy Renewables, Cascade Biocatalysts, Constructive Bio, Cryotech, Debut Biotechnology, Enginzyme AB, Enzymit, eversyn, Erebagen, Eligo Bioscience, Evolutor, EV Biotech, FabricNano, Ginkgo Bioworks, Hyfe, Invizyne Technologies, LanzaTech, Lygos, Mammoth Biosciences, Novozymes A/S, NTx, Origin Materials, Pow.bio, Protein Evolution, Samsara Eco, Solugen, Synthego, Taiwan Bio-Manufacturing Corp. (TBMC), Twist Bioscience, Uluu, Van Heron Labs, Verde Bioresins, and Zya.
- Assessment of market drivers, challenges, and opportunities shaping the industry.
- Assessment of technology landscape-key biomanufacturing technologies and processes, including:
- Fermentation and cell culture systems
- Metabolic engineering and synthetic biology
- Downstream processing and purification methods
- Analytical techniques and quality control
- Scale-up strategies and continuous manufacturing
- Emerging technologies like cell-free systems and microfluidics
- The evolving regulatory environment for industrial biomanufacturing, including:
- Regulations governing genetically modified organisms (GMOs)
- Biofuel blending mandates and incentives
- Approval pathways for biopharmaceuticals and biosimilars
- Standards and certifications for bio-based products
- Analysis of investment trends in industrial biomanufacturing, including:
- Venture capital funding for synthetic biology startups
- Public and private investments in bioprocessing infrastructure
- M&A activity and strategic partnerships
- Government funding and incentives for bio-based industries
- Assessment of future prospects for industrial biomanufacturing, examining:
- Emerging application areas and end-user industries
- Technological innovations on the horizon
- Potential disruptive technologies and business models
- Long-term growth projections to 2035
Who Should Read This Report:
- Biomanufacturing companies and synthetic biology firms
- Pharmaceutical and biotechnology companies
- Chemical and materials manufacturers
- Biofuel producers and energy companies
- Food and beverage manufacturers
- Agricultural input suppliers
- Equipment and technology providers
- Investors and financial analysts
- Government agencies and policymakers
- Research institutions and academics
TABLE OF CONTENTS
1. EXECUTIVE SUMMARY
- 1.1. Definition and Scope of Industrial Biomanufacturing
- 1.2. Overview of Industrial Biomanufacturing Processes
- 1.3. Key Components of Industrial Biomanufacturing
- 1.4. Importance of Industrial Biomanufacturing in the Global Economy
- 1.4.1. Role in Healthcare and Pharmaceutical Industries
- 1.4.2. Impact on Industrial Biotechnology and Sustainability
- 1.4.3. Food Security
- 1.4.4. Circular Economy
- 1.5. Markets
- 1.5.1. Biopharmaceuticals
- 1.5.2. Industrial Enzymes
- 1.5.3. Biofuels
- 1.5.4. Biomaterials
- 1.5.5. Specialty Chemicals
- 1.5.6. Food and Beverage
- 1.5.7. Agriculture and Animal Health
- 1.5.8. Environmental Biotechnology
2. PRODUCTION
- 2.1. Microbial Fermentation
- 2.2. Mammalian Cell Culture
- 2.3. Plant Cell Culture
- 2.4. Insect Cell Culture
- 2.5. Transgenic Animals
- 2.6. Transgenic Plants
- 2.7. Technologies
- 2.7.1. Upstream Processing
- 2.7.1.1. Cell Culture
- 2.7.1.1.1. Overview
- 2.7.1.1.2. Types of Cell Culture Systems
- 2.7.1.1.3. Factors Affecting Cell Culture Performance
- 2.7.1.1.4. Advances in Cell Culture Technology
- 2.7.1.1.4.1. Single-use systems
- 2.7.1.1.4.2. Process analytical technology (PAT)
- 2.7.1.1.4.3. Cell line development
- 2.7.2. Fermentation
- 2.7.2.1. Overview
- 2.7.2.1.1. Types of Fermentation Processes
- 2.7.2.1.2. Factors Affecting Fermentation Performance
- 2.7.2.1.3. Advances in Fermentation Technology
- 2.7.2.1.3.1. High-cell-density fermentation
- 2.7.2.1.3.2. Continuous processing
- 2.7.2.1.3.3. Metabolic engineering
- 2.7.3. Downstream Processing
- 2.7.3.1. Purification
- 2.7.3.1.1. Overview
- 2.7.3.1.2. Types of Purification Methods
- 2.7.3.1.3. Factors Affecting Purification Performance
- 2.7.3.1.4. Advances in Purification Technology
- 2.7.3.1.4.1. Affinity chromatography
- 2.7.3.1.4.2. Membrane chromatography
- 2.7.3.1.4.3. Continuous chromatography
- 2.7.4. Formulation
- 2.7.4.1. Overview
- 2.7.4.1.1. Types of Formulation Methods
- 2.7.4.1.2. Factors Affecting Formulation Performance
- 2.7.4.1.3. Advances in Formulation Technology
- 2.7.4.1.3.1. Controlled release
- 2.7.4.1.3.2. Nanoparticle formulation
- 2.7.4.1.3.3 3D printing
- 2.7.5. Bioprocess Development
- 2.7.5.1. Scale-up
- 2.7.5.1.1. Overview
- 2.7.5.1.2. Factors Affecting Scale-up Performance
- 2.7.5.1.3. Scale-up Strategies
- 2.7.5.2. Optimization
- 2.7.5.2.1. Overview
- 2.7.5.2.2. Factors Affecting Optimization Performance
- 2.7.5.2.3. Optimization Strategies
- 2.7.6. Analytical Methods
- 2.7.6.1. Quality Control
- 2.7.6.1.1. Overview
- 2.7.6.1.2. Types of Quality Control Tests
- 2.7.6.1.3. Factors Affecting Quality Control Performance
- 2.7.6.2. Characterization
- 2.7.6.2.1. Overview
- 2.7.6.2.2. Types of Characterization Methods
- 2.7.6.2.3. Factors Affecting Characterization Performance
- 2.8. Scale of Production
- 2.8.1. Laboratory Scale
- 2.8.1.1. Overview
- 2.8.1.2. Scale and Equipment
- 2.8.1.3. Advantages
- 2.8.1.4. Disadvantages
- 2.8.2. Pilot Scale
- 2.8.2.1. Overview
- 2.8.2.2. Scale and Equipment
- 2.8.2.3. Advantages
- 2.8.2.4. Disadvantages
- 2.8.3. Commercial Scale
- 2.8.3.1. Overview
- 2.8.3.2. Scale and Equipment
- 2.8.3.3. Advantages
- 2.8.3.4. Disadvantages
- 2.9. Mode of Operation
- 2.9.1. Batch Production
- 2.9.1.1. Overview
- 2.9.1.2. Advantages
- 2.9.1.3. Disadvantages
- 2.9.1.4. Applications
- 2.9.2. Fed-batch Production
- 2.9.2.1. Overview
- 2.9.2.2. Advantages
- 2.9.2.3. Disadvantages
- 2.9.2.4. Applications
- 2.9.3. Continuous Production
- 2.9.3.1. Overview
- 2.9.3.2. Advantages
- 2.9.3.3. Disadvantages
- 2.9.3.4. Applications
- 2.9.4. Cell factories for biomanufacturing
- 2.9.5. Perfusion Culture
- 2.9.5.1. Overview
- 2.9.5.2. Advantages
- 2.9.5.3. Disadvantages
- 2.9.5.4. Applications
- 2.9.6. Other Modes of Operation
- 2.9.6.1. Immobilized Cell Culture
- 2.9.6.2. Two-Stage Production
- 2.9.6.3. Hybrid Systems
- 2.10. Host Organisms
3. BIOPHARMACEUTICALS
- 3.1. Technology/materials analysis
- 3.1.1. Monoclonal Antibodies (mAbs)
- 3.1.2. Recombinant Proteins
- 3.1.3. Vaccines
- 3.1.4. Cell and Gene Therapies
- 3.1.5. Blood Factors
- 3.1.6. Tissue Engineering Products
- 3.1.7. Nucleic Acid Therapeutics
- 3.1.8. Peptide Therapeutics
- 3.1.9. Biosimilars and Biobetters
- 3.1.10. Nanobodies and Antibody Fragments
- 3.1.11. Synthetic biology
- 3.1.11.1. Metabolic engineering
- 3.1.11.1.1. DNA synthesis
- 3.1.11.1.2. CRISPR
- 3.1.11.1.2.1. CRISPR/Cas9-modified biosynthetic pathways
- 3.1.11.2. Protein/Enzyme Engineering
- 3.1.11.3. Strain construction and optimization
- 3.1.11.4. Synthetic biology and metabolic engineering
- 3.1.11.5. Smart bioprocessing
- 3.1.11.6. Cell-free systems
- 3.1.11.7. Chassis organisms
- 3.1.11.8. Biomimetics
- 3.1.11.9. Sustainable materials
- 3.1.11.10. Robotics and automation
- 3.1.11.10.1. Robotic cloud laboratories
- 3.1.11.10.2. Automating organism design
- 3.1.11.10.3. Artificial intelligence and machine learning
- 3.1.11.11. Fermentation Processes
- 3.1.12. Generative Biology
- 3.1.12.1. Generative Adversarial Networks (GANs)
- 3.1.12.1.1. Variational Autoencoders (VAEs)
- 3.1.12.1.2. Normalizing Flows
- 3.1.12.1.3. Autoregressive Models
- 3.1.12.1.4. Evolutionary Generative Models
- 3.1.12.2. Design Optimization
- 3.1.12.2.1. Evolutionary Algorithms (e.g., Genetic Algorithms, Evolutionary Strategies)
- 3.1.12.2.1.1. Genetic Algorithms (GAs)
- 3.1.12.2.1.2. Evolutionary Strategies (ES)
- 3.1.12.2.2. Reinforcement Learning
- 3.1.12.2.3. Multi-Objective Optimization
- 3.1.12.2.4. Bayesian Optimization
- 3.1.12.3. Computational Biology
- 3.1.12.3.1. Molecular Dynamics Simulations
- 3.1.12.3.2. Quantum Mechanical Calculations
- 3.1.12.3.3. Systems Biology Modeling
- 3.1.12.3.4. Metabolic Engineering Modeling
- 3.1.12.4. Data-Driven Approaches
- 3.1.12.4.1. Machine Learning
- 3.1.12.4.2. Graph Neural Networks
- 3.1.12.4.3. Unsupervised Learning
- 3.1.12.4.4. Active Learning and Bayesian Optimization
- 3.1.12.5. Agent-Based Modeling
- 3.1.12.6. Hybrid Approaches
- 3.2. Market analysis
- 3.2.1. Key players and competitive landscape
- 3.2.2. Market Growth Drivers and Trends
- 3.2.3. Regulations
- 3.2.4. Value chain
- 3.2.5. Future outlook
- 3.2.6. Addressable Market Size
- 3.2.7. Risks and Opportunities
- 3.2.8. Global revenues
- 3.2.8.1. By application market
- 3.2.8.2. By regional market
- 3.3. Company profiles (112 company profiles)
4. INDUSTRIAL ENZYMES
- 4.1. Technology/materials analysis
- 4.1.1. Detergent Enzymes
- 4.1.2. Food Processing Enzymes
- 4.1.3. Textile Processing Enzymes
- 4.1.4. Paper and Pulp Processing Enzymes
- 4.1.5. Leather Processing Enzymes
- 4.1.6. Biofuel Production Enzymes
- 4.1.7. Animal Feed Enzymes
- 4.1.8. Pharmaceutical and Diagnostic Enzymes
- 4.1.9. Waste Management and Bioremediation Enzymes
- 4.1.10. Agriculture and Crop Improvement Enzymes
- 4.2. Market analysis
- 4.2.1. Key players and competitive landscape
- 4.2.2. Market Growth Drivers and Trends
- 4.2.3. Regulations
- 4.2.4. Value chain
- 4.2.5. Future outlook
- 4.2.6. Addressable Market Size
- 4.2.7. Risks and Opportunities
- 4.2.8. Global revenues
- 4.2.8.1. By application market
- 4.2.8.2. By regional market
- 4.3. Companies profiles (56 company profiles)
5. BIOFUELS
- 5.1. Technology/materials analysis
- 5.1.1. Role in the circular economy
- 5.1.2. The global biofuels market
- 5.1.3. Feedstocks
- 5.1.3.1. First-generation (1-G)
- 5.1.3.2. Second-generation (2-G)
- 5.1.3.2.1. Lignocellulosic wastes and residues
- 5.1.3.2.2. Biorefinery lignin
- 5.1.3.3. Third-generation (3-G)
- 5.1.3.3.1. Algal biofuels
- 5.1.3.3.1.1. Properties
- 5.1.3.3.1.2. Advantages
- 5.1.3.4. Fourth-generation (4-G)
- 5.1.3.5. Advantages and disadvantages, by generation
- 5.1.4. Bioethanol
- 5.1.4.1. First-generation bioethanol (from sugars and starches)
- 5.1.4.2. Second-generation bioethanol (from lignocellulosic biomass)
- 5.1.4.3. Third-generation bioethanol (from algae)
- 5.1.5. Biodiesel
- 5.1.5.1. Biodiesel by generation
- 5.1.5.2. SWOT analysis
- 5.1.5.3. Production of biodiesel and other biofuels
- 5.1.5.3.1. Pyrolysis of biomass
- 5.1.5.3.2. Vegetable oil transesterification
- 5.1.5.3.3. Vegetable oil hydrogenation (HVO)
- 5.1.5.3.3.1. Production process
- 5.1.5.3.4. Biodiesel from tall oil
- 5.1.5.3.5. Fischer-Tropsch BioDiesel
- 5.1.5.3.6. Hydrothermal liquefaction of biomass
- 5.1.5.3.7. CO2 capture and Fischer-Tropsch (FT)
- 5.1.5.3.8. Dymethyl ether (DME)
- 5.1.5.4. Prices
- 5.1.5.5. Global production and consumption
- 5.1.6. Biogas
- 5.1.6.1. Feedstocks
- 5.1.6.2. Biomethane
- 5.1.6.2.1. Production pathways
- 5.1.6.2.1.1. Landfill gas recovery
- 5.1.6.2.1.2. Anaerobic digestion
- 5.1.6.2.1.3. Thermal gasification
- 5.1.6.3. SWOT analysis
- 5.1.6.4. Global production
- 5.1.6.5. Prices
- 5.1.6.5.1. Raw Biogas
- 5.1.6.5.2. Upgraded Biomethane
- 5.1.6.6. Bio-LNG
- 5.1.6.6.1. Markets
- 5.1.6.6.1.1. Trucks
- 5.1.6.6.1.2. Marine
- 5.1.6.6.2. Production
- 5.1.6.6.3. Plants
- 5.1.6.7. bio-CNG (compressed natural gas derived from biogas)
- 5.1.6.8. Carbon capture from biogas
- 5.1.6.9. Biosyngas
- 5.1.6.9.1. Production
- 5.1.6.9.2. Prices
- 5.1.7. Biobutanol
- 5.1.7.1. Production
- 5.1.7.2. Prices
- 5.1.8. Biohydrogen
- 5.1.8.1. Description
- 5.1.8.1.1. Dark fermentation
- 5.1.8.1.2. Photofermentation
- 5.1.8.1.3. Biophotolysis (direct and indirect)
- 5.1.8.1.3.1. Direct Biophotolysis
- 5.1.8.1.3.2. Indirect Biophotolysis:
- 5.1.8.2. SWOT analysis
- 5.1.8.3. Production of biohydrogen from biomass
- 5.1.8.3.1. Biological Conversion Routes
- 5.1.8.3.1.1. Bio-photochemical Reaction
- 5.1.8.3.1.2. Fermentation and Anaerobic Digestion
- 5.1.8.3.2. Thermochemical conversion routes
- 5.1.8.3.2.1. Biomass Gasification
- 5.1.8.3.2.2. Biomass Pyrolysis
- 5.1.8.3.2.3. Biomethane Reforming
- 5.1.8.4. Applications
- 5.1.8.5. Prices
- 5.1.9. Biomethanol
- 5.1.9.1. Gasification-based biomethanol
- 5.1.9.2. Biosynthesis-based biomethanol
- 5.1.9.3. SWOT analysis
- 5.1.9.4. Methanol-to gasoline technology
- 5.1.9.4.1. Production processes
- 5.1.9.4.1.1. Anaerobic digestion
- 5.1.9.4.1.2. Biomass gasification
- 5.1.9.4.1.3. Power to Methane
- 5.1.10. Bio-oil and Biochar
- 5.1.10.1. Pyrolysis-based bio-oil
- 5.1.10.2. Hydrothermal liquefaction-based bio-oil
- 5.1.10.3. Biochar from pyrolysis and gasification processes
- 5.1.10.4. Advantages of bio-oils
- 5.1.10.5. Production
- 5.1.10.5.1. Fast Pyrolysis
- 5.1.10.5.2. Costs of production
- 5.1.10.5.3. Upgrading
- 5.1.10.6. SWOT analysis
- 5.1.10.7. Applications
- 5.1.10.8. Bio-oil producers
- 5.1.10.9. Prices
- 5.1.11. Renewable Diesel and Jet Fuel
- 5.1.11.1. Renewable diesel
- 5.1.11.1.1. Production
- 5.1.11.1.2. SWOT analysis
- 5.1.11.1.3. Global consumption
- 5.1.11.2. Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)
- 5.1.11.2.1. Description
- 5.1.11.2.2. SWOT analysis
- 5.1.11.2.3. Global production and consumption
- 5.1.11.2.4. Production pathways
- 5.1.11.2.5. Prices
- 5.1.11.2.6. Bio-aviation fuel production capacities
- 5.1.11.2.7. Challenges
- 5.1.11.2.8. Global consumption
- 5.1.12. Algal biofuels
- 5.1.12.1. Conversion pathways
- 5.1.12.2. SWOT analysis
- 5.1.12.3. Production
- 5.1.12.4. Market challenges
- 5.1.12.5. Prices
- 5.1.12.6. Producers
- 5.2. Market analysis
- 5.2.1. Key players and competitive landscape
- 5.2.2. Market Growth Drivers and Trends
- 5.2.3. Regulations
- 5.2.4. Value chain
- 5.2.5. Future outlook
- 5.2.6. Addressable Market Size
- 5.2.7. Risks and Opportunities
- 5.2.8. Global revenues
- 5.2.8.1. By biofuel type
- 5.2.8.2. Applications Market
- 5.2.8.3. By regional market
- 5.3. Company profiles (211 company profiles)
6. BIOPLASTICS
- 6.1. Technology/materials analysis
- 6.1.1. Polylactic acid (PLA)
- 6.1.2. Polyhydroxyalkanoates (PHAs)
- 6.1.2.1. Types
- 6.1.2.2. Polyhydroxybutyrate (PHB)
- 6.1.2.3. Polyhydroxyvalerate (PHV)
- 6.1.3. Bio-based polyethylene (PE)
- 6.1.4. Bio-based polyethylene terephthalate (PET)
- 6.1.5. Bio-based polyurethanes (PUs)
- 6.1.6. Starch-based plastics
- 6.1.7. Cellulose-based plastics
- 6.2. Market analysis
- 6.2.1. Key players and competitive landscape
- 6.2.2. Market Growth Drivers and Trends
- 6.2.3. Regulations
- 6.2.4. Value chain
- 6.2.5. Future outlook
- 6.2.6. Addressable Market Size
- 6.2.7. Risks and Opportunities
- 6.2.8. Global revenues
- 6.2.8.1. By type
- 6.2.8.2. By application market
- 6.2.8.3. By regional market
- 6.3. Company profiles (520 company profiles)
7. BIOCHEMICALS
- 7.1. Technology/materials analysis
- 7.1.1. Organic acids
- 7.1.1.1. Lactic acid
- 7.1.1.1.1. D-lactic acid
- 7.1.1.1.2. L-lactic acid
- 7.1.1.2. Succinic acid
- 7.1.1.3. Itaconic acid
- 7.1.1.4. Citric acid
- 7.1.1.5. Acetic acid
- 7.1.2. Amino acids
- 7.1.2.1. Glutamic acid
- 7.1.2.2. Lysine
- 7.1.2.3. Threonine
- 7.1.2.4. Methionine
- 7.1.3. Alcohols
- 7.1.3.1. Ethanol
- 7.1.3.2. Butanol
- 7.1.3.3. Isobutanol
- 7.1.3.4. Propanediol
- 7.1.4. Surfactants
- 7.1.4.1. Biosurfactants (e.g., rhamnolipids, sophorolipids)
- 7.1.4.2. Alkyl polyglucosides (APGs)
- 7.1.5. Solvents
- 7.1.5.1. Ethyl lactate
- 7.1.5.2. Dimethyl carbonate
- 7.1.5.3. Glycerol
- 7.1.6. Flavours and fragrances
- 7.1.6.1. Vanillin
- 7.1.6.2. Nootkatone
- 7.1.6.3. Limonene
- 7.1.7. Bio-based monomers and intermediates
- 7.1.7.1. Succinic acid
- 7.1.7.2. 1,4-Butanediol (BDO)
- 7.1.7.3. Isoprene
- 7.1.7.4. Ethylene
- 7.1.7.5. Propylene
- 7.1.7.6. Adipic acid
- 7.1.7.7. Acrylic acid
- 7.1.7.8. Sebacic acid
- 7.1.8. Bio-based polymers
- 7.1.8.1. Polybutylene succinate (PBS)
- 7.1.8.2. Polyamides (nylons)
- 7.1.8.3. Polyethylene furanoate (PEF)
- 7.1.8.4. Polytrimethylene terephthalate (PTT)
- 7.1.8.5. Polyethylene isosorbide terephthalate (PEIT)
- 7.1.9. Bio-based composites and blends
- 7.1.9.1. Wood-plastic composites (WPCs)
- 7.1.9.2. Biofiller-reinforced plastics
- 7.1.9.3. Biofiber-reinforced plastics
- 7.1.9.4. Polymer blends with bio-based components
- 7.1.10. Waste
- 7.1.10.1. Food waste
- 7.1.10.2. Agricultural waste
- 7.1.10.3. Forestry waste
- 7.1.10.4. Aquaculture/fishing waste
- 7.1.10.5. Municipal solid waste
- 7.1.10.6. Industrial waste
- 7.1.10.7. Waste oils
- 7.1.11. Microbial and mineral sources
- 7.1.11.1. Microalgae
- 7.1.11.2. Macroalgae
- 7.1.11.3. Mineral sources
- 7.2. Market analysis
- 7.2.1. Key players and competitive landscape
- 7.2.2. Market Growth Drivers and Trends
- 7.2.3. Regulations
- 7.2.4. Value chain
- 7.2.5. Future outlook
- 7.2.6. Addressable Market Size
- 7.2.7. Risks and Opportunities
- 7.2.8. Global revenues
- 7.2.8.1. By type
- 7.2.8.2. By application market
- 7.2.8.3. By regional market
- 7.3. Company profiles (123 company profiles)
8. BIO-AGRITECH
- 8.1. Technology/materials analysis
- 8.1.1. Biopesticides
- 8.1.1.1. Semiochemical
- 8.1.1.2. Macrobial Biological Control Agents
- 8.1.1.3. Microbial pesticides
- 8.1.1.4. Biochemical pesticides
- 8.1.1.5. Plant-incorporated protectants (PIPs)
- 8.1.2. Biofertilizers
- 8.1.3. Biostimulants
- 8.1.3.1. Microbial biostimulants
- 8.1.3.1.1. Nitrogen Fixation
- 8.1.3.1.2. Formulation Challenges
- 8.1.3.2. Natural Product Biostimulants
- 8.1.3.3. Manipulating the Microbiome
- 8.1.3.4. Synthetic Biology
- 8.1.3.5. Non-microbial biostimulants
- 8.1.4. Agricultural Enzymes
- 8.1.4.1. Types of Agricultural Enzymes
- 8.2. Market analysis
- 8.2.1. Key players and competitive landscape
- 8.2.2. Market Growth Drivers and Trends
- 8.2.3. Regulations
- 8.2.4. Value chain
- 8.2.5. Future outlook
- 8.2.6. Addressable Market Size
- 8.2.7. Risks and Opportunities
- 8.2.8. Global revenues
- 8.2.8.1. By application market
- 8.2.8.2. By regional market
- 8.3. Company profiles (105 company profiles)
9. RESEARCH METHODOLOGY
10. REFERENCES