先进锂离子电池·其他锂电池的全球市场(2025年~2035年)
市场调查报告书
商品编码
1595742

先进锂离子电池·其他锂电池的全球市场(2025年~2035年)

The Global Market for Advanced Li-ion and Beyond Lithium Batteries 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 635 Pages, 165 Tables, 176 Figures | 订单完成后即时交付

价格

由于各个行业,特别是电动车 (EV) 和再生能源应用对储能解决方案的需求不断增长,锂离子电池市场近年来呈现显着增长。随着世界朝着更大的永续性发展,对提供更高能量密度、更快充电、更高安全性和更长使用寿命的先进电池技术的需求变得越来越重要。

目前锂离子电池市场由特斯拉、松下、LG化学、宁德时代、比亚迪等老牌企业主导,这些企业为提高电池性能和成本效益做出了重大贡献。然而,该产业也正在出现超越传统锂离子化学的创新技术,预计将进一步提高储能能力。最有前途的发展之一是锂金属阳极的兴起。与传统锂离子电池相比,透过使用金属锂作为负极材料,锂金属电池有可能显着提高能量密度。 QuantumScape、SolidEnergy Systems 和 Sila Nanotechnologies 等公司处于该技术的前沿,专注于开发固体电解质和新型负极设计,以克服与锂金属相关的挑战,例如枝晶形成和安全问题。

另一个密集研究和开发的领域是锂硫(Li-S)电池。锂硫化学物质富含硫且相对便宜,具有降低成本和提高能量密度的潜力。除了锂电池系统之外,先进电池市场也见证了钠离子 (Na-ion) 和锌离子电池等替代化学电池的兴起。这些技术可以提供一种经济有效且可能更安全的锂离子替代品,特别是在高能量密度不是优先考虑的应用中,例如固定储能和电网规模应用。

先进锂离子电池及未来锂电池市场的未来前景既充满希望又复杂。虽然锂离子电池预计将在中短期内保持其主导地位,但随着能源储存市场的发展,未来十年将看到电池技术的多样化,以满足日益多样化和苛刻的需求。这一市场演变的关键推动因素之一是对更高能量密度和更快充电能力的持续需求,尤其是在电动车领域。随着消费者寻求更长的续航里程和更快的充电时间,开发下一代高性能电池技术的竞争预计将加剧。这可能会鼓励进一步投资研发以及製造流程和供应链的最佳化。地缘政治因素也可能在先进电池市场的未来中发挥重要作用。全球对锂、钴和镍等关键原料的竞争日益激烈,凸显了对多样化和有弹性的供应链的需求。再加上能源独立和国家安全担忧的推动,可能会加速依赖更丰富和当地可用资源(例如钠和锌)的电池技术的发展。

本报告提供全球先进锂离子电池·其他锂电池市场相关调查分析,提供电动车,网格储存,消费者电子产品,固定式电池主要的应用领域为焦点,最新的技术的进步,市场趋势,竞争情形等资讯。

目录

第1章 调查手法

第2章 简介

  • 全球先进锂离子电池市场
    • 电动车
    • 网格存储
    • 消费性电子产品
    • 固定电池
    • 市场预测
  • 市场推动因素
  • 电池市场的大趋势
  • 先进电池材料
  • 超越锂电池发展的促进因素
  • 电池化学

第3章 锂离子电池

  • 锂电池的类型
  • 负极材料
  • SWOT分析
  • 锂离子电池市场趋势
  • 硅负极
  • 锂离子电解液
  • 正极
  • 黏合剂、导电助剂
  • 分隔符
  • 铂族金属
  • 锂离子电池市场的公司
  • 锂离子回收
  • 全球收入

第4章 锂金属电池

  • 技术描述
  • 锂金属负极
  • 课题
  • 能量密度
  • 负极无极电池
  • 锂金属电池、全固态电池
  • 应用
  • SWOT分析
  • 产品开发人员

第5章 锂硫电池

  • 技术的说明
  • SWOT分析
  • 全球收益
  • 产品开发商

第6章 钛酸锂,铌酸锂电池

  • 技术的说明
  • 全球收益
  • 产品开发商

第7章 钠离子(Na离子)电池

  • 技术描述
  • 与其他类型电池的比较分析
  • 与锂离子电池的成本比较
  • 钠离子电池电芯材料
  • SWOT分析
  • 全球收入
  • 产品开发人员

第8章 钠硫电池

  • 技术的说明
  • 用途
  • SWOT分析

第9章 铝离子电池

  • 技术的说明
  • SWOT分析
  • 商业化
  • 全球收益
  • 产品开发商

第10章 全固体电池(ASSB)

  • 技术描述
  • 功能和优点
  • 技术规格
  • 微型电池
  • 散装型全固态电池
  • SWOT分析
  • 限制
  • 全球收入
  • 产品开发人员

第11章 弹性电池

  • 技术描述
  • 技术规格
  • 柔性电子产品
  • 柔性材料
  • 柔性穿戴式金属硫电池
  • 柔性穿戴式金属空气电池
  • 柔性锂离子电池
  • 柔性锂硫电池
  • 柔性锂二氧化锰电池
  • 柔性锌电池
  • 纤维电池
  • 能量收集与穿戴式能量储存装置结合
  • SWOT分析
  • 全球收入
  • 产品开发人员

第12章 透明电池

  • 技术的说明
  • 零组件
  • SWOT分析
  • 市场预测

第13章 分解性电池

  • 技术的说明
  • 零组件
  • SWOT分析
  • 市场预测
  • 产品开发商

第14章 印刷电池

  • 技术规格
  • 零组件
  • 设计
  • 主要的特征
  • 印刷可能的集电体
  • 印刷可能的电极
  • 材料
  • 用途
  • 印刷技术
  • 锂离子(LIB)印刷电池
  • 锌系印刷电池
  • 3D印刷电池
  • SWOT分析
  • 全球收益
  • 产品开发商

第15章 氧化还原液流电池

  • 技术的说明
  • 种类
  • 氧化还原液流电池的市场
  • 全球收益

第16章 Zn系电池

  • 技术的说明
  • 市场预测
  • 产品开发商

第17章 AI电池技术

  • 概要
  • 用途

第18章 印刷超级电容

  • 概要
  • 印刷方法
  • 电极材料
  • 电解质

第19章 企业简介(企业363公司的简介)

第20章 参考文献

The lithium-ion battery market has experienced remarkable growth in recent years, driven by the increasing demand for energy storage solutions across various sectors, particularly in electric vehicles (EVs) and renewable energy applications. As the world transitions towards increasing sustainability, the need for advanced battery technologies that offer higher energy density, faster charging, improved safety, and longer lifespans has become increasingly crucial.

The current lithium-ion battery market is dominated by well-established players, such as Tesla, Panasonic, LG Chem, CATL, and BYD, who have made significant strides in improving the performance and cost-effectiveness of these batteries. However, the industry is also witnessing the emergence of innovative technologies that go beyond traditional lithium-ion chemistries, promising even greater advancements in energy storage capabilities. One of the most promising developments in the advanced battery market is the rise of lithium-metal anodes. Lithium-metal batteries have the potential to offer significantly higher energy densities compared to conventional lithium-ion batteries, thanks to the use of metallic lithium as the anode material. Companies like QuantumScape, SolidEnergy Systems, and Sila Nanotechnologies are at the forefront of this technology, focusing on developing solid-state electrolytes and novel anode designs to overcome the challenges associated with lithium-metal, such as dendrite formation and safety concerns.

Another area of intense research and development is lithium-sulfur (Li-S) batteries. Lithium-sulfur chemistry offers the promise of even higher energy densities, as well as the potential for lower cost due to the abundance and relatively low price of sulfur. Beyond lithium-based systems, the advanced battery market is also witnessing the emergence of alternative chemistries, such as sodium-ion (Na-ion) and zinc-ion batteries. These technologies can provide cost-effective and potentially safer alternatives to lithium-ion, particularly in applications where high energy density is not the primary concern, such as stationary energy storage and grid-scale applications.

The future outlook for the advanced lithium-ion and beyond lithium battery market is both promising and complex. While lithium-ion batteries are expected to maintain their dominance in the near to medium term, the next decade will likely see a diversification of battery technologies to meet the increasingly diverse and demanding needs of the energy storage market. One key driver of this market evolution will be the continued push for higher energy density and faster charging capabilities, particularly in the EV sector. As consumers demand longer driving ranges and quicker recharge times, the race to develop the next generation of high-performance battery technologies will intensify. This, in turn, will spur further investments in research and development, as well as advancements in manufacturing processes and supply chain optimization. Geopolitical considerations will also play a significant role in the future of the advanced battery market. The increasing global competition for critical raw materials, such as lithium, cobalt, and nickel, has highlighted the need for diversified and resilient supply chains. This, coupled with the push for energy independence and national security concerns, will likely accelerate the development of battery technologies that rely on more abundant and locally available resources, such as sodium and zinc.

"The Global Market for Advanced Li-ion and Beyond Lithium Batteries 2025-2035" provides an in-depth analysis of the rapidly evolving sector, offering invaluable insights for industry stakeholders, technology developers, and investors. With a focus on the key application areas of electric vehicles, grid storage, consumer electronics, and stationary batteries, the study delves deep into the latest technological advancements, market trends, and competitive landscape.

Report contents include:

  • Detailed analysis of the global market for advanced Li-ion batteries, including forecasts for major application segments such as electric vehicles, grid storage, and consumer electronics.
  • Comprehensive coverage of emerging battery technologies beyond lithium-ion, including lithium-metal, lithium-sulfur, sodium-ion, and solid-state batteries, with market sizing and growth projections.
  • Examination of the evolving battery material landscape, including advancements in anode (silicon, lithium titanate), cathode (high-nickel, lithium-rich), and electrolyte technologies.
  • Detailed profiles of over 360 companies active in the advanced battery ecosystem, covering their product offerings, technology roadmaps, and strategic partnerships. Companies profiled include 2D Fab AB, 24M Technologies, Inc., 3DOM Inc., 6K Energy, AC Biode, ACCURE, Addionics, Advano, Agora Energy Technologies, Aionics Inc., AirMembrane Corporation, Allegro Energy Pty. Ltd., Altairnano / Yinlong, Altris AB, Aluma Power, Altech Batteries Ltd., Ambri, Inc., AMO Greentech, Ampcera, Inc., Amprius, Inc., AMTE Power, Anaphite Limited, Anthro Energy, APB Corporation, Appear Inc., Ateios Systems, Atlas Materials, Australian Advanced Materials, Australian Vanadium Limited, Australia VRFB ESS Company (AVESS), Avanti Battery Company, AZUL Energy Co., Ltd, BAK Power Battery, BASF, BattGenie Inc., Basquevolt, Bedimensional S.p.A, Bemp Research Company, BenAn Energy Technology, BGT Materials Ltd., Big Pawer, Biwatt Power, Black Diamond Structures, LLC, Blackstone Resources, Blue Current, Inc., Blue Solutions, Blue Spark Technologies, Inc., Bodi, Inc., Brill Power, BrightVolt, Inc., Broadbit Batteries Oy, BTR New Energy Materials, Inc., BYD Company Limited, Cabot Corporation, California Lithium Battery, CAPCHEM, CarbonScape Ltd., CBAK Energy Technology, Inc., CCL Design, CEC Science & Technology Co., Ltd, CENS Materials, Contemporary Amperex Technology Co Ltd (CATL), CellCube, CellsX, CENS Materials Ltd., Central Glass Co., Ltd., CERQ, Ceylon Graphene Technologies (Pvt) Ltd, Cham Battery Technology, Chasm Advanced Materials, Inc., Chemix, Chengdu Baisige Technology Co., Ltd., China Sodium-ion Times, Citrine Informatics, Clarios, Clim8, CMBlu Energy AG, Connexx Systems Corp, Customcells, Cymbet, Dalian Rongke Power, DFD, Doctors (Tianjin) Energy Technology, Dotz Nano, Dreamweaver International, Eatron Technologies, Ecellix, Echion Technologies, EcoPro BM, ElecJet, Elestor, EcoPro BM, Elegus Technologies, Elisa IndustrIQ, E-Magy, Energy Storage Industries, Enerpoly AB, Enfucell Oy, Enevate, EnPower Greentech, Enovix, Ensurge Micropower ASA, E-Zinc, Eos Energy, Enzinc, Eonix Energy, ESS Tech, EthonAI, EVE Energy Co., Ltd, Exencell New Energy, Factorial Energy, Faradion Limited, Farasis Energy, FDK Corporation, Feon Energy, Inc., FinDream, FlexEnergy LLC, Flow Aluminum, Inc., Flux XII, Forge Nano, Inc., Forsee Power, Fraunhofer Institute for Electronic Nano Systems (ENAS), Front Edge Technology, Fuelium, Fuji Pigment Co., Ltd., Fujian Super Power New Energy, Fujitsu Laboratories Ltd., Ganfeng Lithium, Gelion Technologies Pty Ltd., Geyser Batteries Oy, GDI, General Motors (GM), Global Graphene Group, Gnanomat S.L., Gotion High Tech, GQenergy srl, Grafentek, Grafoid, Graphene Batteries AS, Graphene Manufacturing Group Pty Ltd, Great Power Energy, Green Energy Storage S.r.l. (GES), GRST, Guoke Tanmei New Materials, GUS Technology, Shenzhen Grepow Battery Co., Ltd. (Grepow), Group14 Technologies, Inc., Corporation Guangzhou Automobile New Energy (GAC), H2 Inc., Hansol Chemical, HE3DA Ltd., Hexalayer LLC, High Performance Battery Holding AG, HiNa Battery Technologies Limited, Hirose Paper Mfg Co., Ltd., Hitachi Zosen Corporation, Horizontal Na Energy, HPQ Nano Silicon Powders Inc., Hua Na New Materials, Hybrid Kinetic Group, HydraRedox Iberia S.L. and more.....
  • Exploration of innovative battery designs, such as flexible, transparent, and degradable batteries, and their potential applications.
  • In-depth analysis of the battery recycling industry, including the strengths and weaknesses of various recycling techniques.
  • Insights into the role of artificial intelligence and machine learning in accelerating battery innovation, from material discovery to manufacturing optimization.

TABLE OF CONTENTS

1. RESEARCH METHODOLOGY

  • 1.1. Report scope
  • 1.2. Research methodology

2. INTRODUCTION

  • 2.1. The global market for advanced Li-ion batteries
    • 2.1.1. Electric vehicles
      • 2.1.1.1. Market overview
      • 2.1.1.2. Battery Electric Vehicles
      • 2.1.1.3. Electric buses, vans and trucks
        • 2.1.1.3.1. Electric medium and heavy duty trucks
        • 2.1.1.3.2. Electric light commercial vehicles (LCVs)
        • 2.1.1.3.3. Electric buses
        • 2.1.1.3.4. Micro EVs
      • 2.1.1.4. Electric off-road
        • 2.1.1.4.1. Construction vehicles
        • 2.1.1.4.2. Electric trains
        • 2.1.1.4.3. Electric boats
      • 2.1.1.5. Market demand and forecasts
    • 2.1.2. Grid storage
      • 2.1.2.1. Market overview
      • 2.1.2.2. Technologies
      • 2.1.2.3. Market demand and forecasts
    • 2.1.3. Consumer electronics
      • 2.1.3.1. Market overview
      • 2.1.3.2. Technologies
      • 2.1.3.3. Market demand and forecasts
    • 2.1.4. Stationary batteries
      • 2.1.4.1. Market overview
      • 2.1.4.2. Technologies
      • 2.1.4.3. Market demand and forecasts
    • 2.1.5. Market Forecasts
  • 2.2. Market drivers
  • 2.3. Battery market megatrends
  • 2.4. Advanced materials for batteries
  • 2.5. Motivation for battery development beyond lithium
  • 2.6. Battery chemistries

3. LI-ION BATTERIES

  • 3.1. Types of Lithium Batteries
  • 3.2. Anode materials
    • 3.2.1. Graphite
    • 3.2.2. Lithium Titanate
    • 3.2.3. Lithium Metal
    • 3.2.4. Silicon anodes
  • 3.3. SWOT analysis
  • 3.4. Trends in the Li-ion battery market
  • 3.5. Silicon anodes
    • 3.5.1. Benefits
    • 3.5.2. Silicon anode performance
    • 3.5.3. Development in li-ion batteries
      • 3.5.3.1. Manufacturing silicon
      • 3.5.3.2. Commercial production
      • 3.5.3.3. Costs
      • 3.5.3.4. Value chain
      • 3.5.3.5. Markets and applications
        • 3.5.3.5.1. EVs
        • 3.5.3.5.2. Consumer electronics
        • 3.5.3.5.3. Energy Storage
        • 3.5.3.5.4. Portable Power Tools
        • 3.5.3.5.5. Emergency Backup Power
      • 3.5.3.6. Future outlook
    • 3.5.4. Consumption
      • 3.5.4.1. By anode material type
      • 3.5.4.2. By end use market
    • 3.5.5. Alloy anode materials
    • 3.5.6. Silicon-carbon composites
    • 3.5.7. Silicon oxides and coatings
    • 3.5.8. Carbon nanotubes in Li-ion
    • 3.5.9. Graphene coatings for Li-ion
    • 3.5.10. Prices
    • 3.5.11. Companies
  • 3.6. Li-ion electrolytes
  • 3.7. Cathodes
    • 3.7.1. Materials
      • 3.7.1.1. High and Ultra-High nickel cathode materials
      • 3.7.1.2. Types
      • 3.7.1.3. Benefits
      • 3.7.1.4. Stability
      • 3.7.1.5. Single Crystal Cathodes
      • 3.7.1.6. Commercial activity
      • 3.7.1.7. Manufacturing
      • 3.7.1.8. High manganese content
      • 3.7.1.9. Li-Mn-rich cathodes
      • 3.7.1.10. LMR-NMC
      • 3.7.1.11. Lithium Cobalt Oxide(LiCoO2) - LCO
      • 3.7.1.12. Lithium Iron Phosphate(LiFePO4) - LFP
      • 3.7.1.13. Lithium Manganese Oxide (LiMn2O4) - LMO
      • 3.7.1.14. Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) - NMC
      • 3.7.1.15. Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) - NCA
      • 3.7.1.16. Lithium manganese phosphate (LiMnP)
      • 3.7.1.17. Lithium manganese iron phosphate (LiMnFePO4 or LMFP)
      • 3.7.1.18. Lithium nickel manganese oxide (LNMO)
      • 3.7.1.19. Zero-Cobalt NMx
    • 3.7.2. Alternative Cathode Production
      • 3.7.2.1. Production/Synthesis
      • 3.7.2.2. Commercial development
      • 3.7.2.3. Recycling cathodes
    • 3.7.3. Comparison of key lithium-ion cathode materials
    • 3.7.4. Emerging cathode material synthesis methods
    • 3.7.5. Cathode coatings
  • 3.8. Binders and conductive additives
    • 3.8.1. Materials
  • 3.9. Separators
    • 3.9.1. Materials
  • 3.10. Platinum group metals
  • 3.11. Li-ion battery market players
  • 3.12. Li-ion recycling
    • 3.12.1. Comparison of recycling techniques
    • 3.12.2. Hydrometallurgy
      • 3.12.2.1. Method overview
        • 3.12.2.1.1. Solvent extraction
      • 3.12.2.2. SWOT analysis
    • 3.12.3. Pyrometallurgy
      • 3.12.3.1. Method overview
      • 3.12.3.2. SWOT analysis
    • 3.12.4. Direct recycling
      • 3.12.4.1. Method overview
        • 3.12.4.1.1. Electrolyte separation
        • 3.12.4.1.2. Separating cathode and anode materials
        • 3.12.4.1.3. Binder removal
        • 3.12.4.1.4. Relithiation
        • 3.12.4.1.5. Cathode recovery and rejuvenation
        • 3.12.4.1.6. Hydrometallurgical-direct hybrid recycling
      • 3.12.4.2. SWOT analysis
    • 3.12.5. Other methods
      • 3.12.5.1. Mechanochemical Pretreatment
      • 3.12.5.2. Electrochemical Method
      • 3.12.5.3. Ionic Liquids
    • 3.12.6. Recycling of Specific Components
      • 3.12.6.1. Anode (Graphite)
      • 3.12.6.2. Cathode
      • 3.12.6.3. Electrolyte
    • 3.12.7. Recycling of Beyond Li-ion Batteries
      • 3.12.7.1. Conventional vs Emerging Processes
  • 3.13. Global revenues

4. LITHIUM-METAL BATTERIES

  • 4.1. Technology description
  • 4.2. Lithium-metal anodes
  • 4.3. Challenges
  • 4.4. Energy density
  • 4.5. Anode-less Cells
  • 4.6. Lithium-metal and solid-state batteries
  • 4.7. Applications
  • 4.8. SWOT analysis
  • 4.9. Product developers

5. LITHIUM-SULFUR BATTERIES

  • 5.1. Technology description
    • 5.1.1. Advantages
    • 5.1.2. Challenges
    • 5.1.3. Commercialization
  • 5.2. SWOT analysis
  • 5.3. Global revenues
  • 5.4. Product developers

6. LITHIUM TITANATE OXIDE AND NIOBATE BATTERIES

  • 6.1. Technology description
    • 6.1.1. Lithium titanate oxide
    • 6.1.2. Niobium titanium oxide (NTO)
      • 6.1.2.1. Niobium tungsten oxide
      • 6.1.2.2. Vanadium oxide anodes
  • 6.2. Global revenues
  • 6.3. Product developers

7. SODIUM-ION (NA-ION) BATTERIES

  • 7.1. Technology description
    • 7.1.1. Cathode materials
      • 7.1.1.1. Layered transition metal oxides
        • 7.1.1.1.1. Types
        • 7.1.1.1.2. Cycling performance
        • 7.1.1.1.3. Advantages and disadvantages
        • 7.1.1.1.4. Market prospects for LO SIB
      • 7.1.1.2. Polyanionic materials
        • 7.1.1.2.1. Advantages and disadvantages
        • 7.1.1.2.2. Types
        • 7.1.1.2.3. Market prospects for Poly SIB
      • 7.1.1.3. Prussian blue analogues (PBA)
        • 7.1.1.3.1. Types
        • 7.1.1.3.2. Advantages and disadvantages
        • 7.1.1.3.3. Market prospects for PBA-SIB
    • 7.1.2. Anode materials
      • 7.1.2.1. Hard carbons
      • 7.1.2.2. Carbon black
      • 7.1.2.3. Graphite
      • 7.1.2.4. Carbon nanotubes
      • 7.1.2.5. Graphene
      • 7.1.2.6. Alloying materials
      • 7.1.2.7. Sodium Titanates
      • 7.1.2.8. Sodium Metal
    • 7.1.3. Electrolytes
  • 7.2. Comparative analysis with other battery types
  • 7.3. Cost comparison with Li-ion
  • 7.4. Materials in sodium-ion battery cells
  • 7.5. SWOT analysis
  • 7.6. Global revenues
  • 7.7. Product developers
    • 7.7.1. Battery Manufacturers
    • 7.7.2. Large Corporations
    • 7.7.3. Automotive Companies
    • 7.7.4. Chemicals and Materials Firms

8. SODIUM-SULFUR BATTERIES

  • 8.1. Technology description
  • 8.2. Applications
  • 8.3. SWOT analysis

9. ALUMINIUM-ION BATTERIES

  • 9.1. Technology description
  • 9.2. SWOT analysis
  • 9.3. Commercialization
  • 9.4. Global revenues
  • 9.5. Product developers

10. ALL-SOLID STATE BATTERIES (ASSBs)

  • 10.1. Technology description
    • 10.1.1. Solid-state electrolytes
  • 10.2. Features and advantages
  • 10.3. Technical specifications
  • 10.4. Types
  • 10.5. Microbatteries
    • 10.5.1. Introduction
    • 10.5.2. Materials
    • 10.5.3. Applications
    • 10.5.4. 3D designs
      • 10.5.4.1. 3D printed batteries
  • 10.6. Bulk type solid-state batteries
  • 10.7. SWOT analysis
  • 10.8. Limitations
  • 10.9. Global revenues
  • 10.10. Product developers

11. FLEXIBLE BATTERIES

  • 11.1. Technology description
  • 11.2. Technical specifications
    • 11.2.1. Approaches to flexibility
  • 11.3. Flexible electronics
  • 11.4. Flexible materials
  • 11.5. Flexible and wearable Metal-sulfur batteries
  • 11.6. Flexible and wearable Metal-air batteries
  • 11.7. Flexible Lithium-ion Batteries
    • 11.7.1. Types of Flexible/stretchable LIBs
      • 11.7.1.1. Flexible planar LiBs
      • 11.7.1.2. Flexible Fiber LiBs
      • 11.7.1.3. Flexible micro-LiBs
      • 11.7.1.4. Stretchable lithium-ion batteries
      • 11.7.1.5. Origami and kirigami lithium-ion batteries
  • 11.8. Flexible Li/S batteries
    • 11.8.1. Components
    • 11.8.2. Carbon nanomaterials
  • 11.9. Flexible lithium-manganese dioxide (Li-MnO2) batteries
  • 11.10. Flexible zinc-based batteries
    • 11.10.1. Components
      • 11.10.1.1. Anodes
      • 11.10.1.2. Cathodes
    • 11.10.2. Challenges
    • 11.10.3. Flexible zinc-manganese dioxide (Zn-Mn) batteries
    • 11.10.4. Flexible silver-zinc (Ag-Zn) batteries
    • 11.10.5. Flexible Zn-Air batteries
    • 11.10.6. Flexible zinc-vanadium batteries
  • 11.11. Fiber-shaped batteries
    • 11.11.1. Carbon nanotubes
    • 11.11.2. Types
    • 11.11.3. Applications
    • 11.11.4. Challenges
  • 11.12. Energy harvesting combined with wearable energy storage devices
  • 11.13. SWOT analysis
  • 11.14. Global revenues
  • 11.15. Product developers

12. TRANSPARENT BATTERIES

  • 12.1. Technology description
  • 12.2. Components
  • 12.3. SWOT analysis
  • 12.4. Market outlook

13. DEGRADABLE BATTERIES

  • 13.1. Technology description
  • 13.2. Components
  • 13.3. SWOT analysis
  • 13.4. Market outlook
  • 13.5. Product developers

14. PRINTED BATTERIES

  • 14.1. Technical specifications
  • 14.2. Components
  • 14.3. Design
  • 14.4. Key features
  • 14.5. Printable current collectors
  • 14.6. Printable electrodes
  • 14.7. Materials
  • 14.8. Applications
  • 14.9. Printing techniques
  • 14.10. Lithium-ion (LIB) printed batteries
  • 14.11. Zinc-based printed batteries
  • 14.12. 3D Printed batteries
    • 14.12.1. 3D Printing techniques for battery manufacturing
    • 14.12.2. Materials for 3D printed batteries
      • 14.12.2.1. Electrode materials
      • 14.12.2.2. Electrolyte Materials
  • 14.13. SWOT analysis
  • 14.14. Global revenues
  • 14.15. Product developers

15. REDOX FLOW BATTERIES

  • 15.1. Technology description
  • 15.2. Types
    • 15.2.1. Vanadium redox flow batteries (VRFB)
      • 15.2.1.1. Technology description
      • 15.2.1.2. SWOT analysis
      • 15.2.1.3. Market players
    • 15.2.2. Zinc-bromine flow batteries (ZnBr)
      • 15.2.2.1. Technology description
      • 15.2.2.2. SWOT analysis
      • 15.2.2.3. Market players
    • 15.2.3. Polysulfide bromine flow batteries (PSB)
      • 15.2.3.1. Technology description
      • 15.2.3.2. SWOT analysis
    • 15.2.4. Iron-chromium flow batteries (ICB)
      • 15.2.4.1. Technology description
      • 15.2.4.2. SWOT analysis
      • 15.2.4.3. Market players
    • 15.2.5. All-Iron flow batteries
      • 15.2.5.1. Technology description
      • 15.2.5.2. SWOT analysis
      • 15.2.5.3. Market players
    • 15.2.6. Zinc-iron (Zn-Fe) flow batteries
      • 15.2.6.1. Technology description
      • 15.2.6.2. SWOT analysis
      • 15.2.6.3. Market players
    • 15.2.7. Hydrogen-bromine (H-Br) flow batteries
      • 15.2.7.1. Technology description
      • 15.2.7.2. SWOT analysis
      • 15.2.7.3. Market players
    • 15.2.8. Hydrogen-Manganese (H-Mn) flow batteries
      • 15.2.8.1. Technology description
      • 15.2.8.2. SWOT analysis
      • 15.2.8.3. Market players
    • 15.2.9. Organic flow batteries
      • 15.2.9.1. Technology description
      • 15.2.9.2. SWOT analysis
      • 15.2.9.3. Market players
    • 15.2.10. Emerging Flow-Batteries
      • 15.2.10.1. Semi-Solid Redox Flow Batteries
      • 15.2.10.2. Solar Redox Flow Batteries
      • 15.2.10.3. Air-Breathing Sulfur Flow Batteries
      • 15.2.10.4. Metal-CO2 Batteries
    • 15.2.11. Hybrid Flow Batteries
      • 15.2.11.1. Zinc-Cerium Hybrid Flow Batteries
        • 15.2.11.1.1. Technology description
      • 15.2.11.2. Zinc-Polyiodide Flow Batteries
        • 15.2.11.2.1. Technology description
      • 15.2.11.3. Zinc-Nickel Hybrid Flow Batteries
        • 15.2.11.3.1. Technology description
      • 15.2.11.4. Zinc-Bromine Hybrid Flow Batteries
        • 15.2.11.4.1. Technology description
      • 15.2.11.5. Vanadium-Polyhalide Flow Batteries
        • 15.2.11.5.1. Technology description
  • 15.3. Markets for redox flow batteries
  • 15.4. Global revenues

16. ZN-BASED BATTERIES

  • 16.1. Technology description
    • 16.1.1. Zinc-Air batteries
    • 16.1.2. Zinc-ion batteries
    • 16.1.3. Zinc-bromide
  • 16.2. Market outlook
  • 16.3. Product developers

17. AI BATTERY TECHNOLOGY

  • 17.1. Overview
  • 17.2. Applications
    • 17.2.1. Machine Learning
      • 17.2.1.1. Overview
    • 17.2.2. Material Informatics
      • 17.2.2.1. Overview
      • 17.2.2.2. Companies
    • 17.2.3. Cell Testing
      • 17.2.3.1. Overview
      • 17.2.3.2. Companies
    • 17.2.4. Cell Assembly and Manufacturing
      • 17.2.4.1. Overview
      • 17.2.4.2. Companies
    • 17.2.5. Battery Analytics
      • 17.2.5.1. Overview
      • 17.2.5.2. Companies
    • 17.2.6. Second Life Assessment
      • 17.2.6.1. Overview
      • 17.2.6.2. Companies

18. PRINTED SUPERCAPACITORS

  • 18.1. Overview
  • 18.2. Printing methods
  • 18.3. Electrode materials
  • 18.4. Electrolytes

19. COMPANY PROFILES (363 company profiles)

20. REFERENCES

List of Tables

  • Table 1. Battery chemistries used in electric buses
  • Table 2. Micro EV types
  • Table 3. Battery Sizes for Different Vehicle Types
  • Table 4. Competing technologies for batteries in electric boats
  • Table 5. Electric bus, truck and van battery forecast (GWh), 2018-2035
  • Table 6. Competing technologies for batteries in grid storage
  • Table 7. Competing technologies for batteries in consumer electronics
  • Table 8. Competing technologies for sodium-ion batteries in grid storage
  • Table 9. Total Addressable Markets (GWh) for Advanced Li-ion and Beyond Li-ion Batteries
  • Table 10. BEV Car Cathode Forecast (GWh)
  • Table 11. EV Cathode Forecast (GWh) (Including buses, trucks, vans)
  • Table 12. BEV Anode Forecast (GWh)
  • Table 13. EV Anode Forecast (GWh) (Including buses, trucks, vans)
  • Table 14.Consumer Devices Anode Forecast
  • Table 15.Advanced Anode Forecast (GWh)
  • Table 16. Market drivers for use of advanced materials and technologies in batteries
  • Table 17. Battery market megatrends
  • Table 18. Advanced materials for batteries
  • Table 19. Commercial Li-ion battery cell composition
  • Table 20. Lithium-ion (Li-ion) battery supply chain
  • Table 21. Types of lithium battery
  • Table 22. Comparison of Li-ion battery anode materials
  • Table 23. Trends in the Li-ion battery market
  • Table 24. Si-anode performance summary
  • Table 25. Manufacturing methods for nano-silicon anodes
  • Table 26. Market Players' Production Capacites
  • Table 27. Strategic Partnerships and Agreements
  • Table 28. Markets and applications for silicon anodes
  • Table 29. Anode material consumption by type (tonnes)
  • Table 30. Anode material consumption by end use market (tonnes)
  • Table 31. Anode materials prices, current and forecasted 9USD/kg)
  • Table 32. Silicon-anode companies
  • Table 33. Li-ion battery cathode materials
  • Table 34. Key technology trends shaping lithium-ion battery cathode development
  • Table 35. Benefits of High and Ultra-High Nickel NMC
  • Table 36. High-nickel Products Table
  • Table 37. Properties of Lithium Cobalt Oxide) as a cathode material for lithium-ion batteries
  • Table 38. Properties of lithium iron phosphate (LiFePO4 or LFP) as a cathode material for lithium-ion batteries
  • Table 39. Properties of Lithium Manganese Oxide cathode material
  • Table 40. Properties of Lithium Nickel Manganese Cobalt Oxide (NMC)
  • Table 41. Properties of Lithium Nickel Cobalt Aluminum Oxide
  • Table 42. Alternative Cathode Production Routes
  • Table 43. Alternative cathode synthesis routes
  • Table 44. Alternative Cathode Production Companies
  • Table 45. Recycled cathode materials facilities and capactites
  • Table 46. Comparison table of key lithium-ion cathode materials
  • Table 47. Li-ion battery Binder and conductive additive materials
  • Table 48. Li-ion battery Separator materials
  • Table 49. Li-ion battery market players
  • Table 50. Typical lithium-ion battery recycling process flow
  • Table 51. Main feedstock streams that can be recycled for lithium-ion batteries
  • Table 52. Comparison of LIB recycling methods
  • Table 53. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries
  • Table 54. Global revenues for Li-ion batteries, 2018-2035, by market (Billions USD)
  • Table 55. Applications for Li-metal batteries
  • Table 56. Li-metal battery developers
  • Table 57. Comparison of the theoretical energy densities of lithium-sulfur batteries versus other common battery types
  • Table 58. Global revenues for Lithium-sulfur, 2018-2035, by market (Billions USD)
  • Table 59. Lithium-sulphur battery product developers
  • Table 60. Global revenues for Lithium titanate and niobate batteries, 2018-2035, by market (Billions USD)
  • Table 61. Product developers in Lithium titanate and niobate batteries
  • Table 62. Comparison of cathode materials
  • Table 63. Layered transition metal oxide cathode materials for sodium-ion batteries
  • Table 64. General cycling performance characteristics of common layered transition metal oxide cathode materials
  • Table 65. Polyanionic materials for sodium-ion battery cathodes
  • Table 66. Comparative analysis of different polyanionic materials
  • Table 67. Common types of Prussian Blue Analogue materials used as cathodes or anodes in sodium-ion batteries
  • Table 68. Comparison of Na-ion battery anode materials
  • Table 69. Hard Carbon producers for sodium-ion battery anodes
  • Table 70. Comparison of carbon materials in sodium-ion battery anodes
  • Table 71. Comparison between Natural and Synthetic Graphite
  • Table 72. Properties of graphene, properties of competing materials, applications thereof
  • Table 73. Comparison of carbon based anodes
  • Table 74. Alloying materials used in sodium-ion batteries
  • Table 75. Na-ion electrolyte formulations
  • Table 76. Pros and cons compared to other battery types
  • Table 77. Cost comparison with Li-ion batteries
  • Table 78. Key materials in sodium-ion battery cells
  • Table 79. Global revenues for sodium-ion batteries, 2018-2035, by market (Billions USD)
  • Table 80. Product developers in aluminium-ion batteries
  • Table 81. Types of solid-state electrolytes
  • Table 82. Market segmentation and status for solid-state batteries
  • Table 83. Solid Electrolyte Material Comparison
  • Table 84. Typical process chains for manufacturing key components and assembly of solid-state batteries
  • Table 85. Comparison between liquid and solid-state batteries
  • Table 86. Limitations of solid-state thin film batteries
  • Table 87. Global revenues for All-Solid State Batteries, 2018-2035, by market (Billions USD)
  • Table 88. Solid-state thin-film battery market players
  • Table 89. Flexible battery applications and technical requirements
  • Table 90. Comparison of Flexible and Traditional Lithium-Ion Batteries
  • Table 91. Material Choices for Flexible Battery Components
  • Table 92. Flexible Li-ion battery prototypes
  • Table 93. Thin film vs bulk solid-state batteries
  • Table 94. Summary of fiber-shaped lithium-ion batteries
  • Table 95. Types of fiber-shaped batteries
  • Table 96. Global revenues for flexible batteries, 2018-2035, by market (Billions USD)
  • Table 97. Product developers in flexible batteries
  • Table 98. Components of transparent batteries
  • Table 99. Components of degradable batteries
  • Table 100. Product developers in degradable batteries
  • Table 101. Main components and properties of different printed battery types
  • Table 102. Applications of printed batteries and their physical and electrochemical requirements
  • Table 103. 2D and 3D printing techniques
  • Table 104. Printing techniques applied to printed batteries
  • Table 105. Main components and corresponding electrochemical values of lithium-ion printed batteries
  • Table 106. Printing technique, main components and corresponding electrochemical values of printed batteries based on Zn-MnO2 and other battery types
  • Table 107. Main 3D Printing techniques for battery manufacturing
  • Table 108. Electrode Materials for 3D Printed Batteries
  • Table 109. Global revenues for printed batteries, 2018-2035, by market (Billions USD)
  • Table 110. Product developers in printed batteries
  • Table 111. Advantages and disadvantages of redox flow batteries
  • Table 112. Comparison of different battery types
  • Table 113. Summary of main flow battery types
  • Table 114. Vanadium redox flow batteries (VRFB)-key features, advantages, limitations, performance, components and applications
  • Table 115. Market players in Vanadium redox flow batteries (VRFB)
  • Table 116. Zinc-bromine (ZnBr) flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 117. Market players in Zinc-Bromine Flow Batteries (ZnBr)
  • Table 118. Polysulfide bromine flow batteries (PSB)-key features, advantages, limitations, performance, components and applications
  • Table 119. Iron-chromium (ICB) flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 120. Market players in Iron-chromium (ICB) flow batteries
  • Table 121. All-Iron flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 122. Market players in All-iron Flow Batteries
  • Table 123. Zinc-iron (Zn-Fe) flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 124. Market players in Zinc-iron (Zn-Fe) Flow Batteries
  • Table 125. Hydrogen-bromine (H-Br) flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 126. Market players in Hydrogen-bromine (H-Br) flow batteries
  • Table 127. Hydrogen-Manganese (H-Mn) flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 128. Market players in Hydrogen-Manganese (H-Mn) Flow Batteries
  • Table 129. Materials in Organic Redox Flow Batteries (ORFB)
  • Table 130. Key Active species for ORFBs
  • Table 131. Organic flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 132. Market players in Organic Redox Flow Batteries (ORFB)
  • Table 133. Zinc-Cerium Hybrid flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 134. Zinc-Polyiodide Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 135. Zinc-Nickel Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 136. Zinc-Bromine Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 137. Vanadium-Polyhalide Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 138. Redox flow battery value chain
  • Table 139. Global revenues for redox flow batteries, 2018-2035, by type (millions USD)
  • Table 140. ZN-based battery product developers
  • Table 141. Application of Artificial Intelligence (AI) in battery technology
  • Table 142. Machine learning approaches
  • Table 143. Types of Neural Networks
  • Table 144. Companies in materials informatics for batteries
  • Table 145. Data Forms for Cell Modelling
  • Table 146. Algorithmic Approaches for Different Testing Modes
  • Table 147. Companies in AI for cell testing for batteries
  • Table 148.Algorithmic Approaches in Manufacturing and Cell Assembly:
  • Table 149. AI-based battery manufacturing players
  • Table 150. Companies in AI for battery diagnostics and management
  • Table 151. Algorithmic Approaches and Data Inputs/Outputs
  • Table 152. Companies in AI for second-life battery assessment
  • Table 153. Methods for printing supercapacitors
  • Table 154. Electrode Materials for printed supercapacitors
  • Table 155. Electrolytes for printed supercapacitors
  • Table 156. Main properties and components of printed supercapacitors
  • Table 157. 3DOM separator
  • Table 158. CATL sodium-ion battery characteristics
  • Table 159. CHAM sodium-ion battery characteristics
  • Table 160. Chasm SWCNT products
  • Table 161. Faradion sodium-ion battery characteristics
  • Table 162. HiNa Battery sodium-ion battery characteristics
  • Table 163. Battery performance test specifications of J. Flex batteries
  • Table 164. LiNa Energy battery characteristics
  • Table 165. Natrium Energy battery characteristics

List of Figures

  • Figure 1. Annual sales of battery electric vehicles and plug-in hybrid electric vehicles
  • Figure 2. Electric car Li-ion demand forecast (GWh), 2018-2035
  • Figure 3. EV Li-ion battery market (US$B), 2018-2035
  • Figure 4. Electric bus, truck and van battery forecast (GWh), 2018-2035
  • Figure 5. Micro EV Li-ion demand forecast (GWh)
  • Figure 6. Lithium-ion battery grid storage demand forecast (GWh), 2018-2035
  • Figure 7. Sodium-ion grid storage units
  • Figure 8. Salt-E Dog mobile battery
  • Figure 9. I.Power Nest - Residential Energy Storage System Solution
  • Figure 10. Costs of batteries to 2030
  • Figure 11. Lithium Cell Design
  • Figure 12. Functioning of a lithium-ion battery
  • Figure 13. Li-ion battery cell pack
  • Figure 14. Li-ion electric vehicle (EV) battery
  • Figure 15. SWOT analysis: Li-ion batteries
  • Figure 16. Silicon anode value chain
  • Figure 17. Market development timeline
  • Figure 18. Silicon Anode Commercialization Timeline
  • Figure 19. Silicon anode value chain
  • Figure 20. Anode material consumption by type (tonnes)
  • Figure 21. Anode material consumption by end user market (tonnes)
  • Figure 22. Ultra-high Nickel Cathode Commercialization Timeline
  • Figure 23. Li-cobalt structure
  • Figure 24. Li-manganese structure
  • Figure 25. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials
  • Figure 26. Flow chart of recycling processes of lithium-ion batteries (LIBs)
  • Figure 27. Hydrometallurgical recycling flow sheet
  • Figure 28. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling
  • Figure 29. Umicore recycling flow diagram
  • Figure 30. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling
  • Figure 31. Schematic of direct recycling process
  • Figure 32. SWOT analysis for Direct Li-ion Battery Recycling
  • Figure 33. Global revenues for Li-ion batteries, 2018-2035, by market (Billions USD)
  • Figure 34. Schematic diagram of a Li-metal battery
  • Figure 35. SWOT analysis: Lithium-metal batteries
  • Figure 36. Schematic diagram of Lithium-sulfur battery
  • Figure 37. SWOT analysis: Lithium-sulfur batteries
  • Figure 38. Global revenues for Lithium-sulfur, 2018-2035, by market (Billions USD)
  • Figure 39. Global revenues for Lithium titanate and niobate batteries, 2018-2035, by market (Billions USD)
  • Figure 40. Schematic of Prussian blue analogues (PBA)
  • Figure 41. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG)
  • Figure 42. Overview of graphite production, processing and applications
  • Figure 43. Schematic diagram of a multi-walled carbon nanotube (MWCNT)
  • Figure 44. Schematic diagram of a Na-ion battery
  • Figure 45. SWOT analysis: Sodium-ion batteries
  • Figure 46. Global revenues for sodium-ion batteries, 2018-2035, by market (Billions USD)
  • Figure 47. Schematic of a Na-S battery
  • Figure 48. SWOT analysis: Sodium-sulfur batteries
  • Figure 49. Saturnose battery chemistry
  • Figure 50. SWOT analysis: Aluminium-ion batteries
  • Figure 51. Global revenues for aluminium-ion batteries, 2018-2035, by market (Billions USD)
  • Figure 52. Schematic illustration of all-solid-state lithium battery
  • Figure 53. ULTRALIFE thin film battery
  • Figure 54. Examples of applications of thin film batteries
  • Figure 55. Capacities and voltage windows of various cathode and anode materials
  • Figure 56. Traditional lithium-ion battery (left), solid state battery (right)
  • Figure 57. Bulk type compared to thin film type SSB
  • Figure 58. SWOT analysis: All-solid state batteries
  • Figure 59. Global revenues for All-Solid State Batteries, 2018-2035, by market (Billions USD)
  • Figure 60. Ragone plots of diverse batteries and the commonly used electronics powered by flexible batteries
  • Figure 61. Various architectures for flexible and stretchable electrochemical energy storage
  • Figure 62. Types of flexible batteries
  • Figure 63. Flexible batteries on the market
  • Figure 64. Materials and design structures in flexible lithium ion batteries
  • Figure 65. Flexible/stretchable LIBs with different structures
  • Figure 66. a-c) Schematic illustration of coaxial (a), twisted (b), and stretchable (c) LIBs
  • Figure 67. a) Schematic illustration of the fabrication of the superstretchy LIB based on an MWCNT/LMO composite fiber and an MWCNT/LTO composite fiber. b,c) Photograph (b) and the schematic illustration (c) of a stretchable fiber-shaped battery under stretching conditions. d) Schematic illustration of the spring-like stretchable LIB. e) SEM images of a fiberat different strains. f) Evolution of specific capacitance with strain. d-f)
  • Figure 68. Origami disposable battery
  • Figure 69. Zn-MnO2 batteries produced by Brightvolt
  • Figure 70. Charge storage mechanism of alkaline Zn-based batteries and zinc-ion batteries
  • Figure 71. Zn-MnO2 batteries produced by Blue Spark
  • Figure 72. Ag-Zn batteries produced by Imprint Energy
  • Figure 73. Wearable self-powered devices
  • Figure 74. SWOT analysis: Flexible batteries
  • Figure 75. Global revenues for flexible batteries, 2018-2035, by market (Billions USD)
  • Figure 76. Transparent batteries
  • Figure 77. SWOT analysis: Transparent batteries
  • Figure 78. Degradable batteries
  • Figure 79. SWOT analysis: Degradable batteries
  • Figure 80. Various applications of printed paper batteries
  • Figure 81.Schematic representation of the main components of a battery
  • Figure 82. Schematic of a printed battery in a sandwich cell architecture, where the anode and cathode of the battery are stacked together
  • Figure 83. Manufacturing Processes for Conventional Batteries (I), 3D Microbatteries (II), and 3D-Printed Batteries (III)
  • Figure 84. SWOT analysis: Printed batteries
  • Figure 85. Global revenues for printed batteries, 2018-2035, by market (Billions USD)
  • Figure 86. Scheme of a redox flow battery
  • Figure 87. Vanadium Redox Flow Battery schematic
  • Figure 88. SWOT analysis: Vanadium redox flow batteries (VRFB)
  • Figure 89. Schematic of zinc bromine flow battery energy storage system
  • Figure 90. SWOT analysis: Zinc-Bromine Flow Batteries (ZnBr)
  • Figure 91. SWOT analysis: Iron-chromium (ICB) flow batteries
  • Figure 92. SWOT analysis: Iron-chromium (ICB) flow batteries
  • Figure 93. Schematic of All-Iron Redox Flow Batteries
  • Figure 94. SWOT analysis: All-iron Flow Batteries
  • Figure 95. SWOT analysis: Zinc-iron (Zn-Fe) flow batteries
  • Figure 96. Schematic of Hydrogen-bromine flow battery
  • Figure 97. SWOT analysis: Hydrogen-bromine (H-Br) flow batteries
  • Figure 98. SWOT analysis: Hydrogen-Manganese (H-Mn) flow batteries
  • Figure 99. SWOT analysis: Organic redox flow batteries (ORFBs) batteries
  • Figure 100. Schematic of zinc-polyiodide redox flow battery (ZIB)
  • Figure 101. Redox flow batteries applications roadmap
  • Figure 102. Global revenues for redox flow batteries, 2018-2035, by type (millions USD)
  • Figure 103. Main printing methods for supercapacitors
  • Figure 104. 24M battery
  • Figure 105. 3DOM battery
  • Figure 106. AC biode prototype
  • Figure 107. Schematic diagram of liquid metal battery operation
  • Figure 108. Ampcera's all-ceramic dense solid-state electrolyte separator sheets (25 um thickness, 50mm x 100mm size, flexible and defect free, room temperature ionic conductivity ~1 mA/cm)
  • Figure 109. Amprius battery products
  • Figure 110. All-polymer battery schematic
  • Figure 111. All Polymer Battery Module
  • Figure 112. Resin current collector
  • Figure 113. Ateios thin-film, printed battery
  • Figure 114. The structure of aluminum-sulfur battery from Avanti Battery
  • Figure 115. Containerized NAS-R batteries
  • Figure 116. 3D printed lithium-ion battery
  • Figure 117. Blue Solution module
  • Figure 118. TempTraq wearable patch
  • Figure 119. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process
  • Figure 120. Carhartt X-1 Smart Heated Vest
  • Figure 121. Cymbet EnerChipTM
  • Figure 122. Rongke Power 400 MWh VRFB
  • Figure 123. E-magy nano sponge structure
  • Figure 124. Enerpoly zinc-ion battery
  • Figure 125. SoftBattery-R
  • Figure 126. ASSB All-Solid-State Battery by EGI 300 Wh/kg
  • Figure 127. Roll-to-roll equipment working with ultrathin steel substrate
  • Figure 128. 40 Ah battery cell
  • Figure 129. FDK Corp battery
  • Figure 130. 2D paper batteries
  • Figure 131. 3D Custom Format paper batteries
  • Figure 132. Fuji carbon nanotube products
  • Figure 133. Gelion Endure battery
  • Figure 134. Gelion GEN3 lithium sulfur batteries
  • Figure 135. Grepow flexible battery
  • Figure 136. HPB solid-state battery
  • Figure 137. HiNa Battery pack for EV
  • Figure 138. JAC demo EV powered by a HiNa Na-ion battery
  • Figure 139. Nanofiber Nonwoven Fabrics from Hirose
  • Figure 140. Hitachi Zosen solid-state battery
  • Figure 141. Ilika solid-state batteries
  • Figure 142. TAeTTOOz printable battery materials
  • Figure 143. Ionic Materials battery cell
  • Figure 144. Schematic of Ion Storage Systems solid-state battery structure
  • Figure 145. ITEN micro batteries
  • Figure 146. Kite Rise's A-sample sodium-ion battery module
  • Figure 147. LiBEST flexible battery
  • Figure 148. Li-FUN sodium-ion battery cells
  • Figure 149. LiNa Energy battery
  • Figure 150. 3D solid-state thin-film battery technology
  • Figure 151. Lyten batteries
  • Figure 152. Cellulomix production process
  • Figure 153. Nanobase versus conventional products
  • Figure 154. Nanotech Energy battery
  • Figure 155. Hybrid battery powered electrical motorbike concept
  • Figure 156. NBD battery
  • Figure 157. Schematic illustration of three-chamber system for SWCNH production
  • Figure 158. TEM images of carbon nanobrush
  • Figure 159. EnerCerachip
  • Figure 160. Cambrian battery
  • Figure 161. Printed battery
  • Figure 162. Prieto Foam-Based 3D Battery
  • Figure 163. Printed Energy flexible battery
  • Figure 164. ProLogium solid-state battery
  • Figure 165. QingTao solid-state batteries
  • Figure 166. Schematic of the quinone flow battery
  • Figure 167. Sakuu Corporation 3Ah Lithium Metal Solid-state Battery
  • Figure 168. Salgenx S3000 seawater flow battery
  • Figure 169. Samsung SDI's sixth-generation prismatic batteries
  • Figure 170. SES Apollo batteries
  • Figure 171. Sionic Energy battery cell
  • Figure 172. Solid Power battery pouch cell
  • Figure 173. Stora Enso lignin battery materials
  • Figure 174.TeraWatt Technology solid-state battery
  • Figure 175. Zeta Energy 20 Ah cell
  • Figure 176. Zoolnasm batteries