![]() |
市场调查报告书
商品编码
1734002
全球中性原子量子计算市场(2026-2036)The Global Neutral-Atom Quantum Computing Market 2026-2036 |
||||||
中性原子量子计算是量子运算产业中最具前景且发展最快的领域之一。此技术利用单一中性原子,通常是碱金属,例如铷、铯和锶。这些原子透过称为光镊的精确聚焦雷射光束进行捕获和操控。与被捕获的离子不同,中性原子不带电荷,因此可以灵活地建立二维和三维阵列,同时最大限度地减少量子位元之间的串扰。
中性原子系统的根本吸引力在于其固有的可扩展性和操作优势。这些平台具有较长的相干时间,能够实现持续的量子运算并提高纠错能力。该技术受益于成熟的原子物理学原理,并且无需超导量子位元系统所需的低温冷却,从而降低了能耗和基础设施的复杂性。 目前运行的系统采用 100 至 300 个原子阵列,领先公司正在迅速扩展到数千甚至数万个量子位元。
竞争格局的特点是几家资金雄厚的公司采取了策略性布局。总部位于美国的 QuEra Computing 获得了Google的巨额投资,这表明其中性原子平台是实现可扩展量子运算的可行途径。此次合作将 QuEra 的硬体专长与Google的量子软体资源云端基础设施结合。 Atom Computing 也与微软合作,将其采用稳定核自旋量子位元阵列的 Phoenix 系统整合到 Azure 量子云端平台。法国领先的量子计算公司 Pasqal 在 2024 年实现了 1000 个量子位元的重大里程碑,并宣布了雄心勃勃的计划,目标是在 2026 年将量子位元数量扩展到 10000 个。其他主要公司包括德国的 Planqc、香港的 QUANTier 和斯洛维尼亚的 Atom Quantum Labs,它们各自开发了不同的中性原子架构方案。
此技术路线图预测,到 2035 年将快速扩展。目前的系统(2025-2026 年)使用 1000-10000 个原子,单量子位元保真度约为 99.9%,双量子位元保真度约为 99.7%。在 2027-2028 年,目标是 10000-100000 个原子的系统将实现 99.99% 的单量子位元保真度并具备纠错能力。 预计在 2029-2030 年实现使用超过 10 万个原子的容错逻辑量子位元操作,并在 2032-2035 年实现完全容错的百万原子系统和工业部署。
主要应用领域涵盖量子模拟、最佳化问题、量子化学和机器学习任务。该技术在模拟复杂物理系统、凝聚态物质研究和分子结构分析方面表现优异。製药、化学和金融服务业是寻求中性原子解决方案的关键市场领域。
仍存在一些挑战,包括延长相干时间、提高闸速度(目前的模拟週期限制在约 1 Hz)、解决计算过程中原子损失问题,以及开发纠错和容错量子计算所需的量子非破坏性测量技术。 儘管面临这些挑战,中性原子量子运算凭藉其室温运作、天然可扩展性和灵活性,正逐渐成为超导平台的有力竞争对手,预计在2026年至2036年间将实现显着的商业成长。
本报告探讨并分析了全球中性原子量子运算市场,按技术类别、应用、客户类型和地区提供了市场规模估算和未来十年(2026-2036年)的预测。
Neutral-atom quantum computing represents one of the most promising and rapidly advancing segments of the quantum computing industry. This technology leverages individual neutral atoms-typically alkali metals like rubidium, cesium, or strontium-trapped and manipulated using precisely focused laser beams called optical tweezers. Unlike trapped ions, neutral atoms are not electrically charged, allowing them to be arranged in flexible two-dimensional and three-dimensional arrays with minimal crosstalk between qubits.
The fundamental appeal of neutral-atom systems lies in their inherent scalability and operational advantages. These platforms demonstrate long coherence times, enabling sustained quantum operations and increased error correction possibilities. The technology benefits from well-understood atomic physics principles and eliminates the need for the extreme cryogenic cooling required by superconducting qubit systems, resulting in lower energy consumption and reduced infrastructure complexity. Current operational systems feature 100-300 atom arrays, with leading companies rapidly scaling toward thousands and tens of thousands of qubits.
The competitive landscape features several well-funded players establishing strategic positions. QuEra Computing, based in the United States, has secured significant investment from Google, validating neutral-atom platforms as viable paths to scalable quantum computing. This partnership combines QuEra's hardware expertise with Google's quantum software resources and cloud infrastructure. Atom Computing has forged a parallel partnership with Microsoft, integrating its Phoenix system-featuring stable nuclear-spin qubit arrays-with Azure Quantum's cloud platform. Pasqal, the French leader in this space, achieved a significant milestone by reaching 1,000 qubits in 2024 and has announced ambitious plans to scale to 10,000 qubits by 2026. Additional players include Planqc in Germany, QUANTier in Hong Kong, and Atom Quantum Labs in Slovenia, each developing distinctive approaches to neutral-atom architectures.
The technology roadmap projects aggressive scaling through 2035. Current systems (2025-2026) operate with 1,000-10,000 atoms achieving single-qubit fidelities around 99.9% and two-qubit fidelities of 99.7%. By 2027-2028, systems targeting 10,000-100,000 atoms aim for 99.99% single-qubit fidelity with error correction capabilities. The 2029-2030 horizon envisions 100,000+ atoms with fault-tolerant logical qubit operations, progressing toward million-atom systems with full fault tolerance and industrial deployment by 2032-2035.
Primary applications span quantum simulations, optimization problems, quantum chemistry, and machine learning tasks. The technology excels particularly in simulating complex physical systems, condensed matter research, and molecular structure analysis. The pharmaceutical, chemical, and financial services industries represent key market verticals pursuing neutral-atom solutions.
Challenges remain, including achieving longer coherence times, improving gate speeds (currently limited to approximately 1 Hz simulation cycles), addressing atom loss during computation, and developing quantum non-demolition measurement capabilities required for error correction and fault-tolerant quantum computing. Despite these hurdles, neutral-atom quantum computing has emerged as a serious competitor to superconducting platforms, with its room-temperature operation, natural scalability, and flexibility positioning it for significant commercial growth through the 2026-2036 forecast period.
This report provides complete market sizing and ten-year forecasts from 2026 through 2036, segmented by technology category, application domain, customer type, and geographic region. Strategic analysis covers competitive positioning, investment trends, technology readiness assessments, and detailed company profiles of 32 organizations shaping the neutral-atom ecosystem.
This report features comprehensive profiles of 32 companies across the neutral-atom quantum computing value chain including AMD (Advanced Micro Devices), Atom Computing, Atom Quantum Labs, CAS Cold Atom, data cybernetics ssc GmbH, GDQLABS, Hamamatsu, Infleqtion, Lake Shore Cryotronics, M-Labs, Menlo Systems GmbH, Microsoft Corporation (Azure Quantum), Nanofiber Quantum Technologies, Nexus Photonics and more.....