全球中性原子量子计算市场(2026-2036)
市场调查报告书
商品编码
1734002

全球中性原子量子计算市场(2026-2036)

The Global Neutral-Atom Quantum Computing Market 2026-2036

出版日期: | 出版商: Future Markets, Inc. | 英文 243 Pages, 120 Tables, 18 Figures | 订单完成后即时交付

价格

中性原子量子计算是量子运算产业中最具前景且发展最快的领域之一。此技术利用单一中性原子,通常是碱金属,例如铷、铯和锶。这些原子透过称为光镊的精确聚焦雷射光束进行捕获和操控。与被捕获的离子不同,中性原子不带电荷,因此可以灵活地建立二维和三维阵列,同时最大限度地减少量子位元之间的串扰。

中性原子系统的根本吸引力在于其固有的可扩展性和操作优势。这些平台具有较长的相干时间,能够实现持续的量子运算并提高纠错能力。该技术受益于成熟的原子物理学原理,并且无需超导量子位元系统所需的低温冷却,从而降低了能耗和基础设施的复杂性。 目前运行的系统采用 100 至 300 个原子阵列,领先公司正在迅速扩展到数千甚至数万个量子位元。

竞争格局的特点是几家资金雄厚的公司采取了策略性布局。总部位于美国的 QuEra Computing 获得了Google的巨额投资,这表明其中性原子平台是实现可扩展量子运算的可行途径。此次合作将 QuEra 的硬体专长与Google的量子软体资源云端基础设施结合。 Atom Computing 也与微软合作,将其采用稳定核自旋量子位元阵列的 Phoenix 系统整合到 Azure 量子云端平台。法国领先的量子计算公司 Pasqal 在 2024 年实现了 1000 个量子位元的重大里程碑,并宣布了雄心勃勃的计划,目标是在 2026 年将量子位元数量扩展到 10000 个。其他主要公司包括德国的 Planqc、香港的 QUANTier 和斯洛维尼亚的 Atom Quantum Labs,它们各自开发了不同的中性原子架构方案。

此技术路线图预测,到 2035 年将快速扩展。目前的系统(2025-2026 年)使用 1000-10000 个原子,单量子位元保真度约为 99.9%,双量子位元保真度约为 99.7%。在 2027-2028 年,目标是 10000-100000 个原子的系统将实现 99.99% 的单量子位元保真度并具备纠错能力。 预计在 2029-2030 年实现使用超过 10 万个原子的容错逻辑量子位元操作,并在 2032-2035 年实现完全容错的百万原子系统和工业部署。

主要应用领域涵盖量子模拟、最佳化问题、量子化学和机器学习任务。该技术在模拟复杂物理系统、凝聚态物质研究和分子结构分析方面表现优异。製药、化学和金融服务业是寻求中性原子解决方案的关键市场领域。

仍存在一些挑战,包括延长相干时间、提高闸速度(目前的模拟週期限制在约 1 Hz)、解决计算过程中原子损失问题,以及开发纠错和容错量子计算所需的量子非破坏性测量技术。 儘管面临这些挑战,中性原子量子运算凭藉其室温运作、天然可扩展性和灵活性,正逐渐成为超导平台的有力竞争对手,预计在2026年至2036年间将实现显着的商业成长。

本报告探讨并分析了全球中性原子量子运算市场,按技术类别、应用、客户类型和地区提供了市场规模估算和未来十年(2026-2036年)的预测。

目录

第一章:摘要整理

  • 市场概览及主要发现
  • 技术成熟度及商业可行性
  • 市场预测
  • 市场参与者
  • 产品及系统对比

第二章:中性原子技术及产品

  • 技术演进
  • 中性原子组件
  • 中性原子相关软体
  • 技术成熟度

第三章:市场及应用

  • 应用
  • 生态系统
  • 中性原子计算机供应链
  • 国家投资与政策
  • 市场区隔市场

第四章 中性原子技术

  • 中性原子计算机
  • 中性原子组件和子系统
  • 软体
  • 平台

第五章:市场规模与成长(2026-2036)

  • 全球市场规模预测(2026-2036)
  • 按细分市场划分的收入预测
  • 地理市场分布
  • 市场渗透率情景
  • 成长驱动因素与限制因素
  • 全球装机量分析

第六章:技术发展路线图

  • 硬体扩充和纠错
  • 软体堆迭演进
  • 与传统计算机的整合计算
  • 製造改进

第七章 投资与融资

  • 创投与私人投资
  • 政府资助与国家举措
  • 企业研发投资趋势

第八章:挑战与危险因子

  • 技术障碍与发展风险
  • 市场推广障碍
  • 来自替代技术的竞争威胁
  • 监理与安全考量

第九章:未来市场机会

  • 新的应用领域
  • 科技融合机遇
  • 评估颠覆性潜力

第十章:公司简介(31家公司)

第十一章:研究方法

第十二章:参考文献

Neutral-atom quantum computing represents one of the most promising and rapidly advancing segments of the quantum computing industry. This technology leverages individual neutral atoms-typically alkali metals like rubidium, cesium, or strontium-trapped and manipulated using precisely focused laser beams called optical tweezers. Unlike trapped ions, neutral atoms are not electrically charged, allowing them to be arranged in flexible two-dimensional and three-dimensional arrays with minimal crosstalk between qubits.

The fundamental appeal of neutral-atom systems lies in their inherent scalability and operational advantages. These platforms demonstrate long coherence times, enabling sustained quantum operations and increased error correction possibilities. The technology benefits from well-understood atomic physics principles and eliminates the need for the extreme cryogenic cooling required by superconducting qubit systems, resulting in lower energy consumption and reduced infrastructure complexity. Current operational systems feature 100-300 atom arrays, with leading companies rapidly scaling toward thousands and tens of thousands of qubits.

The competitive landscape features several well-funded players establishing strategic positions. QuEra Computing, based in the United States, has secured significant investment from Google, validating neutral-atom platforms as viable paths to scalable quantum computing. This partnership combines QuEra's hardware expertise with Google's quantum software resources and cloud infrastructure. Atom Computing has forged a parallel partnership with Microsoft, integrating its Phoenix system-featuring stable nuclear-spin qubit arrays-with Azure Quantum's cloud platform. Pasqal, the French leader in this space, achieved a significant milestone by reaching 1,000 qubits in 2024 and has announced ambitious plans to scale to 10,000 qubits by 2026. Additional players include Planqc in Germany, QUANTier in Hong Kong, and Atom Quantum Labs in Slovenia, each developing distinctive approaches to neutral-atom architectures.

The technology roadmap projects aggressive scaling through 2035. Current systems (2025-2026) operate with 1,000-10,000 atoms achieving single-qubit fidelities around 99.9% and two-qubit fidelities of 99.7%. By 2027-2028, systems targeting 10,000-100,000 atoms aim for 99.99% single-qubit fidelity with error correction capabilities. The 2029-2030 horizon envisions 100,000+ atoms with fault-tolerant logical qubit operations, progressing toward million-atom systems with full fault tolerance and industrial deployment by 2032-2035.

Primary applications span quantum simulations, optimization problems, quantum chemistry, and machine learning tasks. The technology excels particularly in simulating complex physical systems, condensed matter research, and molecular structure analysis. The pharmaceutical, chemical, and financial services industries represent key market verticals pursuing neutral-atom solutions.

Challenges remain, including achieving longer coherence times, improving gate speeds (currently limited to approximately 1 Hz simulation cycles), addressing atom loss during computation, and developing quantum non-demolition measurement capabilities required for error correction and fault-tolerant quantum computing. Despite these hurdles, neutral-atom quantum computing has emerged as a serious competitor to superconducting platforms, with its room-temperature operation, natural scalability, and flexibility positioning it for significant commercial growth through the 2026-2036 forecast period.

This report provides complete market sizing and ten-year forecasts from 2026 through 2036, segmented by technology category, application domain, customer type, and geographic region. Strategic analysis covers competitive positioning, investment trends, technology readiness assessments, and detailed company profiles of 32 organizations shaping the neutral-atom ecosystem.

Report Contents Include:

  • Key findings, technology readiness assessments, and commercial viability analysis
  • Current system specifications, pricing models, and company roadmap comparisons
  • Technology Readiness Level (TRL) benchmarking across quantum computing platforms
  • Technology Deep Dive
    • Atomic species selection, control hardware, and readout component analysis
    • Photonic systems, cryostat requirements, and comparative cooling analysis
    • Software stack architecture, programming frameworks, and development tools
    • Total cost of ownership analysis and component cost breakdowns
    • Performance benchmarks and scalability projections
  • Markets and Applications
    • Distributed quantum computing and data center integration strategies
    • Application domains including optimization, simulation, machine learning, and cryptography
    • Market segmentation across enterprise, cloud providers, government/defense, and academia
    • Supply chain analysis comparing cryogenic versus room-temperature systems
    • National investment initiatives and policy frameworks by region
  • Market Size and Growth Forecasts
    • Global market sizing 2026-2036 with revenue projections by segment
    • Geographic market distribution and regional growth analysis
    • Market penetration scenarios (conservative, base, optimistic)
    • Global installation forecasts and deployment projections
    • Growth drivers, constraints, and risk factor assessment
  • Technology Development Roadmap
    • Hardware scaling trajectory and qubit count projections
    • Error correction progress and fault-tolerance timelines
    • Software evolution and classical computing integration
    • Manufacturing improvements and production scaling analysis
  • Investment and Funding Analysis
    • Venture capital activity and private investment trends
    • Government funding and national quantum initiatives
    • Corporate R&D investment patterns and strategic partnerships
  • Challenges, Risks, and Future Opportunities
    • Technical hurdles and development risk assessment
    • Market adoption barriers and competitive threats
    • Regulatory and security considerations
    • Emerging application areas and technology convergence opportunities
    • Disruptive potential assessment

This report features comprehensive profiles of 32 companies across the neutral-atom quantum computing value chain including AMD (Advanced Micro Devices), Atom Computing, Atom Quantum Labs, CAS Cold Atom, data cybernetics ssc GmbH, GDQLABS, Hamamatsu, Infleqtion, Lake Shore Cryotronics, M-Labs, Menlo Systems GmbH, Microsoft Corporation (Azure Quantum), Nanofiber Quantum Technologies, Nexus Photonics and more.....

Table of Contents

1 EXECUTIVE SUMMARY

  • 1.1 Market Overview and Key Findings
  • 1.2 Technology Readiness and Commercial Viability
  • 1.3 Market Forecasts
  • 1.4 Market Players
  • 1.5 Product and System Comparison
    • 1.5.1 Current Systems
    • 1.5.2 System Pricing and Access Models
    • 1.5.3 Roadmap Comparison

2 NEUTRAL ATOM TECHNOLOGY AND PRODUCTS

  • 2.1 Technology Evolution
    • 2.1.1 Atoms Species Used
    • 2.1.2 Accessibility
    • 2.1.3 Research to commercially viable quantum systems
  • 2.2 Neutral Atom Components
    • 2.2.1 Atomic Control Hardware and Readout Components
    • 2.2.2 Photonic and Photographic Components
    • 2.2.3 Cryostats
      • 2.2.3.1 Cryogenic Requirements and Comparison
    • 2.2.4 Costs
    • 2.2.5 Total Cost of Ownership Analysis
  • 2.3 Neutral Atom-related Software
    • 2.3.1 Software Stack Components and Functions
    • 2.3.2 Programming Languages and Frameworks Used
  • 2.4 Technology Readiness
    • 2.4.1 Technical Limitations and Challenges
    • 2.4.2 Advantages Over Competing Quantum Technologies
    • 2.4.3 Infrastructure and Operational Advantages
    • 2.4.4 Performance Benchmarks and Scalability

3 MARKETS AND APPLICATIONS

  • 3.1 Applications
    • 3.1.1 Distributed Quantum Computing on Neutral Atom Computers
    • 3.1.2 Neutral Atom Computers in the Data Center
    • 3.1.3 Other Applications for Neutral Atom Computers
  • 3.2 Ecosystems
    • 3.2.1 Market Control Dynamics
    • 3.2.2 Ecosystem Development
  • 3.3 Supply Chain for Neutral Atom Computers
    • 3.3.1 Manufacturing and Supply Chain
    • 3.3.2 Component Sourcing and Dependencies
    • 3.3.3 Comparative Supply Chain Analysis: Cryogenic vs. Room Temperature Systems
  • 3.4 National Investment and Policy Initiatives
  • 3.5 Market Segmentation
    • 3.5.1 Enterprise
    • 3.5.2 Cloud Service Providers
    • 3.5.3 Government and Defence
    • 3.5.4 Academia and Research

4 NEUTRAL ATOM TECHNOLOGIES

  • 4.1 Neutral-Atom Computers
    • 4.1.1 Overview
    • 4.1.2 Companies
  • 4.2 Neutral Atom Components and Subsystems
    • 4.2.1 Overview
    • 4.2.2 Component Market Value Chain
    • 4.2.3 Companies
  • 4.3 Software
    • 4.3.1 Overview
    • 4.3.2 Software Platform Comparison
    • 4.3.3 Software Stack Architecture
    • 4.3.4 Development Tools and Frameworks
    • 4.3.5 Open Source vs. Proprietary Solutions
    • 4.3.6 Companies
    • 4.3.7 Development Tools and Frameworks
    • 4.3.8 Open Source vs. Proprietary Solutions
  • 4.4 Platforms
    • 4.4.1 Cloud Platform
    • 4.4.2 Platform Features and Capabilities
    • 4.4.3 Companies and Centres

5 MARKET SIZE AND GROWTH (2026-2036)

  • 5.1 Global Market Size Forecast 2026-2036
  • 5.2 Revenue Forecasts by Segment
  • 5.3 Geographic Market Distribution
  • 5.4 Market Penetration Scenarios
  • 5.5 Growth Drivers and Constraints
  • 5.6 Global Installations Analysis

6 TECHNOLOGY DEVELOPMENT ROADMAP

  • 6.1 Hardware Scaling and Error Correction
    • 6.1.1 Qubit Scaling Trajectory
    • 6.1.2 Error Correction Progress
  • 6.2 Software Stack Evolution
  • 6.3 Integration with Classical Computing
  • 6.4 Manufacturing Improvements
    • 6.4.1 Manufacturing Scaling: Neutral Atom vs. Cryogenic Platforms

7 INVESTMENT AND FUNDING

  • 7.1 Venture Capital and Private Investment
  • 7.2 Government Funding and National Initiatives
  • 7.3 Corporate R&D Investment Trends

8 CHALLENGES AND RISK FACTORS

  • 8.1 Technical Hurdles and Development Risks
  • 8.2 Market Adoption Barriers
  • 8.3 Competitive Threats from Alternative Technologies
  • 8.4 Regulatory and Security Considerations

9 FUTURE MARKET OPPORTUNITIES

  • 9.1 Emerging Application Areas
  • 9.2 Technology Convergence Opportunities
  • 9.3 Disruptive Potential Assessment

10 COMPANY PROFILES (31 company profiles)

11 RESEARCH METHODOLOGY

  • 11.1 Report Scope and Objectives
  • 11.2 Research Methodology and Data Sources
  • 11.3 Market Definition and Segmentation

12 REFERENCES

List of Tables

  • Table 1. Initialization, manipulation and readout for neutral-atom quantum computers.
  • Table 2. Pros and cons of cold atoms quantum computers and simulators
  • Table 3. Technology Readiness Level Definitions and Quantum Computing Criteria.
  • Table 4. TRL Assessment by Quantum Computing Platform (2025).
  • Table 5. TRL Comparison Across Key Dimensions.
  • Table 6. TRL by Subsystem - Neutral Atom Detailed Assessment.
  • Table 7. TRL Comparison by Application Domain.
  • Table 8. Key TRL Advancement Drivers by Platform.
  • Table 9. Global Market Size Forecast 2026-2036
  • Table 10. Main neural atom qubit market players.
  • Table 11. Current Neutral Atom System Specifications
  • Table 12. Neutral Atom System Pricing and Access
  • Table 13. Company Roadmap Comparison
  • Table 14. Atomic Species Used in Neutral Atom Systems.
  • Table 15. Accessibility Metrics Comparison.
  • Table 16. Key Hardware Components and Specifications
  • Table 17. Initialization, Manipulation, and Readout Methods
  • Table 18. Photonic and Imaging Component Specifications:
  • Table 19. Cryostat Requirements and Specifications.
  • Table 20. Cryostat Requirements and Specifications Comparison.
  • Table 21. Multi-Stage Temperature Environment in Superconducting Systems.
  • Table 22. Component Cost Breakdown Analysis.
  • Table 23. Cost Comparison with Other Quantum Technologies:
  • Table 24. Total Cost of Ownership Comparison (5-Year, 1000-Qubit System).
  • Table 25. Infrastructure Scaling Cost Projections.
  • Table 26. Software Stack Components and Functions.
  • Table 27. Programming Languages and Frameworks Used.
  • Table 28. Technical Challenges and Mitigation Strategies.
  • Table 29. Performance Comparison with Other Quantum Technologies.
  • Table 30. Infrastructure Advantage Comparison.
  • Table 31. Current System Achievements (2024-2025)
  • Table 32. Neutral Atom Hardware Development Roadmap
  • Table 33. Distributed Computing Use Cases and Requirements.
  • Table 34. Key Technical Requirements for Distributed Neutral Atom Computing.
  • Table 35. Emerging Application Areas and Market Potential.
  • Table 36. Application Adoption Timeline Factors.
  • Table 37. Key Ecosystem Partnerships and Alliances
  • Table 38. Ecosystem Value Chain Analysis
  • Table 39. Supply Chain Structure and Key Participants
  • Table 40. Supply Chain Risk Assessment.
  • Table 41. Critical Component Dependencies and Risk Mitigation.
  • Table 42. Supply Chain Comparison by Platform.
  • Table 43. Cryogenic Component Supplier Landscape.
  • Table 44. National Investment and Policy Initiatives.
  • Table 45. Enterprise Adoption Drivers and Barriers.
  • Table 46. Enterprise Engagement Models.
  • Table 47. Cloud Platform Neutral Atom Integration
  • Table 48. Government and Defense Market Characteristics
  • Table 49. Academic and Research Market Structure
  • Table 50. Academic Research Priorities for Neutral Atom Computing
  • Table 51. Neutral Atom Computer Companies.
  • Table 52. Component Market Value Chain.
  • Table 53. Value Distribution in Neutral Atom Systems.
  • Table 54. Neutral Atom Components and Subsystems Companies.
  • Table 55. Component Market Value Chain
  • Table 56. Software Platform Comparison.
  • Table 57. Platform Ecosystem Integration.
  • Table 58. Development Tools and Frameworks.
  • Table 59. Software Market Revenue Projections
  • Table 60. Open Source vs. Proprietary Solutions.
  • Table 61. Hybrid Deployment Models.
  • Table 62. Software companies.
  • Table 63. Software Platform Comparison
  • Table 64. Platform Ecosystem Integration.
  • Table 65. Development Tools and Frameworks
  • Table 66. Open Source vs. Proprietary Solutions
  • Table 67. Platform Features and Capabilities.
  • Table 68. Platform Companies and Centres.
  • Table 69. User Adoption and Growth Metrics
  • Table 70. Pricing Models and Cost Analysis
  • Table 71. Cost Comparison Example (1,000 Circuit Executions).
  • Table 72. Global Market Size Forecast 2026-2036
  • Table 73. Market Size by Category Detail.
  • Table 74. Market Position Relative to Total Quantum Computing (Billions USD).
  • Table 75. Revenue Forecasts by Application Segment (Billions USD).
  • Table 76. Revenue by Customer Segment (Billions USD).
  • Table 77. Regional Market Growth Projections (Billions USD).
  • Table 78. Regional Market Dynamics.
  • Table 79. Regional Installation Forecast (Units).
  • Table 80. Regional Installation Forecast (Units) by Customer Type.
  • Table 81. Market Penetration Scenarios (Conservative, Base, Optimistic)
  • Table 82. Market Size Range by Year ($ Billions).
  • Table 83. Growth Drivers Impact Analysis
  • Table 84. Market Constraints and Risk Factors
  • Table 85. Global Neutral Atom Quantum Computer Installations Forecast
  • Table 86. Key Installation Locations (Current and Announced).
  • Table 87. Hardware Scaling Milestones.
  • Table 88. Scaling Pathway by Company.
  • Table 89. Key Scaling Technologies.
  • Table 90. Error Correction Progress Projections.
  • Table 91. Error Correction Codes for Neutral Atoms.
  • Table 92. Gate Fidelity Trajectory.
  • Table 93. Logical Qubit Demonstrations Timeline.
  • Table 94. Software Evolution Roadmap.
  • Table 95. Software Development Priorities by Phase.
  • Table 96. Manufacturing Cost Reduction Curve
  • Table 97. Integration Roadmap:
  • Table 98. Key Manufacturing Domains.
  • Table 99. Technology Development Timeline.
  • Table 100. Manufacturing Complexity Comparison.
  • Table 101. Production Volume Projections by Platform.
  • Table 102. Venture Capital and Private Investment.
  • Table 103. Quantum Technology Funding by Company (2022-2025, Millions USD).
  • Table 104. Government Funding and National Initiatives.
  • Table 105. Regional Government Investment Comparison (2023-2025, USD Billions).
  • Table 106. Investment Trends 2020-2025 and Projections to 2036.
  • Table 107. Corporate R&D Investment by Major Technology Companies.
  • Table 108. Corporate Venture Investment in Neutral Atom.
  • Table 109. Investment Projections 2026-2036 (USD Millions).
  • Table 110. Investment by Technology Platform (Historical and Projected).
  • Table 111. End-User Industry Investment in Quantum Readiness.
  • Table 112. Key Investment Drivers and Trends.
  • Table 113. Risk Assessment Matrix.
  • Table 114. Market Adoption Barriers.
  • Table 115. Adoption Barrier Impact by Customer Segment.
  • Table 116. Competitive Threats from Alternative Technologies.
  • Table 117. Regulatory Framework Comparison by Region
  • Table 118. Emerging Application Market Potential.
  • Table 119. Technology Convergence Opportunities.
  • Table 120. Emerging Application Market Potential

List of Figures

  • Figure 1. Neutral atoms (green dots) arranged in various configurations
  • Figure 2. Neutral Atom Hardware Roadmap.
  • Figure 3.Global Neutral Atom Quantum Computing Market Size 2026-2036.
  • Figure 4. Timeline of Neutral Atom Technology Development
  • Figure 5. Neutral Atom System Architecture Diagram.
  • Figure 6. Technology Readiness Level Assessment.
  • Figure 7. Scalability Projections 2026-2036.
  • Figure 8. Data Center Integration Architecture.
  • Figure 9. Application Adoption Timeline.
  • Figure 10. Market Control and Influence Mapping.
  • Figure 11. Manufacturing Process Flow.
  • Figure 12. Cloud Provider Integration Timeline.
  • Figure 13. Vision for a repeater-enabled long-distance network between neutral atom quantum processing units (QPUs).
  • Figure 14. Revenue Forecasts by Application Segment (Billions USD).
  • Figure 15. Revenue by Customer Segment (Billions USD).
  • Figure 16. Regional Market Growth Projections (Billions USD).
  • Figure 17. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right).
  • Figure 18. Pasqal's neutral-atom quantum computer