先进半导体包装温度控管系统·材料的全球市场(2026年~2036年)
市场调查报告书
商品编码
1761742

先进半导体包装温度控管系统·材料的全球市场(2026年~2036年)

The Global Market for Thermal Management Systems and Materials for Advanced Semiconductor Packaging 2026-2036

出版日期: | 出版商: Future Markets, Inc. | 英文 165 Pages, 71 Tables, 16 Figures | 订单完成后即时交付

价格

全球先进半导体封装热管理系统及材料市场是更广泛的半导体生态系统中成长最快的领域之一,这得益于功率密度的持续成长以及从传统二维封装到创新型2.5D/3D整合架构的转变。该市场涵盖热界面材料、液冷系统、先进散热器,以及石墨烯基解决方案和微流体冷却等新技术,这些技术能够实现下一代运算性能。

市场规模预测显示,到2036年,市场规模将呈现爆炸性成长,这反映了日益增长的热管理需求以及高端热解决方案的采用,而这些解决方案的价格可能远高于传统方法。从传统热管理向先进解决方案的转变将创造市场变革,由于技术日益复杂化和性能高端化,销售成长将显着超过销售成长。

热界面材料已成为最大的细分市场,其发展方向已从传统的导热硅脂演变为液态金属、石墨烯复合材料和钻石增强解决方案等先进材料,这些材料可将热导率比传统材料提高10到100倍。由于在高效能运算和人工智慧应用中,热设计功率不断增长,超过了风冷能力,液冷技术成为成长最快的细分市场。直接晶片冷却保持市场领先地位,而浸没式冷却和微流体冷却则是新的机会。

资料中心和高效能运算是主要市场。汽车电子是成长最快的细分市场,电动车的热管理需求推动了先进冷却技术的采用,而消费性电子产品则透过小型化和性能增强趋势保持稳定成长。热管理市场技术的演变呈现出明显的进步趋势,从传统材料的渐进式改进到微流体、先进材料和整合冷却解决方案等创新方法。此次技术转型为成熟的热管理公司和开发突破性技术的创新新创公司创造了市场机遇,随着技术的成熟和製造规模的扩大,预计将推动市场整合。

2036 年市场展望表明,人工智慧加速发展、3D 封装的普及以及汽车电气化等基本行业趋势将对卓越的热管理能力产生无限需求,从而推动持续强劲增长。

本报告研究了全球先进半导体封装热管理系统和材料市场,并提供了有关热管理技术发展、市场规模及 2036 年预测、竞争格局以及对参与者的策略建议的资讯。

目录

第1章 摘要整理

  • 先进半导体封装 - 从 2D 架构到先进的 2.5D/3D 整合技术
  • 挑战
  • TSV 效能
  • 水平到垂直功率传输的转变
  • TIM1 应用的导热介面材料选择
  • 高效能运算 (HPC) 的冷却技术

第2章 简介

  • 热设计功耗 (TDP)
  • 适用于 HPC 晶片的先进半导体封装技术
  • 适用于 GPU 的 2.5D/3D 封装
  • GPU 平面晶片封装领域的发展
  • 高功率先进封装的热管理

第3章 2.5D/3D先进半导体封装技术

  • 简介
  • 最新半导体封装技术
  • 先进半导体封装技术的最佳化
  • 互连技术
  • 2.5D 封装
  • 凸块技术
  • 製造良率
  • 成本分析
  • 基板技术演进(硅、有机和玻璃)
  • 先进封装的组装与侦测挑战

第4章 电力管理

  • 简介
  • 供电系统
  • 高效能运算 (HPC) 晶片生态系统
  • 先进供电网路 (PDN)
  • 电源噪声
  • 动态电压和频率调节 (DVFS)
  • 电源门控
  • 时钟门控
  • 中介层整合式电压调节器(IVR)
  • 开关电容电压转换器
  • 封装基板磁性集成
  • AI 动态电源管理
  • 热管理运行循环
  • 封装内电压调节 (OPVR)
  • 去耦电容 (Decap)
  • 低电阻互连
  • 挑战

第5章 适合先进包装的新的热材料与解决方案

  • 简介
  • 粘晶技术
  • 3D半导体包装的TIM1
  • 新的热技术
  • 热建模,模拟

第6章 液体冷却

  • 概要
  • 液体冷却技术
  • 机柜层级电力限制
  • 晶片层级冷却方法
  • 先进的冷却整合
  • 冷却技术的比较

第7章 全球市场的预测

  • 类别
  • 各区域
  • 各收益
  • 包装类别
  • 液体冷却市场预测
  • 先进热材料市场演进
  • 地理市场分布

第8章 企业简介(企业48家企业简介)

第9章 参考文献

The global market for thermal management systems and materials in advanced semiconductor packaging represents one of the fastest-growing segments within the broader semiconductor ecosystem, driven by the relentless increase in power densities and the industry's transition from traditional 2D packaging toward revolutionary 2.5D and 3D integration architectures. This market encompasses thermal interface materials, liquid cooling systems, advanced heat spreaders, and emerging technologies including graphene-based solutions and microfluidic cooling that enable next-generation computing performance.

Market size projections indicate explosive growth to 2036, reflecting both increasing thermal management requirements and the adoption of premium thermal solutions that command substantially higher pricing than traditional approaches. The transition from conventional thermal management toward advanced solutions creates a market evolution where value growth significantly exceeds volume growth due to technology sophistication and performance premiums.

Thermal interface materials represent the largest market segment, evolving from traditional thermal greases toward advanced materials including liquid metals, graphene composites, and diamond-enhanced solutions that can achieve thermal conductivity improvements of 10-100x compared to conventional materials. Liquid cooling technologies represent the fastest-growing market segment, driven by thermal design power increases that exceed air cooling capabilities in high-performance computing and AI applications. Direct-to-chip cooling maintains market leadership, while immersion cooling and microfluidic cooling represent emerging opportunities.

Data centers and high-performance computing are primary markets. Automotive electronics is a fast growing segment as electric vehicle thermal management requirements drive adoption of advanced cooling technologies, while consumer electronics maintains steady growth through miniaturization and performance enhancement trends. Technology evolution within the thermal management market demonstrates clear progression from evolutionary improvements in traditional materials toward revolutionary approaches including microfluidics, advanced materials, and integrated cooling solutions. This technology transition creates market opportunities for both established thermal management companies and innovative startups developing breakthrough technologies, with market consolidation expected as technologies mature and manufacturing scales increase.

The market outlook through 2036 indicates continued robust growth driven by fundamental industry trends including AI acceleration, 3D packaging adoption, and automotive electrification that create insatiable demand for superior thermal management capabilities.

"The Global Market for Thermal Management Systems and Materials for Advanced Semiconductor Packaging 2026-2036" provides essential analysis of thermal interface materials (TIMs), liquid cooling systems, advanced heat management solutions, and emerging technologies that enable next-generation high-performance computing, artificial intelligence, and automotive electronics applications.

As semiconductor packages evolve toward higher power densities exceeding 1000W and package sizes approaching 100mm edge dimensions, conventional thermal management approaches become inadequate, creating substantial market opportunities for advanced thermal solutions including graphene-based materials, liquid metal interfaces, microfluidic cooling systems, and revolutionary cooling architectures. The market encompasses both evolutionary improvements to existing thermal management technologies and disruptive innovations including carbon nanotube thermal interfaces, metamaterial heat spreaders, and AI-driven dynamic thermal optimization.

This market report delivers critical intelligence on thermal management technology evolution, market sizing and forecasts through 2036, competitive landscape analysis, and strategic recommendations for industry participants ranging from established thermal management suppliers to innovative startups developing breakthrough technologies. The analysis covers market dynamics across geographic regions, application segments, and technology categories while providing detailed company profiles of leading market participants and emerging technology developers.

The report addresses fundamental thermal management challenges including power delivery optimization, thermal interface material selection for TIM1 applications, cooling technology comparison for high-performance computing systems, and integration strategies for hybrid cooling solutions that combine air and liquid cooling approaches. Advanced topics include thermoelectric cooling integration, heat recovery systems, cooling system reliability and redundancy strategies, and next-generation technologies including bio-inspired thermal management and metamaterial heat spreaders.

Market forecasts encompass thermal interface materials by type and application, liquid cooling system adoption across market segments, advanced thermal materials evolution, and geographic market distribution patterns that reflect regional concentrations of semiconductor manufacturing, data center development, and automotive electronics production. The analysis includes detailed examination of market drivers, technology adoption curves, pricing evolution, and competitive dynamics that shape market development through 2036.

Report contents include:

  • Advanced semiconductor packaging evolution from 2D to 2.5D and 3D integration technologies
  • Power delivery challenges and thermal management requirements for next-generation packages
  • TSV performance analysis and transition from lateral to vertical power delivery architectures
  • Thermal interface material selection criteria and cooling technology assessment for HPC applications
  • Technology Analysis & Innovation Trends:
    • 2.5D and 3D advanced semiconductor packaging technologies including CoWoS development roadmap
    • Interconnection technology evolution including bumping technologies and copper-to-copper hybrid bonding
    • Manufacturing yield considerations, cost analysis, and substrate technology evolution
    • Assembly and test challenges for advanced packages with multi-die integration complexity
  • Power Management Systems:
    • Advanced power delivery networks (PDNs) and power supply noise management strategies
    • Dynamic voltage and frequency scaling (DVFS), power gating, and clock gating implementations
    • Integrated voltage regulators (IVRs) in interposers and switched capacitor voltage converters
    • Magnetic integration in package substrates and AI-driven dynamic power management systems
  • Thermal Materials & Solutions:
    • Novel thermal materials including die-attach technologies and TIM1 applications in 3D packaging
    • Emerging thermal technologies: carbon nanotube thermal interface materials and comprehensive graphene analysis
    • Advanced materials: aerogel-based thermal solutions, metamaterial heat spreaders, and bio-inspired approaches
    • Thermal modeling and simulation including multi-physics requirements and AI-enhanced design optimization
  • Liquid Cooling Technologies:
    • Comprehensive liquid cooling technology comparison and rack-level power limitation analysis
    • Chip-level cooling approaches and advanced cooling integration strategies
    • Hybrid cooling systems combining air and liquid technologies with thermoelectric integration
    • Heat recovery and reuse systems with cooling system reliability and redundancy assessment
  • Market Forecasts (2026-2036):
    • TIM1 and TIM1.5 market forecasts by type, area, and revenue with detailed package type analysis
    • Liquid cooling market penetration by segment and geographic market distribution patterns
    • Advanced thermal materials market evolution and technology adoption timeline projections
    • Package size impact analysis and emerging technology market development trajectories
  • Company Profiles: comprehensive profiles of 48 leading companies across the thermal management ecosystem, including established industry leaders and innovative technology developers: 2D Generation, 2D Photonics/CamGraphIC, 3M, Accelsius, Akash Systems, Apheros, Arieca Inc., Asperitas Immersed Computing, Black Semiconductor GmbH, BNNano, Boyd Corporation, Carbice Corp., First Graphene Ltd., Carbon Waters, Destination 2D, Dexerials Corporation, Engineered Fluids, Fujitsu Laboratories, Global Graphene Group, Graphmatech AB, Green Revolution Cooling (GRC), Henkel AG & Co. KGAA, Huntsman Corporation, Iceotope, Indium Corporation, JetCool Technologies, KULR Technology Group Inc., LG Innotek, LiquidCool Solutions, Maxwell Labs, Momentive Performance Materials, Nexalus, NovoLINC, and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Advanced semiconductor packaging-2D architectures to advanced 2.5D and 3D integration technologies
  • 1.2. Challenges
    • 1.2.1. Power delivery
    • 1.2.2. Thermal management
  • 1.3. TSV Performance
  • 1.4. Transition from lateral to vertical power delivery
  • 1.5. Thermal interface material selection for TIM1 applications
  • 1.6. Cooling Technologies for HPC

2. INTRODUCTION

  • 2.1. Thermal design power (TDP)
  • 2.2. Advanced Semiconductor Packaging Technologies in HPC chips
    • 2.2.1. Thermal properties
    • 2.2.2. Thermal Benefits
    • 2.2.3. TDP in Advanced Packaging
  • 2.3. 2.5D and 3D Packaging in GPUs
  • 2.4. Evolution of planar die packaging area for GPUs
  • 2.5. Thermal management of high-power advanced packages

3. 2.5D AND 3D ADVANCED SEMICONDUCTOR PACKAGING TECHNOLOGIES

  • 3.1. Introduction
  • 3.2. Modern semiconductor packaging technology
  • 3.3. Optimization of advanced semiconductor packaging technologies
  • 3.4. Interconnection technology
  • 3.5. 2.5D packaging
    • 3.5.1. Chip-on-Wafer-on-Substrate (CoWoS)
  • 3.6. Bumping technologies
    • 3.6.1. Overview
    • 3.6.2. Challenges
    • 3.6.3. Micro-bump technology
    • 3.6.4. Copper-to-copper hybrid bonding
  • 3.7. Manufacturing Yield
  • 3.8. Cost Analysis
  • 3.9. Substrate Technology Evolution (Silicon vs Organic vs Glass)
  • 3.10. Assembly and Test Challenges for Advanced Packages

4. POWER MANAGEMENT

  • 4.1. Introduction
  • 4.2. Power delivery systems
  • 4.3. Ecosystem for HPC chips
  • 4.4. Advanced Power Delivery Networks (PDNs)
  • 4.5. Power supply noise
  • 4.6. Dynamic Voltage and Frequency Scaling (DVFS)
  • 4.7. Power Gating
  • 4.8. Clock Gating
  • 4.9. Integrated Voltage Regulators (IVRs) in Interposers
  • 4.10. Switched Capacitor Voltage Converters
  • 4.11. Magnetic Integration in Package Substrates
  • 4.12. AI-Driven Dynamic Power Management
  • 4.13. Thermal Management Runtime Loops
  • 4.14. On-Package Voltage Regulation (OPVR)
  • 4.15. Decoupling Capacitors (Decaps)
  • 4.16. Low-Resistance Interconnects
  • 4.17. Challenges

5. NOVEL THERMAL MATERIALS AND SOLUTIONS FOR ADVANCED PACKAGING

  • 5.1. Introduction
    • 5.1.1. Progression toward three-dimensional packaging architectures
  • 5.2. Die-attach technology
  • 5.3. TIM1 in 3D Semiconductor Packaging
    • 5.3.1. Overview
    • 5.3.2. Applications
    • 5.3.3. Selection and optimization of TIM1 materials
    • 5.3.4. Liquid Cooling Technologies
  • 5.4. Emerging Thermal Technologies
    • 5.4.1. Carbon Nanotube Thermal Interface Materials
    • 5.4.2. Graphene
      • 5.4.2.1. Graphene Manufacturing: CVD vs Solution Processing vs Mechanical Exfoliation
      • 5.4.2.2. Graphene Quality Metrics
      • 5.4.2.3. Graphene-Polymer Composites for TIM Applications
      • 5.4.2.4. Graphene Oxide vs Reduced Graphene Oxide
      • 5.4.2.5. Vertical Graphene Structures
      • 5.4.2.6. Graphene-Metal Matrix Composites
      • 5.4.2.7. Graphene Heat Spreaders and Thermal Planes
      • 5.4.2.8. Graphene-Enhanced Phase Change Materials
      • 5.4.2.9. Graphene Thermal Interface Films vs Pastes
      • 5.4.2.10. Multi-Layer Graphene Thermal Management Systems
    • 5.4.3. Aerogel-Based Thermal Solutions
    • 5.4.4. Metamaterial Heat Spreaders
    • 5.4.5. Bio-Inspired Thermal Management Approaches
  • 5.5. Thermal Modelling and Simulation
    • 5.5.1. Multi-Physics Simulation Requirements
    • 5.5.2. AI-Enhanced Thermal Design Optimization
    • 5.5.3. Real-Time Thermal Monitoring Integration

6. LIQUID COOLING

  • 6.1. Overview
  • 6.2. Liquid Cooling Technologies
  • 6.3. Rack-level power limitations
  • 6.4. Chip-level cooling approaches
  • 6.5. Advanced Cooling Integration
    • 6.5.1. Hybrid Cooling Systems (Air + Liquid)
    • 6.5.2. Thermoelectric Cooling Integration
    • 6.5.3. Heat Recovery and Reuse Systems
    • 6.5.4. Cooling System Reliability and Redundancy
  • 6.6. Cooling Technology Comparison

7. GLOBAL MARKET FORECASTS

  • 7.1. By Type
  • 7.2. By Area
  • 7.3. By Revenues
  • 7.4. By Package Type
  • 7.5. Liquid Cooling Market Forecast
  • 7.6. Advanced Thermal Materials Market Evolution
  • 7.7. Geographic Market Distribution

8. COMPANY PROFILES (48 company profiles)

9. REFERENCES

List of Tables

  • Table 1. Evolution of semiconductor packaging
  • Table 2. Comparison Table of 2.5D and 3D IC Integration in HPC chips
  • Table 3. Overview of Power Management Components for HPC chips
  • Table 4. Impact of Key Design Parameters on PDN Performance in 2.5D Integration
  • Table 5. Backside Power Delivery for Next Generation HPC chips
  • Table 6. TSV Reliability in Advanced Packaging
  • Table 7. Lateral Power Delivery (LPD) to Vertical Power Delivery (VPD)
  • Table 8. Thermal interface material selection for TIM1
  • Table 9. Diamond as substrate materials
  • Table 10. Cooling Technologies for HPC
  • Table 11. TDP Trends for HPC (High Performance Computing) Chips to 2025
  • Table 12. Comparison of 2.5D and 3D IC Integration in HPC chips
  • Table 13. TDP Implications in Advanced Packaging
  • Table 14. 2.5D and 3D Packaging in GPUs
  • Table 15. Evolution of planar die packaging area for GPUs
  • Table 16. Cooling Strategies for High-Power 2.5D/3D Packages
  • Table 17. Advanced cooling strategies
  • Table 18. Semiconductor packaging technology
  • Table 19. Key metrics for advanced semiconductor packaging performance
  • Table 20. Interconnection techniques in semiconductor packaging
  • Table 21. Thermal management in 2.5D packaging
  • Table 22. Bumping Technology Overview
  • Table 23. Challenges in scaling bumps
  • Table 24. 3.8 micrometer bump for advanced semiconductor packaging
  • Table 25. Bumpless Cu-Cu hybrid bonding Overview
  • Table 26. Manufacturing Yield Considerations in Advanced Packaging
  • Table 27. Cost Analysis: 2.5D vs 3D Implementation Economics
  • Table 28. Substrate Technology Evolution (Silicon vs Organic vs Glass)
  • Table 29. Assembly and Test Challenges for Advanced Packages
  • Table 30. Power Delivery in Advanced Semiconductor Packaging for HPC
  • Table 31. Power Management Components for HPC chips
  • Table 32. Advanced power delivery networks for HPC packaging
  • Table 33. Overview of Power gating technology
  • Table 34. OPVR Implementation
  • Table 35. Decoupling Technology
  • Table 36. Trend Towards 3D Packaging and Advanced Thermal Management
  • Table 37. Die-Attach for CPUs, GPUs and Memory Modules
  • Table 38. Die Attach Materials Comparison
  • Table 39. TIM1 applications in advanced packaging
  • Table 40. Selection and optimization of TIM1 materials
  • Table 41. Microfluidic cooling for advanced semiconductor packaging forecast: 2026-2036 (units)
  • Table 42. Liquid Cooling Options
  • Table 43. Carbon Nanotube Thermal Interface Materials
  • Table 44. Graphene Manufacturing for TIMs
  • Table 45. Layer Count, Defect Density, and Thermal Performance
  • Table 46. Graphene-Polymer Composites for TIM Applications
  • Table 47. Graphene Oxide vs Reduced Graphene Oxide Trade-offs
  • Table 48. Vertical Graphene Structures for Enhanced Heat Transfer
  • Table 49. Graphene-metal matrix composites
  • Table 50. Cost Reduction Roadmap for Graphene Materials
  • Table 51. Aerogel-Based Thermal Solutions
  • Table 52. Metamaterial heat spreaders
  • Table 53. Bio-inspired thermal management approaches
  • Table 54. Comparison of Liquid Cooling Technologies
  • Table 55. Power Limitation of Different Cooling on Rack Level
  • Table 56. Chip-level cooling approaches
  • Table 57. Hybrid Cooling System Performance Comparison
  • Table 58. Thermoelectric Cooling Integration Specifications
  • Table 59. Heat Recovery System Economics
  • Table 60. Cooling System Reliability Analysis
  • Table 61. Cooling Technology Comparison
  • Table 62. Market share forecast of TIM1 and TIM1.5 for advanced semiconductor packaging forecast, by type 2026-2036
  • Table 63. TIM1 and TIM1.5 for advanced semiconductor packaging, revenues forecast by type, 2026-2036
  • Table 64. TIM1 and TIM1.5 area forecast for advanced semiconductor packaging, 2026-2036
  • Table 65. TIM1 and TIM1.5 market size forecast for advanced semiconductor packaging 2026-2036
  • Table 66. Thermal Management Market by Package Type, 2026-2036
  • Table 67. Package Size Impact Analysis
  • Table 68. Liquid cooling for data center forecast 2025-2036
  • Table 69. Liquid Cooling Market Penetration by Segment, 2025-2036
  • Table 70. Advanced Thermal Materials Market Forecast, 2026-2036
  • Table 71. Geographic Market Analysis

List of Figures

  • Figure 1. Scheme of the three essential components in power devices thermal management and the big gap between the theoretical limit and current developed TIMs
  • Figure 2. Schematic of thermal interface materials used in a flip chip package
  • Figure 3. Evolution roadmap of semiconductor packaging
  • Figure 4. 2.5D packaging structure
  • Figure 5. CoWoS - development progress and roadmap
  • Figure 6. Typical IC package construction identifying TIM1 and TIM2
  • Figure 7. Transtherm-R PCMs
  • Figure 8. Carbice carbon nanotubes
  • Figure 9. Internal structure of carbon nanotube adhesive sheet
  • Figure 10. Carbon nanotube adhesive sheet
  • Figure 11. HI-FLOW Phase Change Materials
  • Figure 12. Shinko Carbon Nanotube TIM product
  • Figure 13. The Sixth Element graphene products
  • Figure 14. Thermal conductive graphene film
  • Figure 15. Submer's immersion cooling tanks
  • Figure 16. VB Series of TIMS from Zeon