全球气凝胶市场(2026-2036)
市场调查报告书
商品编码
1858289

全球气凝胶市场(2026-2036)

The Global Aerogels Market 2026-2036

出版日期: | 出版商: Future Markets, Inc. | 英文 325 Pages, 61 Tables, 42 Figures | 订单完成后即时交付

价格
简介目录

全球气凝胶产业正经历前所未有的变革,从利基特殊材料领域转型为主流技术平台,其应用范围广泛,涵盖电动车电池、建筑保温、航空航天系统和生物医学设备等领域。这种充满活力的市场演变既反映了气凝胶的独特性能(一种超轻材料,具有卓越的隔热性能、高比表面积和显着的孔隙率),也体现了人们日益认识到其在解决能源效率、热管理和可持续製造等关键挑战方面的潜力。

气凝胶市场格局正快速整合,既有老牌企业,也有创新新晋企业。像 Aspen Aerogels 和 Cabot Corporation 这样的传统企业在不断推动其核心二氧化硅气凝胶技术的同时,也积极拓展电动车隔热层和先进建筑保温系统等高成长应用领域。同时,从大学衍生企业到正在拓展产品组合的成熟材料公司,许多新晋企业正在推出创新产品,争夺新的市场机会。这种竞争环境正在加速多方面的创新。虽然二氧化硅气凝胶在商业产品类别中仍占主导地位,但聚合物和生物聚合物气凝胶正获得显着发展势头。各公司正在开发针对特定应用的专用配方,例如用于储能电极的碳气凝胶、用于 5G 通讯基础设施的聚合物气凝胶以及用于永续包装和生物医学应用的生物基气凝胶。

製造工艺创新是竞争的关键领域。各公司正在探索多种策略来降低製造成本并提高可扩展性,从无需昂贵的超临界处理的大气干燥技术到提高产量的连续製造系统。先进的 3D 列印技术能够实现以前无法实现的复杂气凝胶形状,而可持续原材料的开发则有助于解决环境问题并增强供应链的韧性。数位技术的整合显着提升了气凝胶的开发和製造。计算建模加速了材料设计,而先进的表征技术能够精确控制孔隙结构、热性能和机械性能。这些能力对于满足各行各业日益严格的应用要求至关重要。

电动车应用或许已成为最重要的驱动因素,气凝胶提供的热管理解决方案对于电池的安全性和性能至关重要。随着电动车在全球的普及,采用气凝胶屏障的热失控预防系统正成为标准安全功能,这为特种材料供应商创造了巨大的市场机会。

建筑和施工应用不断扩展,不再局限于传统的隔热材料,而是涵盖高性能窗户、隔热解决方案以及旨在实现净零能耗的整合式建筑系统。在航空航太和国防领域,气凝胶正被用于热防护系统、轻质结构部件和先进电子设备的冷却。生物医学应用是一个特别活跃的研究领域,其发展成果包括组织工程支架、伤口癒合材料和控释药物系统。环境应用,例如碳捕获技术和水净化系统,在应对全球永续发展挑战的同时,也创造了新的商业机会。

气凝胶市场的发展轨迹反映了能源效率、永续性和先进材料性能的更广泛趋势。 随着製造成本持续下降和应用知识的不断拓展,气凝胶将成为多个产业的主流解决方案。

本报告深入分析了全球气凝胶市场,透过全面的公司概况和详细的市场预测,考察了其製造规模、成本结构、竞争格局和新兴应用机会。

目录

第1章 摘要整理

  • 气凝胶的特性
  • 气凝胶的用途
  • 气凝胶市场上竞争要素
  • 市场促进因素和趋势
  • 气凝胶製造商生产能力和製造流程
  • 市场与技术的课题
  • 气凝胶的市场规模与预测(~2036年)
  • 竞争情形

第2章 简介

  • 气凝胶
  • 生产工艺
  • 二氧化硅气凝胶
  • 类气凝胶聚合物泡沫
  • 金属氧化物气凝胶
  • 有机气凝胶
  • 3D列印气凝胶
  • 混合气凝胶与复合材料气凝胶气凝胶
  • 技术成熟度等级 (TRL)

第3章 生产方式

  • 概要
  • 溶胶凝胶法
  • 气凝胶的3D列印
  • 干燥方法
  • 成本
  • 製造规模扩大的课题

第4章 气凝胶的市场与用途

  • 竞争情形
  • EV用电池
  • 石油、天然气
  • 建筑·建设
  • 能源储存
  • 生物医学
  • 低温运输包装
  • 电子通讯
  • 过滤·分离·吸着
  • 纤维
  • 食品
  • 催化剂
  • 油漆和涂料
  • 航太·防卫
  • 化妆品
  • 其他的市场与用途

第5章 气凝胶的专利

  • 专利申请

第6章 气凝胶企业的简介(企业52公司的简介)

第7章 调查范围和调查手法

第8章 参考文献

简介目录

The global aerogel industry is experiencing unprecedented transformation as it transitions from a niche specialty materials sector into a mainstream technology platform with applications spanning electric vehicle batteries, building insulation, aerospace systems, and biomedical devices. This dynamic market evolution reflects both the unique properties of aerogels-ultralight materials with exceptional thermal insulation, high surface area, and remarkable porosity-and the growing recognition of their potential to address critical challenges in energy efficiency, thermal management, and sustainable manufacturing.

The aerogel landscape is undergoing rapid restructuring driven by both established players and innovative newcomers. Traditional manufacturers like Aspen Aerogels and Cabot Corporation continue advancing their core silica aerogel technologies while expanding into high-growth applications such as electric vehicle thermal barriers and advanced building insulation systems. Simultaneously, a wave of new entrants-ranging from university spin-offs to established materials companies diversifying their portfolios-are introducing novel products and competing for emerging market opportunities. This competitive environment has accelerated innovation across multiple dimensions. While silica aerogels maintain their position as the dominant commercial product category, polymer and biopolymer aerogels are gaining significant traction. Companies are developing specialized formulations targeting specific applications: carbon aerogels for energy storage electrodes, polymer aerogels for 5G telecommunications infrastructure, and bio-based aerogels for sustainable packaging and biomedical applications.

Manufacturing process innovation represents a critical competitive frontier. Companies are pursuing multiple strategies to reduce production costs and improve scalability, from ambient pressure drying techniques that eliminate expensive supercritical processing to continuous manufacturing systems that enhance throughput. Advanced 3D printing technologies are enabling complex aerogel geometries previously impossible to achieve, while sustainable feedstock development is addressing environmental concerns and supply chain resilience. The integration of digital technologies is significantly enhancing aerogel development and manufacturing. Computational modelling accelerates materials design, while advanced characterization techniques enable precise control over pore structure, thermal properties, and mechanical performance. These capabilities are essential for meeting increasingly stringent application requirements across diverse industries.

Electric vehicle applications have emerged as perhaps the most significant growth driver, with aerogels providing critical thermal management solutions for battery safety and performance. As EV adoption accelerates globally, thermal runaway protection systems incorporating aerogel barriers are becoming standard safety features, creating substantial market opportunities for specialized materials suppliers.

Building and construction applications continue expanding beyond traditional insulation, encompassing high-performance windows, thermal bridge solutions, and integrated building systems designed for net-zero energy performance. The aerospace and defense sectors are adopting aerogels for thermal protection systems, lightweight structural components, and advanced electronics cooling applications. Biomedical applications represent a particularly active research area, with developments in tissue engineering scaffolds, wound healing materials, and controlled drug release systems. Environmental applications, including carbon capture technologies and water purification systems, address global sustainability challenges while creating new commercial opportunities.

The aerogel market's trajectory reflects broader trends toward energy efficiency, sustainability, and advanced materials performance. As manufacturing costs continue declining and application knowledge expands, aerogels are positioned to become mainstream solutions across multiple industries.

"The Global Aerogels Market 2026-2036" provides strategic intelligence for materials manufacturers, end-users, investors, and technology developers navigating this rapidly evolving market. Analysis encompasses silica, polymer, carbon, and bio-based aerogel technologies, examining manufacturing scalability, cost structures, competitive dynamics, and emerging application opportunities through comprehensive company profiles and detailed market forecasts.

Report Contents include:

  • Comprehensive analysis of aerogel properties including thermal conductivity benchmarking, density comparisons, and mechanical characteristics
  • EV battery pack applications as primary growth driver with detailed thermal runaway protection analysis
  • Competitive landscape assessment covering 54+ global manufacturers
  • Market drivers spanning energy efficiency regulations, thermal management requirements, and sustainability mandates
  • Manufacturing capacity analysis by geography with focus on China's dominance in production versus revenue
  • Technology and market challenges including cost barriers, dust generation concerns, and integration complexities
  • Market forecasts 2026-2036 segmented by aerogel type (silica, polymer, carbon), end-use market, and geographic region
  • Technology & Materials Analysis
    • Detailed aerogel classification covering inorganic, organic, and composite materials
    • Manufacturing processes including supercritical drying, ambient pressure drying, and rapid extraction techniques
    • Silica aerogel products: monoliths, powders, granules, blankets, boards, and renders with SWOT analyses
    • Advanced composites using organic crosslinkers and fiber reinforcement
    • Sustainable feedstock development from food waste, textile waste, and agricultural byproducts
    • Polymer aerogels including polyimide, polyurethane, and resorcinol-formaldehyde systems
    • Bio-based aerogels: cellulose nanofibers, alginate, starch, chitosan, protein, pectin, and agar materials
    • Carbon aerogels, graphene aerogels, and carbon nanotube architectures
    • 3D printing technologies for complex aerogel geometries
    • Hybrid and composite systems including metal-organic framework aerogels
  • Manufacturing & Production
    • Sol-gel chemistry fundamentals and process optimization
    • Supercritical CO2 drying with closed-loop systems and autoclave technologies
    • Ambient pressure drying innovations reducing production costs
    • Scale-up challenges from laboratory to commercial manufacturing
    • Cost analysis by aerogel type and production method
    • QT-polysiloxane enabler technologies
  • Applications & Markets
    • EV Batteries: Thermal runaway protection, fire safety regulations (UN GTR 20, GB 38031-2020), material intensity analysis, integration strategies, and comprehensive company assessment
    • Oil & Gas: Refinery insulation, cryogenic pipeline applications, LNG facilities
    • Building & Construction: Sustainable insulation materials, panels, renders, plasters, window glazing systems, industrial insulation standards (EN 17956)
    • Energy Storage: Silicon anodes, lithium-sulfur batteries, electrode materials, supercapacitors, hydrogen storage
    • Biomedical: Drug delivery systems, tissue engineering scaffolds, wound dressings, medical implants with sterilization protocols
    • Electronics & Telecommunications: EMI shielding, thermal management, 5G antenna substrates, low-loss dielectric materials
    • Environmental Applications: Water treatment, heavy metal removal, oil spill remediation, CO2 capture and direct air capture systems
    • Textiles: Winter sports apparel, luxury fashion applications, protective equipment, footwear
    • Aerospace & Defense: Thermal protection systems, vibration suppression, NASA applications, crash absorbers
    • Additional Markets: Cold-chain packaging, cosmetics, catalysts, paints/coatings, food applications, solar energy, passive cooling
  • Patent Landscape
    • Analysis of 2010-2024 patent filings by technology area, assignee, and geography
    • Intellectual property trends and competitive positioning
  • Company Profiles Detailed profiles of 54 aerogel manufacturers including:
    • Production capacity and manufacturing processes
    • Product portfolios and specifications
    • Target markets and applications
    • Recent developments and strategic initiatives
    • Companies profiled include: ABIS Aerogel Co., Ltd., Active Aerogels, Aerobel BV, Aerofybers Technologies SL, aerogel-it GmbH, Aerogel Core Ltd, Aerogel Technologies LLC, Aerogel Coating Technologies, Aerogel Inside, AeroShield Materials Inc., AGITEC International AG, Armacell International S.A., Aspen Aerogels, Inc., BASF SE, Blueshift Materials, Inc., Cabot Corporation, Dongjin Semichem, Dragonfly Insulation, Elisto GmbH, Enersens SAS, Fibenol, Fuji Silysia Chemical Ltd., Gelanggang Kencana Sdn. Bhd., Graphene Composites Limited, Guangdong Alison Hi-Tech Co., Ltd., Hebei Jinna Technology Co., Ltd., IBIH Advanced Materials, Hokuetsu Toyo Fibre Co., Ltd., JIOS Aerogel, Joda Technology Co., Ltd., Keey Aerogel and more.......

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Aerogel Properties
  • 1.2. Aerogel Applications
  • 1.3. Competitive Factors in the Aerogels Market
  • 1.4. Market Drivers and Trends
  • 1.5. Aerogel Manufacturer Production Capacity and Manufacturing Processes
    • 1.5.1. Technology Evolution Enabling Capacity Growth
    • 1.5.2. Cost Reduction Trajectory
    • 1.5.3. Regional Capacity Analysis and Utilization Rates
      • 1.5.3.1. North America
      • 1.5.3.2. China
      • 1.5.3.3. Europe
      • 1.5.3.4. South Korea
      • 1.5.3.5. Japan
      • 1.5.3.6. Rest of World
  • 1.6. Market and Technology Challenges
  • 1.7. Aerogel Market Size and Forecast to 2036
    • 1.7.1. 2024 Market Composition by Value
    • 1.7.2. Company Performance and Market Share Analysis
      • 1.7.2.1. Aspen Aerogels, Inc.
      • 1.7.2.2. Cabot Corporation
      • 1.7.2.3. Armacell International S.A.
      • 1.7.2.4. Guangdong Alison Hi-Tech Co., Ltd.
    • 1.7.3. By Aerogel Type
      • 1.7.3.1. Silica Aerogels
        • 1.7.3.1.1. Manufacturing Maturity
        • 1.7.3.1.2. Applications
        • 1.7.3.1.3. Competitive Dynamics
        • 1.7.3.1.4. Technology Trends and Future Development:
        • 1.7.3.1.5. Market Share Erosion but Absolute Growth
      • 1.7.3.2. Polymer Aerogels
        • 1.7.3.2.1. Material Types and Properties
        • 1.7.3.2.2. Applications
        • 1.7.3.2.3. Manufacturing and Cost Structure
        • 1.7.3.2.4. Competitive Landscape
        • 1.7.3.2.5. Technology Development Priorities
        • 1.7.3.2.6. Market Growth Drivers
      • 1.7.3.3. Carbon Aerogels
        • 1.7.3.3.1. Material Properties and Characteristics
        • 1.7.3.3.2. Cost Structure
        • 1.7.3.3.3. Applications
        • 1.7.3.3.4. Technology Development Priorities
        • 1.7.3.3.5. Market Growth Drivers
      • 1.7.3.4. Hybrid/Composite Aerogels: Engineered Multi-Functionality
        • 1.7.3.4.1. Material Types and Architectures
        • 1.7.3.4.2. Applications
        • 1.7.3.4.3. Technology Development Priorities
        • 1.7.3.4.4. Market Growth Drivers
      • 1.7.3.5. Other Aerogel Types: Emerging Technologies
        • 1.7.3.5.1. Material Types
    • 1.7.4. By End Use Market
    • 1.7.5. EV Battery Thermal Barriers: The Dominant Growth Engine
      • 1.7.5.1. Regulatory Drivers
      • 1.7.5.2. Market Penetration Dynamics
      • 1.7.5.3. Geographic Penetration Patterns
      • 1.7.5.4. Technology and Product Evolution
      • 1.7.5.5. Content per Vehicle Trends
      • 1.7.5.6. Competitive Dynamics and Market Share Evolution
      • 1.7.5.7. Growth Projections Methodology and Assumptions
      • 1.7.5.8. Alternative Scenarios
    • 1.7.6. Oil & Gas Pipeline Insulation
      • 1.7.6.1. Market Composition by Pipeline Type
        • 1.7.6.1.1. Subsea Oil & Gas Pipelines
        • 1.7.6.1.2. Onshore Heated Oil Pipelines
        • 1.7.6.1.3. LNG and Cryogenic Applications
        • 1.7.6.1.4. Industrial Process Pipelines
      • 1.7.6.2. Market Trends and Outlook:
    • 1.7.7. By Region
      • 1.7.7.1. North America
      • 1.7.7.2. Europe
      • 1.7.7.3. China
      • 1.7.7.4. Japan
      • 1.7.7.5. Rest of Asia-Pacific (excluding China and Japan)
      • 1.7.7.6. Rest of World (Middle East, Africa, Latin America)
  • 1.8. Competitive Landscape
    • 1.8.1. Market Structure and Concentration
    • 1.8.2. Strategic Group Analysis
      • 1.8.2.1. Group 1: Global Technology Leaders
      • 1.8.2.2. Group 2: Diversified Insulation Leaders
      • 1.8.2.3. Group 3: Chinese Volume Manufacturers
      • 1.8.2.4. Group 4: Niche Specialists & Regional Players
    • 1.8.3. Competitive Battlegrounds: Where Competition Is Intensifying
      • 1.8.3.1. Battleground 1: Mass-Market EV Segment ($30-50K Vehicles)
      • 1.8.3.2. Battleground 2: Industrial Insulation Market
      • 1.8.3.3. Battleground 3: Particles vs. Blankets Format War
      • 1.8.3.4. Battleground 4: Geographic Market Control - China

2. INTRODUCTION

  • 2.1. Aerogels
    • 2.1.1. Origin of Aerogels
    • 2.1.2. Classification
    • 2.1.3. Aerogel Forms
    • 2.1.4. Commercially available aerogels
  • 2.2. Manufacturing processes
    • 2.2.1. Supercritical Drying Process
      • 2.2.1.1. Closed Loop Systems
      • 2.2.1.2. Autoclave Loading and Operational Efficiency
    • 2.2.2. Ambient Pressure Drying Process
  • 2.3. Silica aerogels
    • 2.3.1. Properties
      • 2.3.1.1. Thermal conductivity and density
      • 2.3.1.2. Mechanical
      • 2.3.1.3. Silica aerogel precursors
    • 2.3.2. Products
      • 2.3.2.1. Monoliths
        • 2.3.2.1.1. Properties
        • 2.3.2.1.2. Monoliths prepared under ambient pressure
        • 2.3.2.1.3. Scalable monolithic sheet production for windows
        • 2.3.2.1.4. Alternative monolithic aerogel manufacturing processes
      • 2.3.2.2. Powder
        • 2.3.2.2.1. Key characteristics
        • 2.3.2.2.2. Silica Aerogel powder manufacturing processes
        • 2.3.2.2.3. Powders and granules prepared under ambient pressure
      • 2.3.2.3. Granules
      • 2.3.2.4. Blankets
      • 2.3.2.5. Aerogel boards
      • 2.3.2.6. Aerogel renders
      • 2.3.2.7. Silica aerogel from sustainable feedstocks
      • 2.3.2.8. Silica composite aerogels
        • 2.3.2.8.1. Organic crosslinkers
        • 2.3.2.8.2. Composites from powders and granules
        • 2.3.2.8.3. Opacified aerogels
        • 2.3.2.8.4. Commercial activity
    • 2.3.3. Cost
    • 2.3.4. Main Companies and Products
  • 2.4. Aerogel-like polymer foams
    • 2.4.1. Properties
    • 2.4.2. Applications for aerogel-like polymer foams include:
  • 2.5. Metal oxide aerogels
  • 2.6. Organic aerogels
    • 2.6.1. Polymer-based aerogels
      • 2.6.1.1. Polyimide-graphene aerogel composites
      • 2.6.1.2. Recyclable aerogels
    • 2.6.2. Biobased aerogels (bio-aerogels)
      • 2.6.2.1. Overview
      • 2.6.2.2. Sustainable Feedstocks
        • 2.6.2.2.1. Silica aerogels derived from waste sources
          • 2.6.2.2.1.1. Food waste to bioaerogel conversion
        • 2.6.2.2.2. Commercial development
        • 2.6.2.2.3. Textile waste into high-value aerogel materials
      • 2.6.2.3. Cellulose aerogels
        • 2.6.2.3.1. Cellulose nanofiber (CNF) aerogels
        • 2.6.2.3.2. Cellulose nanocrystal aerogels
        • 2.6.2.3.3. Bacterial nanocellulose aerogels
      • 2.6.2.4. Lignin aerogels
      • 2.6.2.5. Alginate aerogels
      • 2.6.2.6. Starch aerogels
      • 2.6.2.7. Chitosan aerogels
      • 2.6.2.8. Protein aerogels
        • 2.6.2.8.1. Albumin aerogels
        • 2.6.2.8.2. Casein aerogels
        • 2.6.2.8.3. Gelatin aerogels
        • 2.6.2.8.4. Whey protein isolate aerogels
      • 2.6.2.9. Silk fiber
      • 2.6.2.10. Pectin composite aerogels for thermal superinsulation
      • 2.6.2.11. Agar aerogels for biomedical applications
    • 2.6.3. Carbon aerogels
      • 2.6.3.1. Manufacturing and properties
      • 2.6.3.2. Carbon nanotube aerogels
      • 2.6.3.3. Graphene and graphite aerogels
      • 2.6.3.4. MXene materials
      • 2.6.3.5. Graphitic Networks on Polyimide Aerogels
      • 2.6.3.6. Graphene (Hybrid Systems)
      • 2.6.3.7. Carbon aerogel manufacturers
  • 2.7. 3D printed aerogels
    • 2.7.1. 3D printing processes and applications
    • 2.7.2. Carbon nitride
    • 2.7.3. Gold
    • 2.7.4. Cellulose
    • 2.7.5. Graphene oxide
  • 2.8. Hybrid and composite aerogels
    • 2.8.1. Mixed oxide aerogels
    • 2.8.2. Metal oxide aerogel composites
    • 2.8.3. Carbon-based aerogel composites
    • 2.8.4. Metal Organic Framework Aerogel Composites (MOFACs)
  • 2.9. Technology Readiness Level (TRL)

3. PRODUCTION METHODS

  • 3.1. Overview
  • 3.2. Sol-gel process
  • 3.3. 3D printing of aerogels
  • 3.4. Drying methods
    • 3.4.1. Overview of drying methods
    • 3.4.2. Supercritical Drying
      • 3.4.2.1. Closed loop
      • 3.4.2.2. Autoclave loading
    • 3.4.3. Ambient Pressure Drying
    • 3.4.4. Rapid Supercritical Extraction (RSCE)
    • 3.4.5. Advantages and disadvantages
  • 3.5. Costs
  • 3.6. Manufacturing scale-up challenges

4. MARKETS AND APPLICATIONS FOR AEROGELS

  • 4.1. Competitive landscape
  • 4.2. EV Batteries
    • 4.2.1. Overview
    • 4.2.2. EV batteries
      • 4.2.2.1. Fire protection
      • 4.2.2.2. Thermal barriers
      • 4.2.2.3. Regulations
      • 4.2.2.4. Challenges
      • 4.2.2.5. Integration of aerogels with specialized foam materials
      • 4.2.2.6. Companies
  • 4.3. Oil and Gas
    • 4.3.1. Overview
    • 4.3.2. Applications
      • 4.3.2.1. Refineries
      • 4.3.2.2. Pipelines
  • 4.4. Building and Construction
    • 4.4.1. Overview
    • 4.4.2. Types of sustainable insulation materials
    • 4.4.3. Technical Value Proposition in Buildings
    • 4.4.4. Application Segments
      • 4.4.4.1. Historic Building Renovation
        • 4.4.4.1.1. Market Characteristics
        • 4.4.4.1.2. Typical Applications
        • 4.4.4.1.3. Geographic Distribution
        • 4.4.4.1.4. Market Dynamics
      • 4.4.4.2. Exterior Insulation Finishing Systems (EIFS) and Facades
        • 4.4.4.2.1. Market Characteristics
        • 4.4.4.2.2. Applications
        • 4.4.4.2.3. Geographic Distribution
        • 4.4.4.2.4. Market Dynamics
        • 4.4.4.2.5. Technology Development
      • 4.4.4.3. Window Glazing and Daylighting Systems
        • 4.4.4.3.1. Market Characteristics
        • 4.4.4.3.2. Technology Description
        • 4.4.4.3.3. Technical Performance
        • 4.4.4.3.4. Applications
        • 4.4.4.3.5. Geographic Distribution
        • 4.4.4.3.6. Market Dynamics
        • 4.4.4.3.7. Technology Development
      • 4.4.4.4. High-Performance Residential and Commercial Insulation
        • 4.4.4.4.1. Market Characteristics
        • 4.4.4.4.2. Geographic Distribution
        • 4.4.4.4.3. Market Dynamics
        • 4.4.4.4.4. Growth Trajectory
      • 4.4.4.5. Industrial insulation
      • 4.4.4.6. Other Building Applications
      • 4.4.4.7. Manufacturing and Cost Economics for Building Applications
        • 4.4.4.7.1. Cost Reduction Pathway
      • 4.4.4.8. Regulatory Environment and Building Codes
        • 4.4.4.8.1. Regulatory Evolution
      • 4.4.4.9. Market Growth Drivers
  • 4.5. Energy Storage
    • 4.5.1. Overview
    • 4.5.2. Applications
      • 4.5.2.1. Silicon anodes
      • 4.5.2.2. Li-S batteries
      • 4.5.2.3. Electrodes
      • 4.5.2.4. Thermal insulation
      • 4.5.2.5. Supercapacitors
  • 4.6. Biomedical
    • 4.6.1. Overview
    • 4.6.2. Applications
      • 4.6.2.1. Drug delivery
      • 4.6.2.2. Tissue engineering
      • 4.6.2.3. Medical implants
      • 4.6.2.4. Wound care
  • 4.7. Cold-Chain Packaging
    • 4.7.1. Overview
  • 4.8. Electronics and Telecommunications
    • 4.8.1. Overview
    • 4.8.2. Applications
      • 4.8.2.1. EMI Shielding
      • 4.8.2.2. Thermal insulation
      • 4.8.2.3. 5G
        • 4.8.2.3.1. Antenna modules
        • 4.8.2.3.2. High-performance antenna substrates
        • 4.8.2.3.3. Advanced low-loss materials
  • 4.9. Filtration, Separation, and Sorption
    • 4.9.1. Overview
    • 4.9.2. Applications
      • 4.9.2.1. Sorbents for liquids, hazardous ions (heavy metal ions) (e.g., water treatment)
      • 4.9.2.2. Sorbent for oil spills
      • 4.9.2.3. Sorbents for gases (CO2, hazardous gases, VOC)
  • 4.10. Textiles
    • 4.10.1. Overview
    • 4.10.2. Applications
      • 4.10.2.1. Winter sports apparel
      • 4.10.2.2. Consumer apparel
      • 4.10.2.3. Protective equipment
      • 4.10.2.4. Footwear applications
  • 4.11. Food
    • 4.11.1. Overview
  • 4.12. Catalysts
  • 4.13. Paint and Coatings
  • 4.14. Aerospace and Defence
    • 4.14.1. Overview
    • 4.14.2. Applications
      • 4.14.2.1. Thermal protection systems
      • 4.14.2.2. Crash absorbers
      • 4.14.2.3. Applications
  • 4.15. Cosmetics
    • 4.15.1. Overview
  • 4.16. Other markets and applications
    • 4.16.1. Sports equipment
    • 4.16.2. Fire retardant applications
    • 4.16.3. Solar energy collection
    • 4.16.4. Knudsen pumps
    • 4.16.5. Passive Cooling

5. AEROGEL PATENTS

  • 5.1. Patent applications

6. AEROGEL COMPANY PROFILES (52 company profiles)

7. RESEARCH SCOPE AND METHODOLOGY

  • 7.1. Report scope
  • 7.2. Research methodology

8. REFERENCES

Tables

  • Table 1. General properties and value of aerogels
  • Table 2. Aerogel Thermal Conductivity and Density Benchmarking
  • Table 3. Market drivers for aerogels
  • Table 4. Aerogel Manufacturer Production Capacity and Manufacturing Processes (2024)
  • Table 5. Planned Aerogel Production Expansions (2024-2027)
  • Table 6. Market and technology challenges in aerogels
  • Table 7. Global Aerogel Market Forecast 2021-2036 by Aerogel Type (Million USD)
  • Table 8. Global Aerogel Market 2024-2036 by Application (Million USD)
  • Table 9. Global Aerogel Market 2024-2036 by Region (Million USD)
  • Table 10. Aerogel Form Factors
  • Table 11. Commercially Available Aerogel Products
  • Table 12. Silica aerogel properties
  • Table 13. Chemical precursors used to synthesize silica aerogels
  • Table 14. Alternative Monolithic Aerogel Manufacturing Processes
  • Table 15. Silica Aerogel Powder Manufacturing Processes
  • Table 16. Commercially available aerogel-enhanced blankets
  • Table 17. Silica Composite Aerogels Formed from Powder and Granules - Players and Progress
  • Table 18. Commercial Silica Composite Aerogels
  • Table 19. Main manufacturers of silica aerogels and product offerings
  • Table 20. Typical structural properties of metal oxide aerogels
  • Table 21. Polymer aerogels companies
  • Table 22. Types of biobased aerogels
  • Table 23. Agar Aerogels for Biomedical Applications
  • Table 24. Carbon aerogel companies
  • Table 25. Carbon aerogel manufacturers
  • Table 26. 3D printing processes and applications
  • Table 27. Synthesis methods-Aerogels synthesised, advantages and disadvantages
  • Table 28. Silica Aerogel Powder Manufacturing Processes Using Ambient Drying
  • Table 29. Drying methods for aerogel production
  • Table 30. Advantages and disadvantages of drying methods
  • Table 31. Silica Composite Aerogels - Cost Analysis
  • Table 32. Cost Analysis by Aerogel Type
  • Table 33. Manufacturing scale-up challenges
  • Table 34. Market overview of aerogels in automotive-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 35. Properties of Aerogels and Other Fire Protection Materials
  • Table 36. Types of Fire Protection Materials
  • Table 37. Thermally Insulating Fire Protection Products for EVs
  • Table 38. Comparison of Aerogels vs Other Fire Protection Materials
  • Table 39. Comparison of Aerogel Fire Protection Materials for EV Batteries
  • Table 40. Companies producing Aerogels for EV Batteries
  • Table 41. Market overview of aerogels in oil and gas-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 42. Aerogel Products for Cryogenic Insulation
  • Table 43. Thermal Performance Comparison
  • Table 44. Aerogel Products for Windows/Daylighting
  • Table 45. Aerogel Materials for Building & Construction Applications
  • Table 46. Market overview of aerogels in energy conversion and storage-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 47. Market overview of aerogels in drug delivery-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 48. Market overview of aerogels in tissue engineering-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 49. Market overview of aerogels in medical implants-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 50. Market overview of aerogels in wound care-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 51. Market overview of aerogels in cold-chain packaging-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 52. Market overview of aerogels in electronics and Telecommunications-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 53. Aerogel Products for Electronic Appliances
  • Table 54. Market overview of aerogels in filtration, separation, and sorption-market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 55. Market overview of aerogels in textiles- market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 56. Market overview of aerogels in food- market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 57. Market overview of aerogels in catalysts-market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 58. Market overview of aerogels in paints and coatings-market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 59. Market overview of aerogels in aerospace and defence-market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 60. Market overview of aerogels in cosmetics-market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 61. Aerogel patents 2010-2024

Figures

  • Figure 1. Classification of aerogels
  • Figure 2. SLENTEX-R thermal insulation
  • Figure 3. Global Aerogel Market Forecast 2021-2036 by Aerogel Type (Million USD)
  • Figure 4. Global Aerogel Market 2024-2036 by Application (Million USD)
  • Figure 5. Global Aerogel Market 2024-2036 by Region (Million USD)
  • Figure 6. Main characteristics of aerogel type materials
  • Figure 7. Classification of aerogels
  • Figure 8. Canada Goose luxury footwear
  • Figure 9. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner
  • Figure 10. Monolithic aerogel
  • Figure 11. Aerogel granules
  • Figure 12. Internal aerogel granule applications
  • Figure 13. Slentite
  • Figure 14. Methods for producing bio-based aerogels
  • Figure 15. Types of cellulose aerogel
  • Figure 16. Lignin-based aerogels
  • Figure 17. Fabrication routes for starch-based aerogels
  • Figure 18. Schematic of silk fiber aerogel synthesis
  • Figure 19. Graphene aerogel
  • Figure 20. Commonly employed printing technologies for aerogels
  • Figure 21. Schematic for direct ink writing of silica aerogels
  • Figure 22. 3D printed aerogel
  • Figure 23. Schematic of silica aerogels synthesis
  • Figure 24. Formation of aerogels, cryogels and xerogels
  • Figure 25. Aerogel engineering strategies
  • Figure 26. 3D printed aerogels
  • Figure 27. SEM images of the microstructures of (a) alginate and (b) pectin aerogels obtained by supercritical drying, (c) cellulose aerogels by freeze-drying, and (d) silica-cellulose composite aerogels by ambient drying
  • Figure 28. Methods of gel drying
  • Figure 29. Pyrogel insulation on a heat-exchange vessel in a petrochemical plant
  • Figure 30. Aerogel construction applications
  • Figure 31. Incorporation of aerogels into textiles
  • Figure 32. Aerogel dust collector
  • Figure 33. Thermal Conductivity Performance of ArmaGel HT
  • Figure 34. SLENTEX-R roll (piece)
  • Figure 35. CNF gel
  • Figure 36. Block nanocellulose material
  • Figure 37. Keey Aerogel
  • Figure 38. Fire-resistance in Keey Aerogel
  • Figure 39. Melodea CNC suspension
  • Figure 40. Insulation of various aerogel fibres illustrated using the example of a cushion
  • Figure 41. Sunthru Aerogel pane
  • Figure 42. Quartzene-R