美国零排放电动卡车产业生命週期二氧化碳排放:评估
市场调查报告书
商品编码
1408109

美国零排放电动卡车产业生命週期二氧化碳排放:评估

Life Cycle CO2 Emissions Assessment on the US Zero-Emission Battery Electric Truck Industry

出版日期: | 出版商: Frost & Sullivan | 英文 90 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

展示了透过高效的电池製造流程和充电时间将每辆电池电动卡车的二氧化碳排放减少高达 16% 的潜力

电动卡车在全球迅速普及。虽然在运行过程中不排放二氧化碳,但在卡车充电时产生的电力会排放二氧化碳。同样,製造锂离子电池,从开采阶段到最终组装,排放大量二氧化碳,使其难以克服地缘政治挑战和资源限制,迈向清洁发电,必须追踪和解决。本研究分析了电池电动卡车的生命週期二氧化碳排放,考虑到各个方面,包括矿物提取、电池製造以及初始寿命结束后的最终回收阶段。本研究假设在美国境内进行。

研究范围涵盖美国轻型、中型和重型卡车产业的生命週期二氧化碳排放评估。该研究计算了电池製造各个阶段的二氧化碳排放,并考察了一系列可能影响 2030 年预测排放的因素。我们也研究了全球电池矿物资源、地缘政治挑战以及美国各州的发电结构。此外,还将这些结果与柴油卡车进行比较,以确定这两个车辆领域的二氧化碳总排放。全生命週期二氧化碳排放评估的结果解决了电池电动卡车是否比柴油卡车具有更清洁的排放足迹的问题。

目录

战略衝动

  • 为什么成长如此困难?
  • The Strategic Imperative 8(TM)
  • 美国电池电动卡车产业的战略要务:三大影响
  • 成长机会推动Growth Pipeline Engine(TM)

成长环境

  • 调查范围:纯电动卡车全生命週期CO2排放评估
  • 调查范围
  • 动力传动系统技术细分
  • 生长促进因子
  • 成长抑制因素
  • 生命週期二氧化碳评估:调查流程与预测先决条件

二氧化碳排放

  • 电池製造流程EV用锂离子电池概述
  • 电池製造流程:主要步骤
  • 采矿和提炼:锂
  • 采矿和提炼:钴
  • 采矿和提炼:镍
  • 采矿和提取:石墨
  • 精製和升级:主要国家和生产国
  • 活性材料生产和电池组装:製程和能源要求
  • 电池生产工厂:超级工厂位置与产能
  • 电池製造流程:煤电,全球简介
  • 电池製造过程中CO2排放:主要影响因素
  • 电池製造过程中的二氧化碳排放:对预测的影响
  • 电池製造过程中的二氧化碳排放

二氧化碳排放

  • 使用 BEV:使用案例和预测先决条件
  • 加州:发电量和电源对二氧化碳的影响
  • 德克萨斯州:发电量和电源对二氧化碳排放的影响
  • 西南:按电源分類的发电量和二氧化碳影响量
  • 加州:发电量预测、基本情景、最佳情景、最坏情景
  • 德克萨斯州:发电量预测、基本情景、最佳情景、最坏情景
  • 西南:发电量预测、基本情景、最佳情景、最差情景

LDT

  • LDT:操作特性与使用者週期概述
  • LDT:A 週期充电简介
  • LDT:循环 A 开始时的二氧化碳排放
  • LDT:Cycle D 充电简介
  • LDT:循环 D 开始时的二氧化碳排放
  • LDT:H 週期充电简介
  • LDT:循环 H 开始时的 CO2排放
  • LDT:AH 週期第一年的二氧化碳排放总量

多学科治疗

  • MDT:操作特征与使用者週期概述
  • MDT:A 週期充电简介
  • MDT:循环 A 开始时的二氧化碳排放
  • MDT:Cycle D 充电简介
  • MDT:循环 D 开始时的二氧化碳排放
  • MDT:Cycle H 电动简介
  • MDT:循环 H 开始时的 CO2排放
  • MDT:AH 週期第一年的二氧化碳排放总量

热变形温度

  • HDT:操作特性与使用者週期概述
  • HDT:循环 A 充电简介
  • HDT:循环 A 开始时的二氧化碳排放
  • HDT:D 循环充电简介
  • HDT:D循环第一次时的CO2排放
  • HDT:循环 H 充电简介
  • HDT:循环 H 开始时的 CO2排放
  • HDT:AH 週期第一年的二氧化碳排放总量

结论

  • 全生命週期二氧化碳排放评估:LDT 柴油引擎与纯电动车
  • 全生命週期二氧化碳排放评估:损益平衡点-LDT
  • 全生命週期二氧化碳排放评估:MDT 柴油引擎与纯电动车
  • 全生命週期二氧化碳排放评估:收支平衡点 - MDT
  • 全生命週期二氧化碳排放评估:HDT 柴油与纯电动车
  • 全生命週期二氧化碳排放评估:损益平衡点 - HDT

成长机会宇宙

  • 成长机会 1:透过追踪二氧化碳排放开拓新的收益来源
  • 成长机会2:电池设计与製程改进
  • 成长机会3:卡车OEM可能会注意到地缘政治限制并在地理边界内进行垂直整合

下一步

简介目录
Product Code: PECC-42

Efficient Battery Manufacturing Processes and Charging Time Demonstrate Potential Reductions in CO2 Emissions per Battery Electric Truck by Up to 16%

Electric trucks are seeing rapid adoption globally. Although they do not emit CO2 during operations, the electricity for charging trucks emits CO2 during generation. Similarly, to manufacture the Li-ion battery, from the mining stages to final assembly, the quantum of CO2 emitted is high and needs to be tracked and addressed by overcoming geopolitical challenges and resource constraints and shifting to cleaner electricity generation. The study analyzes the life cycle CO2 emissions of a battery electric truck considering all aspects, including minerals mining, battery manufacturing, and the final recycling stage after the end of its first life. The study assumes the vehicle operates in the United States.

The scope covers the complete life cycle CO2 emission assessment for the battery electric truck industry in the United States across light-, medium-, and heavy-duty segments. The study calculates C02 emissions for each stage of battery manufacturing. It also considers overarching factors that could potentially impact emissions for forecasts to 2030. The research also explores global resources of battery minerals, geopolitical challenges, and the electricity generation mix among US states. It also compares these results with diesel trucks to gauge the total CO2 emissions of both vehicle segments. Findings from the total life cycle CO2 emissions assessment address questions on whether the emission trail of battery electric trucks is cleaner than that of diesel trucks.

Table of Contents

Strategic Imperatives

  • Why Is It Increasingly Difficult to Grow?
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on the US Battery Electric Truck Industry
  • Growth Opportunities Fuel the Growth Pipeline Engine™

Growth Environment

  • Scope of Study: Total Life Cycle CO2 Emission Assessment of a Battery Electric Truck
  • Research Scope
  • Powertrain Technology Segmentation
  • Growth Drivers
  • Growth Restraints
  • Life Cycle CO2 Assessment: Study Flow and Forecast Assumptions

CO2 Emissions:

  • Battery Manufacturing Process: Overview of EV Li-ion Battery
  • Battery Manufacturing Process: Major Process Steps
  • Mining and Extraction: Lithium
  • Mining and Extraction: Cobalt
  • Mining and Extraction: Nickel
  • Mining and Extraction: Graphite
  • Refining and Upgrade: Major Countries and Producers
  • Active Material Production and Cell Assembly: Process and Energy Demand
  • Battery Production Plants: Gigafactory Locations and Capacities
  • Battery Manufacturing Process: Coal-based Electricity, Global Snapshot
  • CO2 Emissions in Battery Manufacturing Process: Key Impact Factors
  • CO2 Emissions in Battery Manufacturing Process: Impact on Forecast
  • CO2 Emissions in the Battery Manufacturing Process

CO2 Emissions:

  • BEV Usage: Use Case and Forecast Assumptions
  • California: Electricity Generation by Source and CO2 Impact
  • Texas: Electricity Generation by Source and CO2 Impact
  • Southwest: Electricity Generation by Source and CO2 Impact
  • California: Electricity Generation Forecast, Base, Best, and Worst-case Scenarios
  • Texas: Electricity Generation Forecast, Base, Best, and Worst-case Scenarios
  • Southwest: Electricity Generation Forecast, Base, Best, and Worst-case Scenarios

LDT

  • LDT: Operational Characteristics and User Cycle Overview
  • LDT: Cycle A Charging Snapshot
  • LDT: Cycle A First-life CO2 Emissions
  • LDT: Cycle D Charging Snapshot
  • LDT: Cycle D First-life CO2 Emissions
  • LDT: Cycle H Charging Snapshot
  • LDT: Cycle H First-life CO2 Emissions
  • LDT: Cycle A-H Total CO2 Emissions in First Life

MDT

  • MDT: Operational Characteristics and User Cycle Overview
  • MDT: Cycle A Charging Snapshot
  • MDT: Cycle A First-life CO2 Emissions
  • MDT: Cycle D Charging Snapshot
  • MDT: Cycle D First-life CO2 Emissions
  • MDT: Cycle H Charging Snapshot
  • MDT: Cycle H First-life CO2 Emissions
  • MDT: Cycle A-H Total CO2 Emissions in First Life

HDT

  • HDT: Operational Characteristics and User Cycle Overview
  • HDT: Cycle A Charging Snapshot
  • HDT: Cycle A First-life CO2 Emissions
  • HDT: Cycle D Charging Snapshot
  • HDT: Cycle D First-life CO2 Emissions
  • HDT: Cycle H Charging Snapshot
  • HDT: Cycle H First-life CO2 Emissions
  • HDT: Cycle A-H Total CO2 Emissions in First Life

Conclusion

  • Total Life Cycle CO2 Emissions Assessment: LDT-Diesel vs BEV
  • Total Life Cycle CO2 Emissions Assessment: Break-even Point-LDT
  • Total Life Cycle CO2 Emissions Assessment: MDT-Diesel vs BEV
  • Total Life Cycle CO2 Emissions Assessment: Break-even Point-MDT
  • Total Life Cycle CO2 Emissions Assessment: HDT-Diesel vs BEV
  • Total Life Cycle CO2 Emissions Assessment: Break-even Point-HDT

Growth Opportunity Universe

  • Growth Opportunity 1: CO2 Emissions Tracking to Open New Revenue Streams
  • Growth Opportunity 2: Improved Battery Design and Processes
  • Growth Opportunity 3: Truck OEMs to Be Mindful of Geopolitical Constraints and Vertically Integrate within Geographical Boundaries

Next Steps

  • Your Next Steps
  • Why Frost, Why Now?
  • List of Exhibits
  • Legal Disclaimer