封面
市场调查报告书
商品编码
1630587

2024 年通讯服务供应商的人工智慧成长机会

Growth Opportunities for Telecommunications Service Providers in Artificial Intelligence, 2024

出版日期: | 出版商: Frost & Sullivan | 英文 60 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

人工智慧驱动的创新创造了新的收益来源、业务效率和客户价值

人工智慧是指模仿人类智慧并透过自学能力协助决策的技术。机器学习 (ML) 是人工智慧的一个子领域,专注于模仿人类的学习方式,涉及开发和使用无需遵循明确指令即可学习和适应的演算法。

电信业者已成为采购人工智慧技术的重要通路合作伙伴。通讯业者凭藉与企业密切合作建立解决方案、提供专业服务和託管服务以及整合基于人工智慧的工具和平台的能力,正在成为生态系统中的重要参与者。

所有主要通讯业者都已开始部署人工智慧技术,但成熟度处于不同阶段,从概念验证到多种人工智慧使用案例的大规模部署。人工智慧的采用需要明确的策略和蓝图。很少有通讯业者拥有支援统一企业资料池(包含从即时来源收集的资料)的架构,这表明缺乏支援人工智慧应用的资料准备。这导致为 GenAI 应用训练 AI 模型变得困难且 AI 结果不佳。

报告确定了通讯业者领域新兴的人工智慧使用案例、横向业务功能、市场驱动因素以及影响人工智慧市场的限制因素。这也为通讯业者探索特定产业的人工智慧解决方案和资料管理提供了机会。

Frost&Sullivan 对各个地区的知名通讯业者进行了深入的初步采访,以製定竞争概况并了解相关的人工智慧发展、策略和价值提案。此外,还从内部资料库以及财务报告、行业协会、统计机构和专业网站等公开资讯来源进行了二次研究。

目录

战略问题

  • 成长为何变得越来越艰难?
  • The Strategic Imperative 8(TM)
  • 三大策略要务对通讯服务供应商(电信公司)人工智慧应用的影响

成长机会分析

  • 分析范围
  • 调查方法与流程
  • 主要竞争对手
  • 成长动力
  • 成长抑制因素
  • 人工智慧市场通讯业者领域的人工智慧应用:各有不同但相互关联
  • 通讯业者采用人工智慧:利用基于人工智慧的模型改善企业决策
  • 通讯业者采用人工智慧:用途和影响
  • 通讯业者AI 应用:投资
  • 利用人工智慧创造新的收益来源:通讯业者从连结服务转向资讯服务
  • 利用人工智慧创造新收益:通讯业者的新经营模式
  • 利用人工智慧创造新的收益来源:GenAI 和 Edge AI
  • 应用人工智慧创造新收益源:企业对企业 (B2B) 领域的使用案例
  • 应用人工智慧创造新收益源:通讯业者的全新 B2B 产品组合
  • 利用人工智慧创造新收益来源:各行业主要通讯业者使用案例
  • 利用人工智慧创造新的收益来源通讯业者的网路营运管理
  • 利用人工智慧创造新收益来源:通讯业者的网路营运管理通讯业者的客户体验管理

公司简介

  • 比较顶级人工智慧倡议
  • SK Telecom:人工智慧的主要发展
  • SK Telecom:2022 年及以后的全球 AI 公司定位
  • KT 公司:AI 专注于领域
  • KT Corporation:为 2024 年及以后的 AICT 公司定位
  • Telefonica:认知平台的建构模组
  • 西班牙电信:AI 重点关注领域
  • 西班牙电信:人工智慧实施计画将于 2024 年启动
  • 沃达丰:人工智慧的关键发展
  • 沃达丰:多供应商 AI 架构将于 2024 年发布
  • Verizon:AI 重点关注领域
  • Verizon:2024 年 AI 策略公布
  • AT&T 关键 AI 发展
  • AT&T 的主要 AI 重点领域

成长机会宇宙

  • 成长机会一:人工智慧专业服务
  • 成长机会二:人工智慧产业解决方案
  • 成长机会三:对话平台
  • 成长机会#4:自主网络

后续步骤Next steps

  • 成长机会的好处和影响
  • 行动项目和后续步骤
  • 附件列表
  • 免责声明
简介目录
Product Code: KB33-67

AI-powered Innovation Unlocks New Revenue Streams, Operational Efficiency, and Customer Value

AI refers to technologies that emulate human intelligence and assist decision-making with self-learning capabilities. Machine learning (ML) is a sub-field of AI that focuses on imitating how humans learn and includes the development and use of algorithms that can learn and adapt without following explicit instructions.

Telcos have emerged as essential channel partners for procuring AI technology. Their ability to work closely with enterprises to build solutions, offer professional and managed services, and integrate AI-based tools and platforms make them crucial ecosystem participants.

All major telcos have started implementing AI technology; however, they are at different stages of maturity-from proofs of concept to deploying multiple AI use cases in scale. A clear strategy and roadmap articulation are critical in AI adoption. Few telcos have architectures that support integrated enterprise data pools, including data gathered from real-time sources, indicating low data readiness to support AI applications. This results in difficulty training AI models for GenAI applications and ineffective AI outcomes.

This report highlights emerging AI use cases across telcos and horizontal business functions, drivers, and restraints impacting the AI market. It also offers telcos opportunities to explore industry-specific AI solutions and data management.

Frost & Sullivan conducted detailed primary interviews with telcos that stand out in different regions to generate a competitive profile and understand relevant AI developments, strategies, and value propositions. In addition, we performed extensive secondary research across our internal database and other public information sources, such as financial reports, industry associations, statistic agencies, and specialized websites.

Table of Contents

Strategic Imperatives

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on AI's Applications for Telecommunications Service Providers (Telcos)

Growth Opportunity Analysis

  • Scope of Analysis
  • Research Process and Methodology
  • Key Competitors
  • Growth Drivers
  • Growth Restraints
  • AI Adoption in Telcos' Segments of the AI Market: Distinct yet Interrelated
  • AI Adoption in Telcos: Enterprise Decision-making Evolution with AI-based Models
  • AI Adoption in Telcos: Utilization and Impact
  • AI Adoption in Telcos: Investment
  • Applying AI to Generate New Revenue Streams: Telcos Shift from Connectivity to Data Services
  • Applying AI to Generate New Revenue Streams: Telcos' New Business Models
  • Applying AI to Generate New Revenue Streams: GenAI and Edge AI
  • Applying AI to Generate New Revenue Streams: Use Cases in the Business-to-Business (B2B) Segment
  • Applying AI to Generate New Revenue Streams: New B2B Portfolio for Telcos
  • Applying AI to Generate New Revenue Streams: Key AI Vertical Use Cases for Telcos
  • Applying AI to Generate New Revenue Streams: Network Operations Management for Telcos
  • Applying AI to Generate New Revenue Streams: Customer Experience Management for Telcos

Company Profiles

  • Comparison of Top AI Initiatives
  • SK Telecom: Key AI Developments
  • SK Telecom: Global AI Company's Positioning Since 2022
  • KT Corporation: Key AI Focus Areas
  • KT Corporation: AICT Company's Positioning Since 2024
  • Telefonica: Building Blocks for a Cognitive Platform
  • Telefonica: Key AI Focus Areas
  • Telefonica: AI Adoption Program That Launched in 2024
  • Vodafone: Key AI Developments
  • Vodafone: Multivendor AI Architecture That Released in 2024
  • Verizon: Key AI Focus Areas
  • Verizon: AI Strategy That Released in 2024
  • AT&T: Key AI Developments
  • AT&T: Key AI Focus Areas

Growth Opportunity Universe

  • Growth Opportunity 1: AI Professional Services
  • Growth Opportunity 2: AI Industry Vertical Solutions
  • Growth Opportunity 3: Conversational Platforms
  • Growth Opportunity 4: Autonomous Networks

Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Action Items & Next Steps
  • List of Exhibits
  • Legal Disclaimer