封面
市场调查报告书
商品编码
1725033

2024-2040年欧盟氢动力卡车(H2 ICE)产业二氧化碳排放生命週期

CO2 Emissions Life Cycle in the Hydrogen ICE Truck Sector, EU, 2024-2040

出版日期: | 出版商: Frost & Sullivan | 英文 42 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

采用 H2 ICE 作为清洁的 H2 生产源和中间解决方案将显着减少二氧化碳排放并推动转型成长

在这项研究中,Frost & Sullivan排放。该分析首先提出了考虑氢气的理由,强调了与传统燃料相比氢气在减少生命週期排放方面的潜力。

Frost & Sullivan 深入研究了各种氢气生产方法,从灰氢到再生能源来源,每种方法都有不同的碳足迹。它重点关注与 H2 ICE 生产相关的二氧化碳排放,并指出 H2 引擎和储氢储存槽等部件是主要贡献者。此外,该研究还对电池电动卡车、燃料电池电动卡车和柴油卡车进行了比较分析,以预测卡车运行期间的二氧化碳总排放。

该研究强调,迫切需要转向更清洁的氢气生产方法并优化汽车製造,以便在卡车领域大幅减少排放排放。

研究期间为2023年至2030年。

目录

转型

  • 为何成长变得越来越困难?
  • 策略要务
  • 三大策略要务对氢燃料卡车产业生命週期二氧化碳排放的影响

成长环境:H2生态系统

  • H2是未来的燃料
  • H2 ICE 卡车生命週期二氧化碳流量
  • 生产氢气的不同方法
  • 主要燃料特性比较
  • 引擎主要参数对比
  • H2 ICE 的燃料喷射方法

研究范围和细分

  • 研究范围
  • 动力传动系统技术细分
  • 成长动力
  • 成长抑制因素

氢气生产过程中的二氧化碳排放

  • 主要氢气生产方法分析
  • 影响氢气生产途径采用的关键因素-清洁氢气生产能力的释放与消费量
  • 影响H2生产途径实施的关键因素-欧洲氢能骨干网路EHB与关键走廊
  • 西班牙H2产量预测
  • H2产量引入预测-法国
  • 德国H2产量预测
  • 氢气生产过程中二氧化碳排放轨迹

氢燃料卡车製造的二氧化碳排放轨迹

  • H2 ICE卡车的关键零件
  • 车辆架构比较 - 柴油与 H2 ICE
  • H2 ICE卡车主要部件的重量分布
  • 二氧化碳排放轨迹 - H2 ICE 卡车製造

H2 ICE 运作期间的二氧化碳排放轨迹:MDT

  • MDT 用例特征和预测假设
  • MDT循环A・H-H2消费量与CO2排放
  • MDT 循环 A 至 H - 每英里二氧化碳排放

氢燃料汽车运作期间的二氧化碳排放轨迹:HDT

  • HDT使用案例特征和预测假设
  • HDT循环A,火花点火SI
  • HDT循环A、高压直喷
  • HDT循环H,火花点火SI
  • HDT循环H、高压缸内直喷
  • HDT循环A至H-kgCO2/Km

ICE、BEV、FCEV 和 H2 ICE 的二氧化碳排放轨迹比较

  • MDT - ICE、BEV、FCEV 和 H2 ICE 循环 A 和 H 的比较
  • HDT - ICE、BEV、FCEV 和 H2 ICE 循环 A 和 H 的比较

关键要点:

  • 前三名

成长机会宇宙

  • 成长机会1:追踪二氧化碳排放
  • 成长机会2:替代低排放技术
  • 成长机会3:扩大氢能基础设施

附录:后续步骤

  • 成长机会的益处和影响
  • 后续步骤Next steps
  • 免责声明
简介目录
Product Code: PFQV-42

Clean H2 Production Sources and the Adoption of H2 ICE as an Intermediate Solution Will Drive Transformational Growth by Significantly Reducing CO2 Emissions

In this study, Frost & Sullivan offers a comprehensive exploration of the carbon dioxide (CO2) trail of a hydrogen ICE truck (H2 ICE) by investigating the carbon emission implications, focusing on hydrogen as a prospective fuel for the trucking industry in 3 countries within the European Union-France, Germany, and Spain. The analysis begins with the rationale for considering hydrogen, highlighting its potential to mitigate life cycle emissions in comparison to conventional fuels.

Frost & Sullivan delves into various hydrogen production methods, ranging from gray hydrogen to renewable sources, each carrying distinct carbon footprints. The emphasis is on the CO2 emissions associated with manufacturing H2 ICE vehicles, pinpointing significant contributions from components such as H2 engines and hydrogen storage tanks. Furthermore, the study projects total CO2 emissions throughout truck operations, drawing comparative insights with its battery electric, fuel cell electric truck, and diesel truck counterparts.

The study underscores the urgency of transitioning to cleaner hydrogen production methods and optimizing vehicle manufacturing to achieve substantial CO2 emission reductions in the trucking sector.

The study period is from 2023 to 2030.

Table of Contents

Transformation

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative
  • The Impact of the Top 3 Strategic Imperatives on the CO2 Emissions Life Cycle in the Hydrogen ICE H2 ICE Truck Industry

Growth Environment: H2 Ecosystem

  • H2 is the Fuel of the Future
  • Life Cycle CO2 Flow of an H2 ICE Truck
  • Different Methods of Producing H2
  • Key Fuel Characteristics' Comparison
  • Key Engine Parameters' Comparison
  • H2 ICE Fuel Injection Methods

Scope and Segmentation

  • Research Scope
  • Powertrain Technology Segmentation
  • Growth Drivers
  • Growth Restraints

CO2 Emissions Trail During Hydrogen Production

  • Analysis of Major H2 Production Methods
  • Key Factors Impacting H2 Production Pathway Adoption-Announced Clean H2 Capacities and Consumption
  • Key Factors Impacting H2 Production Pathway Adoption-European Hydrogen Backbone EHB and Key Corridors
  • Adoption Forecast of H2 Production-Spain
  • Adoption Forecast of H2 Production-France
  • Adoption Forecast of H2 Production-Germany
  • CO2 Emissions Trail from H2 Production

CO2 Emissions Trail During H2 ICE Truck Manufacturing

  • Key Components of an H2 ICE Truck
  • Vehicle Architecture Comparison-Diesel Versus H2 ICE
  • Weight-wise Split of Major Components in an H2 ICE Truck
  • CO2 Emissions Trail-Manufacturing an H2 ICE Truck

CO2 Emissions Trail During H2 ICE Operations: MDTs

  • MDT Use Case Characteristics and Forecast Assumptions
  • MDT Cycles A and H-H2 Consumption and CO2 Emissions
  • MDT Cycles A to H-kgCO2 per Mile

CO2 Emissions Trail During H2 ICE Operations: HDTs

  • HDT Use Case Characteristics and Forecast Assumptions
  • HDT-Cycle A, Spark Ignition SI
  • HDT-Cycle A, High-pressure Direct Injection
  • HDT-Cycle H, Spark Ignition SI
  • HDT-Cycle H, High-pressure Direct Injection
  • HDT Cycles A to H-kgCO2 Per Km

CO2 Emissions Trail Comparison Among ICE Vehicles, BEVs, FCEVs, and H2 ICEs

  • MDT-ICE, BEV, FCEV, and H2 ICE Comparison Cycles A and H
  • HDT-ICE, BEV, FCEV, and H2 ICE Comparison Cycles A and H

Key Takeaways

  • Top 3 Takeaways

Growth Opportunity Universe

  • Growth Opportunity 1: CO2 Emissions Tracking
  • Growth Opportunity 2: Alternative Low-emission Technology
  • Growth Opportunity 3: Hydrogen Infrastructure Expansion

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • Legal Disclaimer