封面
市场调查报告书
商品编码
1750750

分析师对基于代理的人工智慧的看法

Analyst Perspective on Agentic AI

出版日期: | 出版商: Frost & Sullivan | 英文 14 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

2025年至2027年的预期

人工智慧 (AI) 已存在数十年,客服中心产业也已利用 AI 多年,但近年来 AI 的进步速度很快。业界对下一代 GenAI(也称为基于代理的 AI 或自主 AI)的期望已在 2024 年底有所提升。基于代理的 AI 可以充当黏合剂,跨资料孤岛协调复杂的流程,同时即时适应,并与编配内外众多应用程式中的其他数位代理、机器人、机器人和人类合作。

虽然基于代理的人工智慧的前身能力强大,但它们主要受限于基于规则的工作流程,无法自主行动,例如自主决策、执行任务或创建工作流程。在引入 LLM 之前,我们竭尽所能,使自助服务在品质和功能上更加人性化。随着 LLM 的成熟和使用量的增加,我们正在迈向能够自主行动、几乎无需人工干预的数位化劳动力。透过输入使用者的使命、愿景以及与问题或情况相关的背景信息,LLM 可以收集资讯、进行分析、规划、决策,并代表使用者采取行动。

那么,基于代理的人工智慧是什么?它与 GenAI、ChatGPT 等技术有何不同?本文是分析师对基于代理的人工智慧的观点,并探讨了企业和解决方案提供者在 2025-2027 年期间应该期待什么。

目录

基于代理的人工智慧开发在客服中心即服务 (CCaaS) 产业中的策略重要性

背景与定义:什么是基于代理的人工智慧以及它有何不同?

  • 基础模型

基于代理的人工智慧是下一代副驾驶吗?

  • 基于代理的人工智慧系统
  • AI技术堆迭多种多样

优势/驱动因素

  • 适应性
  • 更好地理解客户情绪和意图
  • 自学与知识管理
  • 个人化
  • 遵守
  • 积极性
  • 推动数位化

基于代理的人工智慧开启了令人着迷的使用案例

  • 客户服务
  • 人力资源:招募、聘用、入职、指导、培训
  • 现场服务
  • IT/网路/安全
  • 诈欺检测/预防
简介目录
Product Code: KB82-76

What to Expect in 2025-2027

Although artificial intelligence (AI) has been around for decades, and the contact center industry has been leveraging it for years, recent advancements in AI have rapidly accelerated. The latter half of 2024 spouted industry excitement for next-level GenAI - agentic AI, also sometimes called autonomous AI. Agentic AI can act as the glue for orchestrating complex processes across data silos, adapting in real-time, in innumerable applications - both inside and outside of an organization, in concert with other digital agents, bots, robots and humans.

The precursors to agentic AI, while capable, were primarily constrained by rules-based workflows and did not act independently, as in proactively making decisions or carrying out tasks and creating workflows on their own. Before the addition of LLMs, we did what we could to make self-service more human-like in quality and capability. The maturation and use of increasingly more capable LLMs lead us towards a digital workforce that can act autonomously, with little human intervention. Designed with input on the user's mission or vision, along with context on the issue or situation, they can gather information, analyze, plan, make decisions, and act on behalf of the user and act more like the user.

So, what is agentic AI, and how does it differ from GenAI, ChatGPT, and the rest? This insight is an analyst's perspective on agentic AI and what businesses and solution providers should expect throughout the 2025-2027 timeframe.

Table of Contents

Strategic Imperatives for the Development of Agentic AI in the Contact Center as a Service CCaaS Industry

Context and Definition: What is Agentic AI and How is it Different?

  • Foundational Models

Is Agentic AI a Next-gen Copilot?

  • Agentic AI Systems
  • AI Tech Stack is Varied

Benefits/Drivers

  • Adaptability
  • Better Understanding of Customer Sentiment and Intent
  • Self-learning and Knowledge Management
  • Personalization
  • Compliance
  • Proactivity
  • Driving Towards Digital

Agentic AI Opens Up Tantalizing Use Cases

  • Customer Service
  • HR - Recruitment, Hiring, Onboarding, Coaching, and Training
  • Field Service
  • IT/Networking/Security
  • Fraud Detection/Prevention