封面
市场调查报告书
商品编码
1750756

汽车绿色材料:战略分析

Green Materials in Cars: A Strategic Analysis

出版日期: | 出版商: Frost & Sullivan | 英文 65 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

政府法规和环境议题推动绿色材料未来成长潜力

在环境法规、消费者需求以及人们对传统材料环境影响日益增长的认识的推动下,汽车产业正在经历向永续性的重大转变。本报告对汽车产业的绿色材料进行了全面分析,检验了其定义、演变、主要类别和应用。报告深入探讨了采用绿色材料的战略意义,分析了其减少环境影响的效益,并比较了OEM的方法。报告也探讨了监管格局和未来趋势,为未来采用永续材料提供了蓝图。

钢、铝和基于石化燃料的塑胶等传统汽车材料带来了巨大的环境挑战。

1. 高碳足迹:这些材料的提取、加工和製造对温室气体排放有重大贡献。

2. 资源枯竭:对石化燃料和金属矿石等有限资源的依赖引发了人们对资源枯竭和供应链脆弱性的担忧。

3.污染和废弃物:製造过程和废弃产品的处理会造成污染并产生垃圾掩埋废弃物。

作为传统材料的替代品,OEM越来越多地在车辆内部各种应用中使用环境永续材料,例如再生塑胶、再生宝特瓶、再生金属、永续纤维、植物来源复合材料、生质塑胶、植物和树木以及消费后有机废弃物,以提供轻量化和永续的优势。再生塑胶和金属在汽车产业应用最为广泛。与其他绿色材料相比,它们兼具成本效益、减少碳排放和循环经济效益,使其成为OEM的首选。

然而,在这些材料全面应用于汽车之前,仍有许多挑战。引入绿色永续材料需要巨额投资,这对中小型汽车製造商来说尤其沉重。收集和回收流程不够完善,无法以与原材料价格相媲美的价格获得高品质的再生产品。儘管生物基材料环保,但由于采购方式低效率(例如砍伐树木)、某些材料的生物分解性潜力低以及生产成本高昂,它们并非完全永续。

报告的基准年为2024年,对每种材料进行全面分析,讨论汽车生态系统中的各种倡议,并强调材料的永续性潜力、趋势分析和战略发展,以全面了解行业趋势。

三大战略挑战对汽车製造业的影响

地缘政治动盪

为什么?

  • 严格的环境法规促使OEM製造商在车辆中使用可回收和环保的材料,以减少车辆整个生命週期内的碳排放。
  • 例如,到2030年,欧盟委员会计划要求OEM在汽车中使用25%的再生塑料,其中四分之一来自报废汽车(ELV)。

弗罗斯特的观点

  • 在未来三到五年内,我们预计主要的OEM将实施封闭式流程,将回收材料纳入汽车中,因为与采购和生产原始材料相比,这可以降低生产成本。
  • 儘管人们认为永续实践会带来好处,但电动车销售放缓和补贴终止等经济逆风可能会导致全球OEM采用永续实践的速度放缓。

内部挑战

为什么?

  • 我们对碳中和的承诺推动了我们OEM製造工厂中永续和绿色实践的整合。
  • 绿色材料为合成材料提供了环保的替代品,但OEM面临多重挑战,从采购到製造,再到将其整合到复杂的车辆中。

弗罗斯特的观点

  • 未来几年,天然植物纤维和生物基聚合物的采用可能会因采购、供应链物流和加工复杂性相关的成本障碍而受到阻碍。
  • 在未来三到五年内,OEM将越来越青睐塑胶、钢和铝等再生材料,因为它们比原生材料更具成本效益。

颠覆性技术

为什么?

  • 化学回收製程(例如热解)用于从现有塑胶和消费后废弃物回收塑胶。
  • 区块链和人工智慧 (AI) 等数位工具可以透过追踪原材料来源实现永续和道德的采购,从而提高供应链透明度。

弗罗斯特的观点

  • 减少碳足迹并使汽车行业成为永续製造实践的领导者的努力将取决于全面采用数位解决方案(区块链、数位双胞胎、生成人工智慧等),但这些努力只有在 2030 年之后才会普及。

分析范围

  • 该研究分析了汽车中不同类型绿色材料的采用情况,并重点介绍了行业OEM所采用的各种倡议。
  • OEM正积极将环境永续材料融入其车型中,以满足各监管机构设定的脱碳目标,并确保长期永续的供应链和具有永续效益的生产方法。
  • 在车辆中使用环保材料有助于减少温室气体排放、掩埋和海洋的负担以及焚烧报废汽车造成的空气污染。
  • 该研究透过全面审视汽车生态系统中的各种环保倡议、强调各种材料的永续性潜力并讨论策略发展,提供了对产业发展轨蹟的整体看法。
  • 本研究的地理范围为全球,仅分析绿色材料的车载应用。

成长动力

  • 监管影响:许多国家(特别是欧盟、印度等)都实施了严格的汽车报废和回收法规以及强有力的生产者延伸责任(EPR)框架,这导致汽车行业的报废材料回收率更高、回收力度活性化以及汽车报废计划高效。
  • 保持稳定的供应链:OEM越来越希望保持其供应链的稳定和不间断,减少对原材料的依赖,同时在其车辆中采用更多可​​回收和环保的材料。
  • 日益重视永续性:汽车生产过程中的永续性发展日益受到重视。使用再生材料(塑胶、金属等)和生物基替代品有助于减少汽车製造对环境的影响。
  • 扩大电动车电池生产规模:为了满足全球电动车需求,电池生产必须迅速扩张,以满足全球能源储存解决方案的需求。OEM正致力于电池材料回收利用,以满足生产新型电动车电池所需的锂、镍和钴等材料日益增长的需求。

主要竞争对手

  • Stellantis
  • Volkswagen
  • Ford Motors
  • General Motors
  • Volvo
  • BMW
  • Mercedes-Benz
  • Porsche
  • Renault
  • Kia Motors
  • Nissan
  • Mitsubishi
  • Maserati
  • Fisker Ocean
  • Knauf Industries
  • ECONYL
  • Covestro
  • LyondellBasell
  • Rever Corporation
  • Bcomp
  • Green Dot Bioplastics
  • NatureWorks
  • Cruz Foam
  • Redwood Materials
  • Li-Cycle
  • Glencore International
  • Primobius
  • Retriev Technologies
  • Umicore
  • Ascend Elements
  • RecycliCo Battery Materials
  • Novelis
  • Schnitzer Steel
  • Constellium
  • Aurubis
  • Nth Cycle
  • Hydro
  • UBQ Materials
  • Genecis Bioindustries
  • Continental
  • Toyoda Gosei Co. Ltd.

成长抑制因素

  • 实施成本高:在材料使用、能源产出等领域采用绿色永续材料需要庞大投资,对汽车OEM,尤其是中小型汽车厂商带来压力。
  • 复杂的加工要求:回收材料必须经过加工和精製才能达到最佳品质标准。例如,天然纤维具有吸水性,这意味着它们在潮湿环境中尺寸不稳定,机械性能也会下降,因此需要更精细的处理。
  • 供不应求:绿色材料供应链尚未成熟,导致OEM难以从多个来源持续稳定地获得汽车生产所需的材料(如塑胶废弃物和天然纤维材料)供应,这可能导致采购成本增加。
  • 仅限于豪华车车主:一些定位为塑胶和皮革替代品的环保材料比传统材料至少贵20%,从而减缓了它们在大众汽车中的普及。

目录

成长要素

  • 成长动力
  • 成长抑制因素
  • 汽车产业传统材料面临的挑战
  • 汽车绿色和永续材料概述
  • 汽车绿色材料的关键类别

成长环境

  • 关键要点:
  • 汽车产业绿色材料的演变
  • 汽车绿色材料分析
  • 影响汽车产业采用绿色材料的法规
  • 汽车製造商选择性采用绿色材料
  • 汽车绿色材料的未来成长潜力
  • OEM比较分析:绿色材料采用情况

汽车中的再生材质:塑胶、橡胶、金属

  • 汽车再生材料的主要类别
  • 汽车回收:概述
  • 再生塑胶在汽车中的应用:亮点
  • 汽车主要使用塑胶概述
  • 再生塑胶在汽车中的应用分析
  • 再生塑胶在汽车中的用途
  • 由再生塑胶製成的环保布料
  • 汽车产业塑胶回收再利用面临的挑战
  • 主要OEM再生塑胶利用现况及未来展望
  • 案例研究:Stellantis 对再生塑胶的使用
  • 再生橡胶在汽车中的应用:亮点
  • 再生橡胶在汽车上的应用
  • 案例研究:大陆集团回收轮胎
  • 再生金属在汽车中的应用:亮点
  • 汽车主要使用金属概况
  • 金属回收在汽车产业的意义
  • 闭合迴路金属OEM闭环铝回收
  • 汽车业的再生金属
  • 汽车回收材料的主要经验教训

汽车电池回收

  • 汽车中回收电池的使用:亮点
  • 从电动车电池回收回收的关键材料
  • 电动汽车电池类型和回收潜力
  • 电动车电池回收市场前景亮点
  • 管理电动车电池回收的关键法规
  • 案例研究:梅赛德斯-奔驰电动汽车电池回收
  • 电动汽车电池回收产业的努力
  • 重点

汽车中的生物基材料

  • 汽车中生物材料的主要类别
  • 为什么汽车产业要在汽车中使用生物材料?
  • 生物基聚合物在汽车中的应用:亮点
  • 概述和生物分解性
  • OEM使用生物基聚合物的倡议
  • 汽车中的天然纤维:亮点
  • 传统纤维与天然纤维
  • 概述和生物分解性
  • 天然纤维汽车的重大倡议
  • 天然纤维OEM倡议
  • 汽车有机废弃物利用:亮点
  • 汽车有机废弃物:产业措施与挑战
  • 案例研究:起亚汽车使用的生物基材料
  • 关键点

成长机会宇宙

  • 成长机会1:回收可实现高效率的废弃物处理
  • 成长机会二:汽车设计应考虑绿色材料策略
  • 成长机会三:回收电池材料对于电动车循环经济至关重要

附录与后续步骤

  • 成长机会的益处和影响
  • 后续步骤Next steps
  • 附件列表
  • 免责声明
简介目录
Product Code: PFK2-44

Government Regulations and Environmental Concerns Drive Future Growth Potential of Green and Eco-Friendly Materials

The automotive industry is undergoing a profound shift towards sustainability, driven by environmental regulations, consumer demand, and a growing awareness of the environmental impact of traditional materials. This report comprehensively analyzes green materials in the automotive sector, examining their definition, evolution, key categories, and applications. The report delves into the strategic implications of adopting green materials, analyzing their environmental impact reductions and comparing OEM approaches. The report also explores the regulatory landscape and future trends, providing a roadmap for sustainable material adoption in the future.

Traditional automotive materials, such as steel, aluminum, and plastics derived from fossil fuels, pose significant environmental challenges:

1. High Carbon Footprint: These materials' extraction, processing, and manufacturing contribute significantly to greenhouse gas emissions.

2. Resource Depletion: Reliance on finite resources like fossil fuels and metal ores raises concerns about resource depletion and supply chain vulnerability.

3. Pollution and Waste: Manufacturing processes and end-of-life disposal generate pollution and contribute to landfill waste.

As an alternative to traditional materials, OEMs are increasingly experimenting with green and sustainable materials such as recycled plastics, recycled PET bottles, recycled metals, natural fibers, plant-based composites, bioplastics, and organic wastes from plants, trees, and consumers in different automotive applications within a car to offer lightweight and sustainable benefits. Recycled plastics and metals are the most adopted in the automotive industry. It provides a compelling combination of cost-effectiveness, reduced carbon emission benefits, and circular economy advantages compared with other green materials, making it the leading choice among OEMs.

However, challenges persist with the full-scale implementation of these materials in vehicles. Implementing green and environmentally sustainable materials involves huge investments, which especially burdens small- and medium-scale automotive OEMs. Recovery and recycling processes are not compelling enough to obtain high-quality recycled products at a cost that can compete with primary raw material prices. Though bio-based materials are environmentally friendly, they are not entirely sustainable owing to inefficient sourcing methods (e.g., deforestation of trees), low biodegradability potential in some materials, and higher production costs.

The base year of the report is 2024. It comprehensively analyzes each material and discusses different initiatives in the automotive ecosystem, highlighting the sustainability potential of materials, trend analysis, and strategic developments to provide a comprehensive understanding of the industry's trajectory.

The Impact of the Top 3 Strategic Imperatives on the Automotive Production Industry

Geopolitical Chaos

Why:

  • Strict environmental regulations are increasingly forcing OEMs to implement recycled and eco-friendly materials in vehicles and reduce carbon emissions throughout the vehicle life cycle.
  • For example, by 2030, the EU Commission will require OEMs to use 25% recycled plastics in their vehicles, with a quarter of it coming from end-of-life vehicles (ELVs).

Frost Perspective:

  • In the next 3 to 5 years, major OEMs will enact closed-loop processes to incorporate recycled materials into their vehicles. This is because of the reduced production costs when compared to virgin material sourcing and production.
  • Economic headwinds, including a slowdown in EV sales and withdrawn subsidies, will contribute to the global slowdown of sustainable practices by OEMs despite the recognized benefits.

Internal Challenges

Why:

  • Carbon neutrality commitments drive the integration of sustainable and green practices at OEM manufacturing plants.
  • Though green materials are eco-friendly alternatives to synthetic counterparts, OEMs face multiple challenges, from sourcing to manufacturing processes to integrating them into the complex vehicles.

Frost Perspective:

  • The adoption of natural plant fibers and bio-based polymers will be hindered over the next few years by cost barriers associated with sourcing, supply chain logistics, and processing complexities.
  • In the next 3 to 5 years, OEMs will increasingly favor recycled materials like plastics, steel, and aluminum due to their cost-effectiveness compared to virgin materials.

Disruptive Technologies

Why:

  • Chemical recycling processes, such as pyrolysis, are used to recycle plastics from existing plastics and consumer waste.
  • Digital tools like blockchain and artificial intelligence (AI) enhance supply chain transparency by tracing raw material origins for sustainable and ethical sourcing.

Frost Perspective:

  • Efforts to both reduce carbon footprints and position the automotive industry as a leader in sustainable manufacturing practices will rely on full-scale adoption of digital solutions (such as blockchain, digital twins, and generative AI). Yet, these efforts will not be widespread until after 2030.

Scope of Analysis

  • This study analyzes the adoption of different types of green materials in cars, providing highlights on the different initiatives adopted by OEMs in the industry.
  • OEMs are actively embracing environmentally sustainable materials in their vehicle models to meet the decarbonization goals set forth by various regulators and to make their supply chain sustainable and manufacturing practices cost-effective in the long run.
  • Adopting green materials in vehicles can reduce greenhouse gas emissions and their burden on landfills, oceans, and air pollution caused by the burning of scrap from ELVs.
  • The study offers a holistic view of the different eco-friendly initiatives in the automotive ecosystem, highlights the sustainability potential of different materials, and discusses strategic developments to provide a comprehensive view of the industry's trajectory.
  • The geographical scope of this study is global and only analyzes in-vehicle applications of green materials.

Growth Drivers

  • Regulatory impact: Many countries (e.g., especially the EU, India) are enforcing strict ELV and recycling regulations and strong extended producer responsibility (EPR) frameworks. This is eventually leading to better scrap material recovery, increasing recycling initiatives, and efficient vehicle disposal projects among automakers in the industry.
  • Maintaining a stable supply chain: OEMs are increasingly looking at making their supply chain stable and uninterrupted, and reducing their dependence on virgin materials while using more recycled and eco-friendly materials in their vehicles.
  • Growing sustainability awareness: There is a growing emphasis on implementing sustainability in automotive production processes. Using recycled materials (e.g., plastics, metals) and bio-based alternatives will reduce the environmental impact of vehicle manufacturing.
  • Battery production scaling for EVs: Global EV demand requires rapid scaling of battery production to meet the global need for energy storage solutions. OEMs are initiating battery material recycling initiatives to meet the growing demand for materials such as lithium, nickel, and cobalt for new EV battery production.

Key Competitors

  • Stellantis
  • Volkswagen
  • Ford Motors
  • General Motors
  • Volvo
  • BMW
  • Mercedes-Benz
  • Porsche
  • Renault
  • Kia Motors
  • Nissan
  • Mitsubishi
  • Maserati
  • Fisker Ocean
  • Knauf Industries
  • ECONYL
  • Covestro
  • LyondellBasell
  • Rever Corporation
  • Bcomp
  • Green Dot Bioplastics
  • NatureWorks
  • Cruz Foam
  • Redwood Materials
  • Li-Cycle
  • Glencore International
  • Primobius
  • Retriev Technologies
  • Umicore
  • Ascend Elements
  • RecycliCo Battery Materials
  • Novelis
  • Schnitzer Steel
  • Constellium
  • Aurubis
  • Nth Cycle
  • Hydro
  • UBQ Materials
  • Genecis Bioindustries
  • Continental
  • Toyoda Gosei Co. Ltd.

Growth Restraints

  • High implementation costs: Implementing green and environmentally sustainable materials in areas such as material usage and energy generation involves huge investments, burdening automotive OEMs, especially small- and medium-scale automakers.
  • Complex processing requirements: Recycled materials must be processed and refined to meet the optimal quality standards. For instance, natural fibers have water-absorbing properties, leading to dimensional instability and reduced mechanical properties in humid environments, which requires higher processing treatments.
  • Lack of steady supply of eco-friendly materials: The supply chain of green materials is immature and could be challenging for OEMs to get a steady supply (e.g., of plastics waste, natural fiber material) from multiple sources on a consistent basis for their vehicle production, thereby leading to increased sourcing costs.
  • Limited only to luxury vehicle owners: Some of the eco-friendly materials that are positioned as alternatives to plastic and leather are at least 20% more expensive when compared to the traditional materials, which will slow their adoption in mass market vehicles.

Table of Contents

Growth Generator

  • Growth Drivers
  • Growth Restraints
  • Challenges of Traditional Materials in Automotive Industry
  • Green vs. Sustainable Materials in Cars: Overview
  • Key Categories of Green Materials in Cars

Growth Environment

  • Key Takeaways
  • Evolution of Green Materials in Automotive Industry
  • Analysis of Green Materials Used in Vehicles
  • Regulations Influencing Adoption of Green Materials in Automotive Industry
  • Select Green Material Implementation by OEMs in Vehicles
  • Future Growth Potential for Green Materials in Cars
  • OEM Comparative Analysis: Adoption of Green Materials

Recycled Materials in Cars Plastics, Rubber, Metals

  • Key Categories of Recycled Materials in Cars
  • Recycling in Automotive: Overview
  • Recycled Plastics Use in Cars: Highlights
  • Overview of Key Plastics Used in Cars
  • Recycled Plastics Usage Analysis in Vehicles
  • Recycled Plastics Application in Cars
  • Eco-friendly Fabrics from Recycled Plastics: Industry Initiatives
  • Challenges to Plastics Recycling in Automotive Industry
  • Recycled Plastics Use and Future Vision by Key OEMs
  • Case Study: Recycled Plastics Usage By Stellantis
  • Recycled Rubbers Use in Cars: Highlights
  • Recycled Rubber Application in Cars
  • Case Study: Recycled Tires by Continental
  • Recycled Metals Use in Cars: Highlights
  • Overview of Key Metals Used in Cars
  • Significance of Metal Recycling in Automotive Industry
  • Recycled Metals: Closed-loop Aluminum Recycling by OEMs
  • Recycled Metals Initiatives in the Automotive Industry
  • Key Takeaways from Recycled Materials in Cars

Recycled Batteries in Cars

  • Recycled Batteries Use in Cars: Highlights
  • Key Materials Recovered from EV Battery Recycling
  • EV Battery Types and Salvageability
  • EV Battery Recycling Market Outlook: Highlights
  • Major Regulations Governing EV Battery Recycling
  • Case Study: Mercedes-Benz EV Battery Recycling
  • EV Battery Recycling: Industry Initiatives
  • Key Takeaways

Bio-based Materials in Cars

  • Key Categories of Bio-based Materials in Cars
  • Why is the Automotive Industry Using Bio-based Materials in Cars?
  • Bio-based Polymers Use in Cars: Highlights
  • Overview and Potential for Biodegradability
  • Bio-based Polymers Usage: Select Initiatives by OEMs
  • Natural Fibers Use in Cars: Highlights
  • Comparison of Traditional Fiber vs. Natural Fibers
  • Overview and Potential for Biodegradability
  • Natural Fibers: Key Initiatives in Cars
  • Natural Fibers: Select Initiatives by OEMs
  • Organic Waste Use in Cars: Highlights
  • Organic Wastes in Automotive: Industry Initiatives and Key Challenges
  • Case Study: Use of Bio-materials in Kia's Vehicles
  • Key Takeaways

Growth Opportunity Universe

  • Growth Opportunity 1: Recycling will Enable Efficient EOL Disposal Practices
  • Growth Opportunity 2: Green Material Strategies Should be Considered during Vehicle Design
  • Growth Opportunity 3: Battery Materials Recycling is Crucial for EV Circular Economy

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer