封面
市场调查报告书
商品编码
1876854

全球汽车轻量化市场(2024-2030 年)

Automotive Lightweighting Market, Global, 2024-2030

出版日期: | 出版商: Frost & Sullivan | 英文 62 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

全球燃油效率和排放气体法规正透过加速复合材料的采用,推动变革性成长。

弗若斯特沙利文的这份报告检验了汽车轻量化策略,并重点介绍了汽车製造商(OEM)为减轻乘用车重量而采取的各种方法。随着汽车产业快速向电气化和永续性转型,减轻车重是实现排放气体目标、提高能源效率和降低成本的关键手段。轻量化使汽车製造商能够在保持结构强度和安全性的同时,提高燃油经济性、延长电动车(EV)续航里程并优化动力传动系统设计。尖端材料和创新製造技术的结合可以在不牺牲耐久性的前提下实现这些优势。儘管二氧化碳排放和燃油经济性法规强烈鼓励减重,但由于缺乏明确的强制性规定,导致整个行业采取的方法不尽相同。然而,随着电气化、高级驾驶辅助系统(ADAS)和联网汽车功能的普及,车辆重量不断增加,轻量化对于提升性能、续航里程和成本效益将变得更加重要。在未来十年,复合材料结构、电池结构整合和整体车辆设计方法有望使轻量化成为下一代出行解决方案的核心驱动力。本报告分析了推动和阻碍因素,以及新兴轻量化趋势带来的成长机会,为市场相关人员和相关人员提供了可利用的洞见。本研究的地域范围为全球。基准年为2024年,预测期间为2025年至2030年。

分析范围

  • 本研究分析了汽车产业的车辆轻量化策略,并概述了汽车製造商采取的各种措施。
  • 在净零碳排放目标和日益严格的全球排放标准的推动下,汽车製造商正在积极推行车辆设计和零件製造中的轻量化策略。
  • 本研究全面检视了汽车生态系统中的各种轻量化倡议,重点分析了每项措施的优缺点、OEM厂商的采用情况以及策略部署,从而帮助人们全面了解产业趋势。
  • 本研究的地理范围是全球性的,分析了汽车产业采用的轻量化策略。

调查范围

  • 目标区域
  • 世界
  • 调查期
  • 2024-2030
  • 基准年
  • 2024
  • 货币单位
  • 美元
  • 车辆分类
  • 搭乘用车

主要竞争对手

  • 汽车製造商
    • Stellantis
    • Volkswagen
    • Ford Motors
    • General Motors
    • Volvo
    • BMW
    • Mercedes-Benz
    • Porsche
    • Renault
    • Kia Motors
    • Nissan
  • 原物料供应商
    • ArcelorMittal
    • Thyssenkrupp
    • Novelis
    • Constellium
    • Alcoa
    • SGL Carbon
  • 零件製造商
    • Shiloh Industries
    • Tower International
    • Rochling Automotive
    • Henkel
  • 一级供应商
    • Gestamp
    • Martinrea
    • Benteler
    • Faurecia
    • Lear
    • Adient
    • Dana
    • GKN
    • AAM
  • 工程和仿真提供者
    • Altair
    • Ansys
    • Dassault Systemes
    • Magna Tooling
    • Schuler
    • Gestamp Tooling

成长驱动因素

  • 严格的全球排放标准
  • 电动汽车渗透率和最佳化
  • 轻质材料的进步
  • 碰撞安全指南
  • 汽车製造商的永续性和净零排放目标

成长限制因素

  • 材料高成本:碳纤维增强复合材料、铝和天然纤维复合材料等先进轻量材料比传统钢材贵得多,影响了原始设备製造商的成本结构。
  • 低成本汽车细分市场普及率低:价格溢价和负担能力问题将阻碍对成本敏感的大众市场细分市场的普及,尤其是在开发中国家。
  • 车辆轻量化领域熟练劳动力短缺:使用轻量材料进行设计和製造需要专业知识,而该领域熟练劳动力的短缺正在减缓轻量化材料的普及应用。
  • 对耐用性和可修復性的担忧:某些轻量材料容易损坏且难以修復,这引发了人们对其耐用性和消费者接受度的担忧。
  • 缺乏适当的轻量化指导方针:各大地区缺乏统一的轻量化目标,导致原始设备製造商 (OEM) 采取的策略不一致,并降低了某些市场实施轻量化的紧迫性。

竞争环境

  • 竞争对手数量
    • 超过50家竞争对手
  • 竞争因素
    • 监管协调、合规准备、尖端材料创新、製造流程效率和永续性
  • 主要终端用户产业
    • 汽车,乘用车
  • 主要竞争对手
    • Gestamp、佛吉亚、诺贝丽斯、康斯坦利姆、SGL Carbon、蒂森克虏伯钢铁、东丽株式会社、BASF、赢创、Altair Engineering
  • 2024年排名前五的公司的收入份额
    • 45%
  • 其他值得关注的竞争对手
    • 利安德巴塞尔工业控股有限公司,安赛乐米塔尔
  • 流通结构
    • 原料供应商、零件製造商、一级供应商、原始设备製造商 (OEM)、工程模拟供应商

重大併购

不适用

三大策略挑战对汽车轻量化产业的影响

变革性大趋势

  • 原因:
    • 在车辆电气化、自动驾驶和永续性等趋势的推动下,轻量化对于抵消电池重量、提高续航里程和性能以及帮助实现自动驾驶汽车 (AV) 的新碰撞配置至关重要。
    • 轻量化将是实现全球脱碳目标和满足数位化架构需求的关键因素。
  • 佛洛斯特和沙利文的观点:
    • 未来几年,随着汽车电气化进程的不断推进,汽车製造商(OEM)将被迫大幅减轻车身和底盘重量,以抵消沉重的电池重量并提高续航里程。
    • 随着生命週期排放成为监管重点,汽车製造商将被迫优先考虑低碳、可回收和轻质材料,而不是传统材料。
    • 模组化电动车(EV)滑板平台可实现重量优化结构设计的完全自由。

内部问题

  • 原因:
    • 原始设备製造商和供应商面临成本压力、资本支出 (CAPEX) 限制和供应链中断,因此很难证明引入昂贵的轻质材料(如碳纤维增强塑胶 (CFRP))的合理性。
    • 由于需要更换模具和重新培训员工,人们对更换材料的抵触情绪正在减缓材料的采用。
  • 弗罗斯特的观点:
    • 特别是随着新的连接、成型和模拟技术对多材料结构的重要性日益凸显,对劳动力进行再培训和技能提升将变得至关重要。
    • 汽车製造商之间的平台整合(更少的汽车平臺对应更多的车型)将迫使供应商开发可扩展的轻量化解决方案,以适应模组化架构。

地缘政治动盪

  • 原因:
    • 贸易紧张局势(例如美国国内的贸易紧张局势)、对铝和钢征收的关税以及供应链民族主义将影响轻量材料的供应和成本。
    • 除非本地供应商能够发展壮大,否则OEM厂商在地采购的趋势可能会限制其获得先进轻量材料的机会。
  • 弗罗斯特的观点:
    • 预计在未来三到五年内,在地采购强制规定和贸易限制(例如,美国关税和欧盟碳边境调节税)将重塑材料供应链,限制低成本进口轻量材料的取得。

目录

战略要务

  • 为什么成长变得越来越困难
  • 策略要务
  • 三大策略要务对汽车轻量化产业的影响

汽车轻量化:生态系统

  • 分析范围
  • 竞争环境
  • 主要竞争对手

成长驱动因素

  • 成长驱动因素
  • 成长抑制因素

成长环境

  • 重点总结
  • 轻量化设计,提高燃油经济性
  • 轻量化设计,提升效能
  • 减轻重量以减少二氧化碳排放
  • 轻量化设计,提升永续性
  • 减轻车辆零件重量的可能性
  • 2024年及2030年汽车轻量化材料分析
  • 选择OEM轻量化活动
  • 影响轻量化的关键地方政府法规/标准/公告

汽车轻量化概述

  • 轻量化为何重要
  • 汽车产业轻量化方法的类型
  • 主要减肥方法分析
  • 近期减肥趋势
  • 轻量化在各车辆领域
  • 部分OEM厂商的倡议与轻量化优势

汽车轻量化:轻量材料的应用

  • 汽车轻量化关键材料
  • 主要轻质材料:比较分析
  • 2024 年和 2030 年汽车材料成分
  • 减重特征比较
  • HSS-产业战略
  • 铝业战略
  • 镁产业策略
  • 塑胶产业策略
  • 天然纤维复合材料-产业战略
  • 碳纤维增强复合材料产业战略
  • 轻量化材料的未来发展趋势

汽车轻量化:设计优化

  • 车辆设计中的关键轻量化策略
  • 拓朴最佳化
  • 拓扑优化程式
  • AI驱动的衍生设计
  • OEM厂商利用AI生成式设计实现轻量化的案例
  • 用于轻型建造的模组化平台

汽车轻量化:製造创新

  • 汽车製造中的关键轻量化策略
  • 汽车製造中的千兆广播
  • 特斯拉的千兆广播方案
  • 千兆广播机构:各区域的OEM厂商倡议
  • 业界的焦点是下一代电动车的超高速投影技术
  • 热压印
  • 千兆广播和热冲压製程的比较分析
  • 烫印工艺:热烫印
  • 积层製造/3D列印在轻量化领域的应用
  • 3D列印多材质连接件:案例研究

汽车轻量化:电动车电池轻量化

  • 电动车电池轻量化的关键策略
  • 电动车电池轻量化:概述
  • 电动车电池轻量化策略的比较分析
  • 电动汽车电池结构集成
  • 轻量化电池配置方案
  • 用于电池设计的轻量材料
  • 案例研究:电池机壳的轻量化材料
  • 细胞到包装技术
  • 电池减重的未来设计趋势

发展机会

  • 成长机会 1:先进轻质材料的创新
  • 成长机会2:汽车供应链的变化
  • 成长机会3:更轻的电动车电池

附录与后续步骤

简介目录
Product Code: MHC8-44

Global Fuel and Emission Norms are Driving Transformational Growth by Accelerating Multi-material Adoption

This Frost & Sullivan report examines automotive lightweighting strategies, highlighting the various initiatives adopted by original equipment manufacturers (OEMs) to reduce the weight of passenger vehicles. As the industry rapidly advances toward electrification and sustainability, reducing vehicle weight has become a crucial lever for meeting emissions targets, enhancing energy efficiency, and lowering costs. Lightweighting enables automakers to improve fuel economy, extend electric vehicle (EV) driving range, and optimize powertrain design, all while maintaining structural strength and safety. The adoption of advanced materials combined with innovative manufacturing techniques allows manufacturers to achieve these gains without compromising durability. Although carbon dioxide and fuel economy regulations strongly incentivize weight reduction, the absence of explicit mandates leads to uneven implementation across the sector. Nonetheless, as electrification, advanced driver assistant systems (ADAS), and connected vehicle features add to vehicle weight, lightweighting will become even more critical to deliver performance, range, and cost efficiency. Over the next decade, multi-material architectures, structural battery integration, and holistic vehicle design approaches are expected to make lightweighting a core enabler of next-generation mobility solutions. The report identifies the factors driving and restraining the industry as well as the growth opportunities arising from emerging lightweighting trends for market players and stakeholders to leverage. The geographical scope of this study is global. The base year is 2024, and the forecast period is from 2025 to 2030.

Scope of Analysis

  • The study analyzes vehicle lightweighting strategies in the automotive industry, providing highlights on the different initiatives adopted by OEMs.
  • With the rise of net-zero carbon targets and global emission standards, OEMs are actively embracing lightweighting strategies in vehicle design and component manufacturing.
  • The study offers a holistic view of the different lightweighting initiatives in the automotive ecosystem, highlighting the pros and cons of each initiative, OEM deployments, and strategic developments to provide a comprehensive understanding of the industry's trajectory.
  • The geographical scope of this study is global and analyzes lightweighting strategies used throughout the automotive industry.

Scope

  • Geographic coverage
  • Global
  • Study period
  • 2024-2030
  • Base year
  • 2024
  • Monetary unit
  • US Dollars
  • Vehicle segments
  • Passenger vehicles

Key Competitors

  • OEMs
    • Stellantis
    • Volkswagen
    • Ford Motors
    • General Motors
    • Volvo
    • BMW
    • Mercedes-Benz
    • Porsche
    • Renault
    • Kia Motors
    • Nissan
  • Raw Material Suppliers
    • ArcelorMittal
    • Thyssenkrupp
    • Novelis
    • Constellium
    • Alcoa
    • SGL Carbon
  • Component Manufacturers
    • Shiloh Industries
    • Tower International
    • Rochling Automotive
    • Henkel
  • Tier I Suppliers
    • Gestamp
    • Martinrea
    • Benteler
    • Faurecia
    • Lear
    • Adient
    • Dana
    • GKN
    • AAM
  • Engineering & Simulation Providers
    • Altair
    • Ansys
    • Dassault Systemes
    • Magna Tooling
    • Schuler
    • Gestamp Tooling

Growth Drivers

  • Stringent Global Emission Standards
  • EVs Adoption Range and Optimization
  • Advancements in Lightweight Materials
  • Crash Safety Guidelines
  • OEM Sustainability and Net-zero Targets

Growth Restraints

  • High Material Costs: Advanced lightweight materials such as CFRP, aluminum, and natural fiber composites are significantly more expensive than traditional steel, impacting OEM cost structures.
  • Lower Adoption in Low-cost Vehicle Segments: Cost-sensitive mass market segments, especially in developing countries, resist adoption due to price premium and affordability concerns.
  • Lack of Skilled Workforce in Vehicle Lightweighting: Specialized knowledge is required to design and manufacture with lightweight materials, and the skilled labor shortage in this area slows adoption.
  • Durability and Repairability Concerns: Certain lightweight materials are more prone to damage and harder to repair, raising concerns about durability and consumer acceptance.
  • Lack of Proper Lightweighting Guidelines: Lack of harmonized lightweighting targets across major regions leads to fragmented OEM strategies and less urgency in some markets.

Competitive Environment

  • Number of Competitors
    • 50+ competitors
  • Competitive Factors
    • Regulatory alignment, compliance readiness, advanced material innovation, manufacturing process efficiency, sustainability
  • Key End-user Industry Verticals
    • Automotive, passenger vehicles
  • Leading Competitors
    • Gestamp, Faurecia, Novelis, Constellium, SGL Carbon, Thyssenkrupp Steel, Toray Industries, BASF, Evonik, Altair Engineering
  • Revenue Share of Top 5 Competitors, 2024
    • 45%
  • Other Notable Competitors
    • LyondellBasell Industries Holdings B.V., ArcelorMittal
  • Distribution Structure
    • Raw material suppliers, component manufacturers, Tier I suppliers, OEMs, engineering & simulation providers

Notable Acquisitions and Mergers

NA

The Impact of the Top 3 Strategic Imperatives on the Automotive Lightweighting Industry

Transformative Megatrends

  • Why:
    • Trends like vehicle electrification, autonomy, and sustainability make lightweighting critical to offset battery weight, improve range and performance, and support new crash structures in autonomous vehicles (AVs).
    • Lightweighting becomes a key enabler of meeting global decarbonization targets and digital architecture demands.
  • Frost Perspective:
    • Vehicle electrification will rise in the coming years, pushing original equipment manufacturers (OEMs) to aggressively reduce body and chassis weight to offset heavy batteries and improve range.
    • Lifecycle emissions will become a regulatory focus, compelling OEMs to prefer low-carbon and recycled lightweight materials over traditional ones.
    • Modular electric vehicle (EV) skateboard platforms will enable complete freedom in weight-optimized structural design.

Internal Challenges

  • Why:
    • OEMs and suppliers face cost pressures, capital expenditure (CAPEX) limitations, and supply chain disruptions, making it harder to justify expensive lightweighting materials, like carbon fiber-reinforced plastic (CFRP).
    • Resistance to material change due to retooling and workforce reskilling needs slows adoption.
  • Frost Perspective:
    • Reskilling and up-skilling of the workforce will be essential, especially as new joining, forming, and simulation technologies become integral to multi-material structures.
    • Platform consolidation within OEMs (fewer vehicle platforms across more models) will pressure suppliers to develop scalable lightweight solutions that fit modular architectures.

Geopolitical Chaos

  • Why:
    • Trade tensions (e.g., US-China), tariffs on aluminum/steel, and supply chain nationalism impact the availability and cost of lightweight materials.
    • OEMs shift toward local sourcing, which may limit access to advanced lightweight materials unless regional suppliers evolve.
  • Frost Perspective:
    • Local sourcing mandates and trade restrictions (e.g., US-China tariffs, European Union (EU) carbon border tax) will reshape material supply chains in the next 3 to 5 years and limit access to low-cost imported lightweight materials.

Table of Contents

Strategic Imperatives

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative
  • The Impact of the Top 3 Strategic Imperatives on the Automotive Lightweighting Industry

Automotive Lightweighting: Ecosystem

  • Scope of Analysis
  • Competitive Environment
  • Key Competitors

Growth Generator

  • Growth Drivers
  • Growth Restraints

Growth Environment

  • Key Takeaways
  • Lightweighting for Improved Fuel Efficiency
  • Lightweighting for Enhancing Performance
  • Lightweighting for Reducing CO2 Emissions
  • Lightweighting for Improving Sustainability
  • Vehicle Component Lightweighting Potential
  • Analysis of Lightweighting Materials in Vehicles 2024 vs 2030
  • Select OEM Lightweighting Activities
  • Key Regional Government Regulations/Standards/Announcements Impacting Lightweighting

Automotive Lightweighting: Overview

  • Why Lightweighting is Important
  • Types of Lightweighting Methods in the Automotive Industry
  • Key Lightweighting Methods Analysis
  • Recent Trends in Lightweighting
  • Lightweighting in Different Vehicle Segments
  • Select OEM Initiatives and Lightweighting Benefits Observed

Automotive Lightweighting: Lightweight Materials Implementation

  • Key Lightweight Materials in Cars
  • Key Lightweight Materials: Comparative Analysis
  • 2024 vs. 2030 Material Composition in Vehicles
  • Lightweighting Properties Comparison
  • HSS-Industry Strategy
  • Aluminium-Industry Strategy
  • Magnesium-Industry Strategy
  • Plastics-Industry Strategy
  • Natural Fiber Composites-Industry Strategy
  • CFRP-Industry Strategy
  • Future Material Trends in Lightweighting

Automotive Lightweighting: Design Optimization

  • Key Lightweighting Strategies in Vehicle Design
  • Topology Optimization
  • Steps in Topology Optimization
  • AI-driven Generative Design for Lightweighting
  • Examples of OEMs using AI-generative Design for Lightweighting
  • Modular Platforms for Lightweighting

Automotive Lightweighting: Manufacturing Innovations

  • Key Lightweighting Strategies in Vehicle Manufacturing
  • Gigacasting in Automotive Manufacturing
  • Tesla Approach to Gigacasting
  • Vehicle Body Gigacasting: Select OEM Initiatives by Regions
  • Industry Focus on Hypercasting for Next-gen EVs
  • Hot Stamping
  • Comparative Analysis of Gigacasting vs. Hot Stamping Process
  • Gestamp Profile: Hot Stamping
  • Additive Manufacturing/3D Printing for Lightweighting
  • Multi-material Bonding using 3D Printing: Case Study

Automotive Lightweighting: EV Battery Lightweighting

  • Key Lightweighting Strategies in EV Batteries
  • Lightweighting EV Batteries: Overview
  • Comparative Analysis of EV Battery Lightweighting Strategies
  • EV Battery Structural Integration
  • Alternate Lightweight Battery Compositions
  • Lightweight Materials for Battery Design
  • Case Study: Lightweight Materials for Battery Enclosures
  • Cell-to-pack Technology
  • Future Design Trends in Battery Lightweighting

Growth Opportunity Universe

  • Growth Opportunity 1: Innovations in Advanced Lightweight Materials
  • Growth Opportunity 2: Shift in Automotive Supply Chain
  • Growth Opportunity 3: Lightweighting EV Batteries

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer