封面
市场调查报告书
商品编码
1883961

软体定义卡车市场:北美和欧洲(2024-2040 年)

Software-Defined Truck Market, North America and Europe, 2024-2040

出版日期: | 出版商: Frost & Sullivan | 英文 42 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

受电气化和互联化的驱动,软体定义卡车正在经历变革性成长。

软体定义卡车是一种将车辆功能分离为硬体层和软体层的车辆设计,它允许从一个或多个领域进行车辆功能更新、车队管理、云端基础的分析以及无线软体更新。与硬体配置固定、几乎没有升级空间的传统车辆不同,软体定义卡车有望持续改进车辆功能、增强适应性和提高生命週期灵活性。软体定义卡车是商用车设计领域的一种新方法,它透过模组化软体而非固定硬体配置来管理和更改基本功能。

弗若斯特沙利文公司发布了一份关于从硬体定义卡车向软体定义卡车过渡的架构、营运和经济可行性研究报告。该报告检验了软体定义方法在业界的应用,识别了目前的软体平台,并探讨了推动软体定义生态系统发展的因素,例如增强的防碰撞能力和向集中式运算系统的迁移。该报告还分析了软体定义卡车面临的挑战,包括成本、安全性和隐私问题。此外,该研究还检视了原始设备製造商 (OEM)、一级供应商和车队营运商在从基于硬体的开发生命週期过渡到客製化的软体检验生命週期过程中所受到的持续影响。

三大关键策略挑战对软体定义卡车运输产业的影响

变革性大趋势

背景

  • 卡车运输业正处于关键的十字路口,面临日益增长的营运效率提升需求、更严格的环境法规、不断变化的物流模式以及不断提高的安全要求。这些因素正在推动数位化整合、互联互通、自动化、电气化和软体定义卡车的发展。

弗罗斯特的观点

  • 卡车製造商和车队营运商正开始采用软体定义车队,从而实现车辆的持续开发。这将确保预测性维护和更有效率的车队运营,优化路线规划,并支援空中下载 (OTA) 更新。虽然许多卡车运输公司仍处于技术应用的早期阶段,但相关功能正在稳步涌现。

颠覆性技术

原因

  • 软体、车载运算能力、先进远端资讯处理技术和人工智慧 (AI) 技术的进步正在迅速加速软体定义卡车市场的成长。下一代卡车将比以往任何时候都更加灵活、自主和高效。

弗罗斯特的观点

  • 儘管中间合作伙伴仍面临诸多障碍,但技术提供者和供应商的角色也将变得至关重要。包括软体、云端服务和人工智慧在内的技术发展将影响下一代卡车的设计和部署方式。

内部挑战

原因

  • 专注于软体和数位技术的新公司正在进入卡车运输行业,它们往往透过减少开发和实施新解决方案的传统障碍来获得优势。

弗罗斯特的观点

  • 到2030年,大多数主流卡车製造商将在其卡车车型中提供广泛的软体定义功能。这些功能可能包括可自订的软体包和订阅服务,这将带来持续的收入并加深客户关係。

主要竞争对手

  • 北美洲
    • Freightliner
    • Western Star
    • Rizon
    • Volvo
    • Mack
    • Kenworth
    • Peterbilt
    • International
    • Hino
    • Isuzu
    • Tesla
  • 欧洲
    • Mercedes Benz
    • Volvo
    • Renault
    • Scania
    • MAN
    • DAF
    • IVECO
    • Fuso
    • Tesla

成长驱动因素

集中式运算架构

从多个分散式电控系统(ECU) 向集中式运算平台的过渡是软体定义卡车的基础。集中化能够汇集运算资源,从而更快地处理大规模的资料集,简化软体升级和发布流程,并允许整合更广泛的功能。汽车製造商 (OEM) 正在开发可扩展的模组化架构,以支援汽车平臺的长期永续性。

改良的防碰撞性能

卡车驾驶,尤其是远距卡车驾驶,是一项极其艰苦的工作。驾驶人容易出现疏忽大意以及在紧急情况下反应迟缓等问题。碰撞避免技术能够帮助汽车製造商提升安全性,尤其对于卡车而言,因为卡车是造成道路交通事故死亡的主要原因之一。

促进法规

为了减少交通事故死亡人数并提高车辆安全性,欧洲监管机构正推动强制实施某些高级驾驶辅助系统 (ADAS) 功能和安全设备,例如自动紧急煞车系统 (AEBS) 和车道偏离预警系统 (LDW)。关于采用高级 ADAS 功能的政策指南将指南市场参与企业将这些功能整合到其未来的卡车平台中。

感测器套件开发

视觉增强和感测器套件技术的进步将使ADAS比前几代产品更加可靠。

成长限制因素

  • 性价比高
  • 拥有成本
  • 法规结构不明确
  • 功能集成

目录

成长环境:软体定义卡车转型

  • 为什么成长变得越来越困难
  • 策略要务
  • 三大策略要务对软体定义卡车运输产业的影响

软体定义的卡车生态系统

  • 分析范围
  • 分割
  • 主要竞争对手

软体定义赛道成长驱动因素

  • 成长指标
  • 成长驱动因素
  • 成长限制因素
  • 价值因素预测考量
  • 价值驱动因素:软体定义轨道
  • 软体定义卡车的基础层
  • 软体定义轨道的核心要素
  • 製造方式:传统卡车与软体定义卡车
  • OEM特定软体开发方法
  • 软体定义轨道战略影响领域

电子电气架构和组件开发

  • 软体定义卡车中电子电气架构的演进
  • 综合功能模组:软体定义轨道
  • 软体定义轨道中的技术采纳阶段
  • 动力传动系统-软体定义卡车的发展趋势
  • 软体定义卡车中的线控技术概述
  • 软体定义卡车应用的适用性和普及性
  • 影响软体定义轨道用例的因素
  • 软体定义的卡车领域影响分析
  • 软体定义卡车的潜在收入模式
  • 车队所有者影响领域:软体定义卡车

目前软体定义方向概述

  • 综合分析:Flexis Mobility
  • 综合分析:瑞氏汽车
  • 全面分析:特斯拉半导体
  • 现有软体定义卡车OEM厂商比较分析

OEM软体定义策略

  • 戴姆勒:软体定义策略
  • 沃尔沃:软体定义策略
  • Traton:软体定义策略
  • 帕卡:软体定义战略
  • 现代:软体定义战略

网路安全框架与监管

  • 软体定义轨道上的网路安全威胁空间
  • 影响软体定义卡车网路安全的关键因素
  • 软体定义轨道中的网路安全组件类型
  • 影响软体定义卡车网路安全的法规

软体定义领域的成长机会

  • 成长机会 1:科技进步
  • 成长机会2:软体生态系统
  • 成长机会 3:监理合规

附录与后续步骤

简介目录
Product Code: PFG6-42

Software-defined Trucks are Experiencing Transformational Growth due to Electrification and Connectivity

Software-defined trucks are vehicles designed with hardware-software layers that decouple the capabilities of the vehicle, thus allowing for updates to vehicle features, fleet management, and cloud-based analytics, as well as over-the-air software updates from one or several domains. Rather than being composed of fixed hardware mechanisms with little or no room for upgrades, software-defined trucks have the potential to support ongoing improvements in functionality for vehicles, adaptive mechanisms, and lifecycle flexibility. Software-defined trucks represent a new approach in the engineering of commercial vehicles, where base functionality can be managed and modified through modular software instead of fixed hardware configurations.

Frost & Sullivan presents a feasibility study on the architecture, operations, and economics of transitioning from hardware-defined to software-defined trucks. The report examines implementations of software-defined approaches in the industry, highlights the current software platforms, and explores the enablers for a software-defined ecosystem, such as enhanced crash avoidance features and a shift to centralized computing systems. It also examines challenges associated with software-defined trucks, like cost, security, and privacy concerns. The study further examines continued implications for original equipment manufacturers (OEMs), Tier I suppliers, and fleets as they cultivate their development life cycles from a hardware-based to a tailored software-defined cycle.

The Impact of the Top 3 Strategic Imperatives on the Software-Defined Truck Industry

Transformative Megatrends

Why

  • The trucking industry is at a critical juncture, facing increasing demands for operational efficiency along with stricter environmental regulations, changing logistics patterns, and enhanced safety requirements. These factors are driving the industry towards the development of software-defined trucks that are more digitally integrated, better connected, automated, and electric.

Frost Perspective

  • Truck manufacturers and fleet operators will start to deploy software-defined fleets, allowing for continuous development of their vehicles, which ensure enhanced predictive maintenance and fleet operations, better routing, and over-the-air (OTA) update capabilities. While many trucking companies are early in the technology adoption phase, the capabilities are emerging.

Disruptive Technologies

Why

  • Software advances, onboard computer power, advanced telematics, and artificial intelligence (AI) capabilities are rapidly accelerating growth in the software-defined truck market. Next-gen trucks will be more flexible, autonomous, and efficient than ever before.

Frost Perspective

  • While there are still significant hurdles with intermediary partners, the role of technology providers and suppliers will also become critical. The development of technologies that consist of software, cloud services, and AI will influence how next-generation trucks are designed and deployed.

Internal Challenges

Why

  • New companies focused on software and digital technology are entering the trucking industry, often gaining an advantage due to fewer legacy obstacles in developing and adopting new solutions.

Frost Perspective

  • By 2030, most mainstream truck manufacturers will offer a broad variety of software-defined features in their truck models. The offerings will likely include configurable software packages and subscription services, resulting in annuities and deeper relationships.

Key Competitors

  • North America
    • Freightliner
    • Western Star
    • Rizon
    • Volvo
    • Mack
    • Kenworth
    • Peterbilt
    • International
    • Hino
    • Isuzu
    • Tesla
  • Europe
    • Mercedes Benz
    • Volvo
    • Renault
    • Scania
    • MAN
    • DAF
    • IVECO
    • Fuso
    • Tesla

Growth Drivers

Centralized Compute Architectures

The shift from multiple distributed electronic control units (ECUs) to a centralized computing platform is the foundation of Software-Defined Trucks. With centralization, computing resources can be pooled to process larger data sets more quickly, unlock the benefits of simpler software upgrades and releases, and allow for a broader range of features to be integrated. Original equipment manufacturers (OEMs) are developing scalable, modular architectures to support the long-term viability of vehicle platforms.

Better Crash Avoidance

Truck driving, particularly long-haul truck driving, is an extremely demanding job because of the long and continuous operating hours that cause driver fatigue, oversight, or delayed responses in emergencies. Crash avoidance technologies enable OEMs to achieve higher safety levels, particularly for trucks, as they are the vehicle type involved in a majority of road fatalities.

Regulatory Push

To reduce fatality rates and enhance vehicle safety, European regulators will push initiatives to make some advanced driver assistance system (ADAS) functions and safety features, such as the automatic emergency braking system (AEBS) and lane-departure warning (LDW), mandatory. Policy guidelines for the adoption of advanced ADAS functions will guide market participants in introducing features in future truck platforms.

Sensor Suite Development

Developments in vision enhancement and sensor suite technologies will make ADAS more reliable than previous generations.

Growth Restraints

  • Cost vs. Benefit
  • Cost of Ownership
  • Uncertain Regulatory Framework
  • Bundled Functions

Table of Contents

Growth Environment: Transformation in Software-Defined Trucks

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative 8
  • The Impact of the Top 3 Strategic Imperatives on the Software-Defined Truck Industry

Ecosystem in Software-Defined Trucks

  • Scope of Analysis
  • Segmentation
  • Key Competitors

Growth Generator in Software-Defined Trucks

  • Growth Metrics
  • Growth Drivers
  • Growth Restraints
  • Value Factor Forecast Considerations
  • Value Factor: Software-Defined Trucks
  • Foundation Layers of Software-Defined Trucks
  • Core Elements of Software-Defined Trucks
  • Manufacturing Approach: Traditional Trucks vs Software-Defined Trucks
  • Software Development Approaches by OEMs
  • Strategic Impact Areas in Software-Defined Trucks

E/E Architecture and Component Developments

  • Evolution of E/E Architecture in Software-Defined Trucks
  • Comprehensive Functional Modules: Software-Defined Trucks
  • Technology Adoption Phases in Software-Defined Trucks
  • Powertrain-Driven Evolution Trends in Software-Defined Trucks
  • Overview of X-By-Wire Technologies in Software-Defined Trucks
  • Application Suitability and Adoption of Software-Defined Trucks
  • Influencing Factors of Software-Defined Truck Use Cases
  • Impact Analysis of Software-Defined Truck Domains
  • Potential Revenue Models for Software-Defined Trucks
  • Impact Areas for Fleet Owner: Software-Defined Trucks

Overview of the Current Software-Defined Truck Landscape

  • Comprehensive Analysis: Flexis Mobility
  • Comprehensive Analysis: Ree Automotive
  • Comprehensive Analysis: Tesla Semi
  • Comparative Analysis of Existing Software-Defined Truck OEMs

OEM Software-Defined Strategy

  • Daimler: Software-Defined Strategy
  • Volvo: Software-Defined Strategy
  • Traton: Software-Defined Strategy
  • Paccar: Software-Defined Strategy
  • Hyundai: Software-Defined Strategy

Cybersecurity Framework and Regulations

  • Cybersecurity Threat Areas in Software-Defined Trucks
  • Key Factors Impacting the Software-Defined Truck Cybersecurity Landscape
  • Types of Cybersecurity Components in Software-Defined Trucks
  • Regulations Impacting Cybersecurity for Software-Defined Trucks

Growth Opportunity Universe in Software-Defined Trucks

  • Growth Opportunity 1: Technology Advancements
  • Growth Opportunity 2: Software Ecosystem
  • Growth Opportunity 3: Regulatory Readiness

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer