封面
市场调查报告书
商品编码
1883971

2024-2040年欧洲氢能产业的成长机会

Growth Opportunities in the European Hydrogen Industry, 2024-2040

出版日期: | 出版商: Frost & Sullivan | 英文 80 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

由于需求主要集中在传统消费产业,因此替代氢能正逐渐成为小众市场。

随着欧洲能源转型加速,替代/低碳氢化合物的市场趋势和成长轨迹表明,其存在着利基市场机会。传统的氢气消费产业,包括炼油、化工和石化产业,以及钢铁和玻璃製造等重工业部门,都将主导其生产和需求成长。近期对欧盟主要市场和英国的分析表明,预计到2030年,低碳氢的总产量将达到300万吨。绿氢和蓝氢氢预计将引领市场,主导是紫色氢和生物基氢,其中荷兰、德国和西班牙将处于领先地位。随着市场成长日益复杂,投资者和计划开发商克服挑战的关键驱动因素之一是长期金融支持,例如法国和义大利等国提供的10-15年期差价合约(CfD)。此类机制对于氢能产业实现与传统氢能的成本竞争力至关重要。

本研究透过基于各国监管因素、市场进入和实体市场设计的三维评估和排名,概述了欧洲主要市场如何与其国家氢能策略相契合。随后,研究分析了各种氢气商品类型的长期产量预测,概述了氢能价值链上的主要参与者,以及各市场的主要承购商。

分析范围

分析范围包括以下几种氢类型:

  • 灰氢:这是利用天然气蒸气重组(SMR)技术生产的氢气,其中甲烷与高温蒸气反应生成氢气和二氧化碳。这种传统的生产方法是碳排放强度最高的,每生产1公斤氢气大约会排放10公斤二氧化碳。
  • 蓝氢:采用与灰色氢气相同的蒸气重整方法生产,但结合碳捕获和储存85-95% 的二氧化碳排放。
  • 绿氢气:利用太阳能、风力和水力发电等100%可再生能源,透过电解水製取。电解过程将水分子(H₂O)分解为氢气和氧气,产生氢气的同时不会排放二氧化碳。
  • 紫色氢(又称粉红色氢):利用核能电解产生的。
  • 生物基:透过热化学过程(气化、热解)或生物过程(发酵、光生物转化)将有机生物质原料转化为氢气而产生的氢气。

三大战略挑战对欧洲氢能产业的影响

颠覆性技术

  • 原因:为实现全球脱碳目标,清洁氢(H2)需要取代化石氢。然而,从成本角度来看,要取代化石氢,清洁氢的成本必须降低到灰氢成本的三分之一到五分之一(具体数值取决于生产地区),这是一项极为艰鉅的任务。从这个意义上讲,清洁氢气的生产过程需要降低电力成本并提高能源利用效率。
  • 弗罗斯特的观点:提高能耗效率需要提高电解以及整个工厂的电力效率,这对于降低业主/营运商的营运成本至关重要。电解製造商必须不断追求技术变革和创新,才能实现这一目标,并避免电解系统标准化程度低。

变革性大趋势

  • 原因:世界各国正加速迈向净零排放目标,各自根据自身优势和劣势选择不同的发展路径。清洁氢气生产预计将成为实现经济需求侧脱碳的关键途径之一。清洁氢气将有助于化肥生产、加氢(石油、石化和食品製造)以及脱硫和加氢裂解(原油炼製)的脱碳。
  • 弗罗斯特的观点:鑑于目前正在筹建的计划数量,未来五到十年清洁氢气生产具有巨大的成长潜力。因此,在联邦和州政府层级推出更多扶持政策的推动下,未来几年对电解的需求可能会增加。

产业合作

  • 原因:实现净零排放的竞赛依赖生态系统中不同相关人员之间的合作,以达成通用目标。这可以防止成本转嫁给消费者,维护系统可靠性,并实现脱碳目标。缺乏合作,进展将不均衡,相关人员也将无法实现其净零排放目标。
  • 弗罗斯特的观点:为了加速清洁氢能的脱碳影响,需要在氢能经济的供应端加强电解槽製造商、材料供应商和表面处理公司之间的合作,以及供需双方之间的合作。

目录

调查范围

  • 分析范围

战略问题

  • 为什么成长变得越来越困难
  • The Strategic Imperative 8
  • 三大战略挑战对欧洲氢能产业的影响

研究结果、研究范围、研究解答的关键问题、分析调查方法和预测假设

  • 关键见解
  • 主要发现:国家排名
  • 本次调查解答的关键问题
  • 调查方法与预测假设概况

比利时

  • 监理概览:比利时
  • 市场准入便利度:比利时
  • 实体市场设计:比利时
  • 比利时替代氢气前景展望
  • 预测说明:比利时
  • 前五名用途:比利时
  • 国家生态系:比利时

法国

  • 监理概况:法国
  • 市场进入难易度:法国
  • 实体市场设计:法国
  • 法国替代氢气前景展望
  • 预测说明:法国
  • 前五名用途:法国
  • 国家生态系:法国

德国

  • 监理概览:德国
  • 市场进入门槛:德国
  • 实体市场设计:德国
  • 替代氢气前景:德国
  • 预测说明:德国
  • 前五的应用领域:德国
  • 国家生态系:德国

义大利

  • 监理概览:义大利
  • 市场准入便利度:义大利
  • 实体市场设计:义大利
  • 替代氢气生产展望:义大利
  • 预测说明:义大利
  • 前五的应用领域:义大利
  • 国家生态系:义大利

荷兰

  • 监理概览:荷兰
  • 市场进入便利度:荷兰
  • 实体市场设计:荷兰
  • 替代氢气前景:荷兰
  • 预测说明:荷兰
  • 荷兰五大用途
  • 国家生态系:荷兰

挪威

  • 监理概览:挪威
  • 市场准入便利度:挪威
  • 实体市场设计:挪威
  • 挪威替代氢气前景展望
  • 预测说明:挪威
  • 前五的应用:挪威
  • 国家生态系:挪威

波兰

  • 监理概览:波兰
  • 市场准入便利度:波兰
  • 实体市场设计:波兰
  • 波兰替代氢气前景展望
  • 预测说明:波兰
  • 五大用途:波兰
  • 国家生态系:波兰

西班牙

  • 监理概况:西班牙
  • 市场进入门槛:西班牙
  • 实体市场设计:西班牙
  • 西班牙替代氢气前景展望
  • 预测说明:西班牙
  • 前五大用途:西班牙
  • 国家生态系:西班牙

瑞典

  • 监理概况:瑞典
  • 市场进入难易度:瑞典
  • 实体市场设计:瑞典
  • 瑞典替代氢气前景展望
  • 预测说明:瑞典
  • 瑞典五大用途
  • 国家生态系:瑞典

英国

  • 监理概览:英国
  • 市场准入便利度:英国
  • 实体市场设计:英国
  • 英国替代氢气生产展望
  • 说明:英国
  • 五大用途:英国
  • 国家生态系:英国

成长机会领域

  • 成长机会1:利用国家及州级资金筹措机制生产具竞争力的低碳氢化合物
  • 成长机会2:策略性业务定位,以满足对低碳氨和甲醇日益增长的需求
  • 成长机会3:欧洲、波罗的海地区和北非之间低碳氢化合物的进出口

附录

  • The Strategic Imperative 8
  • 标准定义:标准 1 至 5
  • 标准定义:标准 6-10

附录与后续步骤

  • 成长机会带来的益处和影响
  • 下一步
  • 附件清单
  • 免责声明
简介目录
Product Code: MH58-27

Alternative Hydrogen Becoming a Niche as Offtake Opportunities Become More Concentrated Between Traditional Hydrogen Consumption Industries

As the energy transition gathers pace in Europe, market evidence and the growth trajectory of alternative/low-carbon hydrogen point to a niche market opportunity where production and offtake will likely be dominated by traditional hydrogen consumption industries, including refining, chemicals, and petrochemicals, as well as heavy industrial sectors like steel and glass manufacturing. Our latest analysis of key EU markets and the UK indicates that total low-carbon hydrogen production will likely reach 3 million tonnes by 2030, led by green and blue hydrogen, followed by purple and bio-based hydrogen, with the Netherlands, Germany, and Spain leading from the front. As growth becomes increasingly complex in this market, one of the key enablers for investors and project developers to overcome this challenge has been long-term funding support, such as contracts for difference payments offered over a ten- to fifteen-year horizon in countries like France and Italy. Such mechanisms will be vital for the hydrogen industry to achieve cost competitiveness with conventional hydrogen.

This study outlines how major European markets are aligning with their respective national hydrogen strategies through a three-dimensional rating and ranking based on regulatory drivers, market access, and physical market design in each country covered in scope, followed by long-term production forecasts of different types of hydrogen, an overview of key incumbents across the hydrogen value chain, and the top offtakers in each country market.

Scope of Analysis

The scope of analysis includes the following hydrogen types:

  • Grey: Hydrogen produced from natural gas through steam methane reforming (SMR), where methane reacts with high-temperature steam to generate hydrogen and carbon dioxide. This conventional production method releases approximately 10 kilograms of CO2 for every kilogram of hydrogen produced, making it the most carbon-intensive form.
  • Blue: hydrogen is produced using the same steam methane reforming process as grey hydrogen but incorporates carbon capture and storage (CCS) technology to trap 85-95% of the CO2 emissions.
  • Green: hydrogen is produced through electrolysis of water using 100% renewable electricity from sources like solar, wind, or hydroelectric power. The electrolysis process splits water molecules (H2O) into hydrogen and oxygen without generating any carbon dioxide emissions.
  • Purple: Purple hydrogen (also called pink hydrogen) is produced through electrolysis powered by nuclear energy.
  • Bio-based: hydrogen produced from organic biomass materials through thermochemical processes (gasification, pyrolysis) or biological processes (fermentation, photobiological conversion) that convert organic matter into hydrogen gas.

The Impact of the Top 3 Strategic Imperatives on the European Hydrogen Industry

Disruptive Technologies

  • Why: To meet global decarbonization goals, clean hydrogen (H2) must replace fossil H2. However, from a cost standpoint, to replace fossil H2, clean H2 costs must decrease three- to five-fold to reach those of grey H2, depending on the region of production-an extremely challenging feat to achieve. In that sense, the cost of electricity needs to decrease, and its consumption efficiency needs to increase during clean H2 production.
  • Frost Perspective: Increasing consumption efficiency requires higher electrolyzer and balance of plant electrical efficiency. This is vital to reduce the operational costs of owners/operators. Electrolyzer manufacturers must consistently pursue technology disruption and innovation to achieve this and avoid becoming trapped in lower electrolyzer system standardization.

Transformative Megatrends

  • Why: The world is racing to meet net-zero goals, with each country pursuing specific pathways according to their strengths and weaknesses. Clean H2 production will be a key pathway-among many-to decarbonize the economy's demand side. Clean H2 will contribute to decarbonizing fertilizer production, hydrogenation (oils, petrochemicals, and food manufacturing), and desulphurization and hydrocracking (crude oil refining).
  • Frost Perspective: In the next 5 to 10 years, clean H2 production's significant growth capacity will come online, considering the number of projects in the pipeline. As a result, electrolyzer demand will increase over the coming years, with the added support of federal and state-level support policies.

Industry Convergence

  • Why: The race to net-zero emissions is about collaboration between various ecosystem stakeholders to meet common objectives, so that costs do not pass onto consumers, to keep system reliability strong, and to reach decarbonization goals. Without collaboration, progress will be imbalanced and biased, and stakeholders will fail to meet their net-zero goals.
  • Frost Perspective: Collaboration in the supply side of the H2 economy-between electrolyzer manufacturers, material providers, and surface finishing providers-and between the supply and demand sides must increase to accelerate clean H2's impact on decarbonization.

Table of Contents

Research Scope

  • Scope of Analysis

Strategic Imperatives

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative 8
  • The Impact of the Top 3 Strategic Imperatives on the European Hydrogen Industry

Research Findings, Scope, Key Questions This Study Will Answer, Profiling Methodology, and Forecasting Assumptions

  • Key Insights
  • Key Findings: Country Rankings
  • Key Questions This Study Will Answer
  • Profiling Methodology and Forecast Assumptions

Belgium

  • Regulatory Overview-Belgium
  • Ease of Market Access-Belgium
  • Physical Market Design-Belgium
  • Alternative H2 Production Outlook-Belgium
  • Forecast Commentary-Belgium
  • Top Five Applications-Belgium
  • Country Ecosystem-Belgium

France

  • Regulatory Overview-France
  • Ease of Market Access-France
  • Physical Market Design-France
  • Alternative H2 Production Outlook-France
  • Forecast Commentary-France
  • Top Five Applications-France
  • Country Ecosystem-France

Germany

  • Regulatory Overview-Germany
  • Ease of Market Access-Germany
  • Physical Market Design-Germany
  • Alternative H2 Production Outlook-Germany
  • Forecast Commentary-Germany
  • Top Five Applications-Germany
  • Country Ecosystem-Germany

Italy

  • Regulatory Overview-Italy
  • Ease of Market Access-Italy
  • Physical Market Design-Italy
  • Alternative H2 Production Outlook-Italy
  • Forecast Commentary-Italy
  • Top Five Applications-Italy
  • Country Ecosystem-Italy

Netherlands

  • Regulatory Overview-Netherlands
  • Ease of Market Access-Netherlands
  • Physical Market Design-Netherlands
  • Alternative H2 Production Outlook-Netherlands
  • Forecast Commentary-Netherlands
  • Top Five Applications-Netherlands
  • Country Ecosystem-Netherlands

Norway

  • Regulatory Overview-Norway
  • Ease of Market Access-Norway
  • Physical Market Design-Norway
  • Alternative H2 Production Outlook-Norway
  • Forecast Commentary-Norway
  • Top Five Applications-Norway
  • Country Ecosystem-Norway

Poland

  • Regulatory Overview-Poland
  • Ease of Market Access-Poland
  • Physical Market Design-Poland
  • Alternative H2 Production Outlook-Poland
  • Forecast Commentary-Poland
  • Top Five Applications-Poland
  • Country Ecosystem-Poland

Spain

  • Regulatory Overview-Spain
  • Ease of Market Access-Spain
  • Physical Market Design-Spain
  • Alternative H2 Production Outlook-Spain
  • Forecast Commentary-Spain
  • Top Five Applications-Spain
  • Country Ecosystem-Spain

Sweden

  • Regulatory Overview-Sweden
  • Ease of Market Access-Sweden
  • Physical Market Design-Sweden
  • Alternative H2 Production Outlook-Sweden
  • Forecast Commentary-Sweden
  • Top Five Applications-Sweden
  • Country Ecosystem-Sweden

United Kingdom

  • Regulatory Overview-United Kingdom
  • Ease of Market Access-United Kingdom
  • Physical Market Design-United Kingdom
  • Alternative H2 Production Outlook-United Kingdom
  • Forecast Commentary-United Kingdom
  • Top Five Applications-United Kingdom
  • Country Ecosystem-United Kingdom

Growth Opportunity Universe in Software-Defined Trucks

  • Growth Opportunity 1: Take Advantage of National and State Level Funding Mechanisms to Produce Low-Carbon Hydrogen Competitively
  • Growth Opportunity 2: Strategic Business Positioning to Address the Growing Demand for Low-Carbon Ammonia and Methanol
  • Growth Opportunity 3: Import Export Opportunities of Low-Carbon Hydrogen Between Europe, the Baltic, and North Africa

Appendix

  • The Strategic Imperative 8
  • Criteria Definitions-Criteria 1-5
  • Criteria Definitions-Criteria 6-10

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer