封面
市场调查报告书
商品编码
1909967

在工业过程中实施碳捕获技术:挑战与成长机会

Incorporation of Carbon Capture Techniques in Industrial Processes: Challenges and Growth Opportunities

出版日期: | 出版商: Frost & Sullivan | 英文 47 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

全球趋势、技术突破和合作途径正在推动变革性碳捕获技术的发展。

本研究对先进的碳捕集技术进行了全面分析,这些技术是实现全球净零排放目标、推动工业脱碳的关键。研究探讨了燃烧前、燃烧后和富氧燃烧三种路径的整合,每种路径都采用了不同的子技术,例如化学链、气液吸收、吸附、膜分离、低温蒸馏和钙循环,以捕捉水泥、钢铁、电力和炼油等难以减排行业的二氧化碳排放。

本次调查将涵盖以下主题:

  • 我们将对排放减排的产业的核心碳捕获路径进行比较分析,评估相关的技术和程式参数,例如能源需求、捕获效率、系统模组化、工业整合、成本因素、扩充性和可改造性。
  • 深入检验创新生态系统,介绍领先的技术提供者、商业计划开发商、政策制定者和行业合作伙伴关係,并分析最新的学术进展、不断变化的专利格局和资金筹措倡议,所有这些都在推动全球捕碳封存技术的商业化和工业应用。

目录

战略要务

  • 为什么经济成长变得越来越困难?
  • The Strategic Imperative 8
  • 三大战略挑战对产业製程碳捕获技术的影响
  • 成长机会驱动Growth Pipeline Engine
  • 调查方法

成长机会分析

  • 分析范围
  • 分割

成长要素

  • 成长驱动因素
  • 成长抑制因素

碳捕获概述

  • 了解碳捕获技术
  • 工业二氧化碳捕集方法—价值链
  • 燃烧前捕集可减少高压环境下的能量损失,从而实现更清洁的燃料生产。
  • 蒸气重组透过碳捕获最大限度地提高氢气产量,而气液吸收透过标靶化的溶剂相互作用实现高效的二氧化碳捕获。
  • 气液吸收:化学吸收技术比物理吸收技术更适合碳捕获。
  • 化学循环:固体氧载体可实现高效的二氧化碳捕获。自热重整透过自持式热整合提高氢气产量。
  • 燃烧后捕集技术可以经济高效地对现有发电厂维修和模组化安装。
  • 吸附法利用可再生固体吸附剂实现高 CO2 选择性,而膜分离法提供了一种紧凑、模组化且无需化学试剂的 CO2 捕获解决方案。
  • 低温蒸馏透过低温分离实现超高纯度 CO2,而钙循环利用可再生吸附剂实现高效的 CO2 捕获,且能耗低。
  • 富氧燃烧技术可实现近 100% 的二氧化碳捕获,并减少氮氧化物 (NOx)排放。
  • 碳捕获法的比较路径分析
  • 对各种碳捕获方法的定性分析

碳捕获技术开发的创新生态系统

  • 壳牌主导全球碳捕获商业化进程
  • Saipem提供大规模二氧化碳捕集技术,以加速工业脱碳。
  • 工业碳捕获领域的其他主要相关人员

主要资金筹措倡议和专利格局

  • 中国的智慧财产权活动在工业碳捕获领域发挥主导作用。
  • 全球相关人员资金筹措倡议

成长机会领域

  • 成长机会 1:在难以减排的产业中扩大工业碳捕获规模
  • 成长机会2:碳捕获中心与共用二氧化碳基础设施的开发
  • 成长机会3:加速二氧化碳在燃料、化学品和材料领域的应用

未来计划

  • 成长机会带来的益处和影响
  • 未来计划
  • 免责声明
简介目录
Product Code: DB5D

Global Trends, Technological Breakthroughs, and Collaborative Pathways Transforming Carbon Capture

This study presents a comprehensive analysis of advanced carbon capture technologies as key enablers of industrial decarbonization in achieving global net-zero goals. It explores the integration of pre-combustion, post-combustion, and oxy-fuel pathways-each employing distinct sub-methods such as chemical looping, gas-liquid absorption, adsorption, membrane separation, cryogenic distillation, and calcium looping-to capture CO? emissions from hard-to-abate sectors, including cement, steel, power, and refining.

This study covers the following:

  • A comparative analysis of the core-carbon capture pathways by evaluating relevant technical and process parameters such as energy requirement, capture efficiency, system modularity, industrial integration, cost drivers, scalability, and retrofit potential across hard-to-abate sectors.
  • An in-depth examination of the innovation ecosystem, profiling major technology providers, commercial project developers, policymakers, and collaborative industry partnerships, alongside the latest academic advancements, evolving patent landscape, and funding initiatives that are collectively driving the commercialization and industrial adoption of carbon capture and storage technologies worldwide.

Table of Contents

Strategic Imperatives

  • Why Is It Increasingly Difficult to Grow?
  • The Strategic Imperative 8
  • The Impact of the Top 3 Strategic Imperatives on Carbon Capture Techniques in Industrial Processes
  • Growth Opportunities Fuel the Growth Pipeline Engine
  • Research Methodology

Growth Opportunity Analysis

  • Scope of Analysis
  • Segmentation

Growth Generator

  • Growth Drivers
  • Growth Restraints

Carbon Capture at a Glance

  • Understanding Carbon Capture Technologies
  • Industrial CO2 Capture Methods-Value Chain
  • Pre-Combustion Capture Provides Lower Energy Penalties at High Pressure for Cleaner Fuel Production
  • Steam Methane Reforming Maximizes Hydrogen Yield with Incorporated Carbon Capture; Gas-Liquid Absorption Drives Efficient CO2 Capture Through Targeted Solvent Interaction
  • Gas-Liquid Absorption: Chemical Absorption Technologies are Preferred over Physical Absorption for Carbon Capture
  • Chemical Looping Enables Efficient CO2 Capture Through Solid Oxygen Carriers; Autothermal Reforming Enhances Hydrogen Yield with Self-Sustaining Heat Integration
  • Post-Combustion Capture Enables Cost-Effective Retrofits and Modular Deployment in Existing Power Plants
  • Adsorption Offers High CO2 Selectivity with Regenerable Solid Sorbents; Membrane Separation Enables Compact, Modular, and Chemical-Free CO2 Capture Solutions
  • Cryogenic Distillation Achieves Ultra-High Purity CO2 Through Low-Temperature Separation; Calcium Looping Enables Efficient CO2 Capture with Recyclable Sorbents and Low Energy Demand
  • Oxy-Fuel Combustion Enables Nearly 100% CO2 Capture, Eliminating NOx Emissions
  • Comparative Pathway Analysis for Carbon Capture Methods
  • Qualitative Analysis of Various Carbon Capture Methods

Innovations Ecosystem in Developing Carbon Capture Techniques

  • Shell plc Leads Commercialization Efforts in the Global Carbon Capture Landscape
  • Saipem Catalyzes Industrial Decarbonization by Delivering Carbon Capture at Scale
  • Other Key Stakeholders in the Industrial Carbon Capture Space

Key Funding Initiatives and Patent Landscape

  • China Leads IP Activity in the Industrial Carbon Capture Domain
  • Funding Initiatives by Global Stakeholders

Growth Opportunity Universe

  • Growth Opportunity 1: Scaling Industrial Carbon Capture for Hard-to-Abate Sectors
  • Growth Opportunity 2: Developing Carbon Capture Hubs and Shared CO2 Infrastructure
  • Growth Opportunity 3: Accelerating CO2 Utilization into Fuels, Chemicals, and Materials

Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • Legal Disclaimer