![]() |
市场调查报告书
商品编码
1909979
全球机器视觉市场(2024-2029)Machine Vision Market, Global, 2024-2029 |
||||||
半导体和电子产业需求的成长推动了机器视觉市场的变革性成长
机器视觉系统利用摄影机、感测器和软体,使机器能够获取、处理和解释数据,从而做出决策。
本分析检验了影响全球机器视觉市场的关键趋势,并确定了推动和抑製成长的因素,以 2024 年为基准年,对视觉系统(独立式和整合式)、工业相机、影像撷取卡、光学元件和照明、软体和服务等组件进行了详细评估。
预测期涵盖2025年至2029年,并对美洲、欧洲、亚太地区以及中东和非洲的需求趋势进行了区域分析。此外,预测还按设备类型和终端用户产业(汽车、电子及半导体、製药、医疗设备、食品及包装、其他(太阳能、平板显示器、消费品、製程工业))进行了划分。本研究概述了机器视觉市场的新兴成长机会,并为市场参与企业和相关人员提供了可操作的资讯。
摘要:机器视觉市场
全球机器视觉市场预计2024年达到111亿美元,2029年将达到139.9亿美元,预测期内复合年增长率(CAGR)为4.7%。自动化程度的提高、品质要求的不断提升以及人工智慧驱动的视觉系统的整合是推动市场成长的关键因素。
关键市场趋势与洞察
市场规模及预测:
製造产品的日益复杂化、日益严格的监管要求以及对零缺陷生产的需求,正在加速对机器视觉系统的投资。随着各行业透过机器人、数位化製造和智慧工厂等措施现代化,机器视觉市场预计将继续在全球工业营运中发挥关键作用,帮助实现高速检测、流程优化、预测性品管以及增强生产智慧。
市场概览及趋势:机器视觉市场
机器视觉市场正处于一个转折点,自动化、机器人、人工智慧和数据驱动的生产系统正在融合。在现代製造业中,机器视觉如同自动化系统的“眼睛”,能够以远超人类的速度进行即时分析、检测、测量和分类。从组装到包装车间,这项技术确保了精度,减少了操作失误,提高了品质保证水平,并支援了连续的生产週期。随着各行业追求零缺陷製造标准,机器视觉系统正越来越多地整合到机器人单元、输送机、取放系统和自主工作站中。
人工智慧驱动的分析和深度学习能力正在重新定义工业机器视觉市场的预期。与基于规则的视觉系统不同,人工智慧模型可以从样本图像中学习,适应产品差异,并对复杂模式进行分类,因此非常适合半导体、製药和食品加工等行业。这种从基于规则到基于学习的转变代表着重大的结构性变革,使得以往传统机器视觉难以实现的检测自动化成为可能。
硬体创新依然强劲。 CMOS感测器、3D视觉模组、高光谱影像和高速相机技术的进步,使得侦测精度更高,应用范围更广。嵌入式和边缘视觉系统在本地而非云端进行处理,从而缩短了週期时间并降低了延迟。这些功能在工厂自动化机器视觉市场至关重要,因为机器人系统高度依赖即时视觉回馈来进行引导、对准、抓取、堆迭和导航。
另一个关键的市场趋势是互通性。随着智慧工厂整合PLC、机器人、输送机数位双胞胎,机器视觉供应商正专注于开放标准、工业乙太网和多摄影机同步,以确保整个生态系统的无缝通讯。这有助于推动工业4.0计划,并提升系统级智慧。
全球製造业格局的转变也正在重塑市场。在亚太地区,电子、汽车和半导体製造业持续获得大规模投资,推动了机器视觉技术的大规模应用。在欧洲,严格的品质和可追溯性监管压力正在加速製药、食品安全和汽车行业的机器视觉应用。在北美,人事费用上升、劳动力短缺以及高混合、小批量生产对柔软性的需求,使得自动化成为工业领域的优先事项。
总体而言,机器视觉市场正在从独立的检测系统向整合、智慧和可适应的自动化平台转型,这将提高各个主要行业的生产力、营运视觉性和製造竞争力。
收入与预测:机器视觉市场
随着各产业对自动化、视觉智慧和高速侦测的依赖日益提高,全球机器视觉市场呈现稳定成长态势。在品管、先进成像和机器人製造等强劲需求的推动下,该市场规模在2024年达到111亿美元。预计2029年,市场规模将达到139.9亿美元,预测期内复合年增长率约为4.7%。
市场成长受多种结构性因素驱动。製造商面临劳动力短缺、人事费用上升以及产品种类日益复杂等挑战。这些压力正在加速工业机器视觉市场向自动化检测和机器人智慧的转型。从人工或半自动侦测转向人工智慧驱动的视觉系统,使企业能够在多个班次中保持速度、精确度和一致性。
协作机器人、高速组装系统和自动化包装线的日益普及,正在推动工厂自动化领域对机器视觉市场的投资。随着工业工厂的现代化,机器视觉已成为预测性维护、在线连续测量和封闭回路型品管的关键要素。
在全球智慧製造、即时监控和端到端可追溯性等趋势的推动下,机器视觉市场预计将在所有主要地区持续扩张。预计市场规模将从111亿美元成长至139.9亿美元,显示机器视觉正成为支撑下一代生产系统的核心技术之一。
本研究检验了全球机器视觉市场,涵盖了有助于自动视觉检测和感知驱动自动化的关键技术、硬体组件、软体解决方案和工业应用,包括 2D/3D 系统、智慧型相机、基于 PC 的视觉平台、视觉感测器、影像处理软体、嵌入式视觉单元、深度学习视觉软体和整合检测系统。
工业机器视觉市场(占据整体市场的主导地位)涵盖广泛的应用领域,包括缺陷检测、测量、组装检验、机器人引导、程式码读取、预测性维护和流程最佳化。分析对象包括汽车、电子、半导体、包装、金属、塑胶、製药、食品饮料等传统製造业。工厂自动化机器视觉市场则结合现代生产生态系统、智慧製造、机器人整合和先进物料输送系统进行评估。
本研究以2024年为基准年,并预测至2029年。报告仅提供整体市场总体收入数据,未列出细分市场或地区的收入数据。地理范围涵盖北美、欧洲、亚太地区和新兴地区。
该分析整合了行业趋势、结构变化、技术的采用週期、机器人技术发展、人工智慧/机器学习整合以及与机器视觉相关的标准化工作,重点关注视觉系统如何与自动化基础设施、数位製造平台和智慧工厂环境互动。
市场区隔分析:机器视觉市场
机器视觉市场大致按组件、产品类型、应用和最终用户产业进行细分。虽然未提供各细分市场的具体收入数据,但这种结构性划分凸显了该市场应用的多样性。
1. 按组件
该生态系统包括硬体(相机、感测器、镜头、照明设备、影像撷取卡、嵌入式视觉处理器)和软体(影像撷取、深度学习视觉平台、分析引擎)。硬体是视觉采集的基础,而软体则日益决定係统的柔软性、准确性和扩充性。基于人工智慧的训练工具和云端对应平臺正在改变侦测资料的分析方式。
2. 按产品类型
机器视觉平台主要分为两大类:
3.透过使用
机器视觉广泛应用于侦测、测量、定位、程式码读取、表面分析、机器人引导和组装检验等领域。人工智慧驱动的检测、三维测量、高速分类和机器人拣选等应用正呈现显着成长。半导体、汽车、电子、包装和製药等行业越来越依赖先进的影像处理技术来满足严格的品质和合规性要求。
4. 按最终用户行业划分
终端用户涵盖广泛的产业,包括汽车、电子、日常消费品、製药、金属、半导体、塑胶、食品饮料、物流、医疗设备等。在工业机器视觉市场中,电子和半导体製造业由于其微尺度检测需求,仍然是最大的应用领域,而汽车和製药行业则要求始终如一的精度和监管可追溯性。
这些片段展示了机器视觉在现代製造环境中应用的广泛性和深度。
全球工业机器视觉市场的扩张受到几个基本因素的影响。首先,精密製造、品质一致性和缺陷最小化的需求日益增长,迫使企业以自动化视觉系统取代人工检测。高解析度感测器和人工智慧驱动的成像技术能够侦测到人工操作人员常常忽略的微小缺陷和细微异常。
其次,自动化正在工业机器视觉市场加速发展。机器人、自主物料输送系统和智慧组装都需要快速可靠的视觉回馈。机器视觉系统在这些自动化工作流程中提供感知层,引导机械臂、定位零件、检验组装顺序,并确保高速取放操作的精确度。
第三,深度学习和人工智慧正在改变机器视觉的可能性。基于人工智慧的模型可以从影像资料集中学习,适应形状和纹理的变化,并在无需大量规则编程的情况下做出更好的决策,从而提高了在各个行业的部署柔软性。
第四,工业4.0倡议强调营运可视性、持续优化和预测性品管。将机器视觉与MES、SCADA或ERP平台集成,可实现即时品质分析和封闭回路型过程控制。
最后,劳动力短缺加剧、生产吞吐量目标不断提高以及製药和食品加工等行业监管审查日益严格,都支撑了工厂自动化领域机器视觉市场的成长。
儘管发展势头强劲,但机器视觉的广泛应用仍面临诸多挑战。其中一个主要障碍是先进系统的高昂初始成本。虽然长期投资回报率通常很高,但中小製造商可能难以承担高性能摄影机、照明设备、感测器和整合等相关的前期成本。
第二个限制因素是系统复杂性。视觉系统需要校准、光照优化、演算法调优和环境控制。在动态的生产环境中,零件设计、光照条件和生产线速度的变化都可能导致系统频繁调整。对于缺乏专门的自动化工程师和资料科学人才的工厂来说,这尤其具有挑战性。
第三,深度学习系统需要高品质的图像资料集进行训练,而在产品线快速变化的行业中,收集和标註图像可能非常耗时。
第四,一些行业仍然依赖传统设备,这使得在不进行大规模流程改造的情况下难以整合现代机器视觉系统。连接问题、与现有控制系统的兼容性以及网路频宽限制等因素,都阻碍了工业机器视觉市场的整体普及。
此外,随着越来越多的视觉系统连接到工厂网路和云端平台,网路安全问题也随之出现,製造商必须确保安全的资料传输、存取控制和系统完整性。
随着全球工业应用的扩展,这些限制凸显了供应商支援、培训和弹性部署模式的重要性。
竞争格局:机器视觉市场
全球机器视觉市场竞争非常激烈,成熟的工业自动化领导企业、专业的视觉系统製造商、相机和感测器创新者以及新兴的人工智慧驱动解决方案供应商透过其成像能力、软体智慧、整合服务和特定产业知识来脱颖而出。
主要企业包括领先的自动化公司、专业相机製造商和整合视觉解决方案供应商,他们提供先进的硬体、深度学习软体、嵌入式视觉平台和系统整合服务。许多竞争对手提供交钥匙解决方案,将照明、光学元件、相机、计算单元、视觉软体和检测演算法相结合,并针对汽车、电子、製药和承包等行业环境进行客製化。
工业机器视觉市场正日益受到视觉设备供应商与机器人公司之间合作关係的影响。协作机器人高度依赖即时视觉识别,这推动了机械臂与嵌入式或智慧相机系统之间的深度整合。供应商还与工业自动化平台、製造执行系统 (MES) 供应商和可程式逻辑控制器 (PLC) 製造商合作,为智慧工厂建立互操作系统。
软体功能正成为关键的差异化因素。提供深度学习工具包、低程式码侦测建构器和云端分析平台的供应商能够实现更快的部署和更灵活的侦测工作流程。在工厂自动化机器视觉市场,供应商正专注于高速处理、确定性延迟以及与输送机、取放设备和物料输送机器人的无缝整合。
市场环境也受到区域竞争对手的影响,尤其是在亚太地区,这些竞争对手专注于生产高性价比的大规模生产硬体。领导企业正优先考虑创新、可靠性和符合国际标准,以保持竞争优势。
Machine Vision Market Is Driving Transformational Growth Due to the Rising Demand in the Semiconductor and Electronics Sector
A machine vision system uses cameras, sensors, and software to enable machines to capture, process, and interpret data for decision-making.
This analysis examines key trends shaping the global machine vision market and identifies factors driving and restraining growth. Using 2024 as the base year, it provides an in-depth assessment of components such as vision systems (standalone and integrated), industrial cameras, frame grabbers, optics and illumination, software, and services.
The forecast period spans 2025-2029, offering regional insights into demand patterns across the Americas, Europe, Asia-Pacific, and the Middle East and Africa. It also includes forecasts by equipment type and end-user industries such as automotive, electronics and semiconductors, pharmaceuticals, medical devices, food and packaging, and others (solar cells, flat panels, consumer products, and process industries). The study concludes with emerging growth opportunities in the machine vision market that participants and stakeholders can leverage.
Report Summary: Machine Vision Market
The global machine vision market was valued at USD 11.10 billion in 2024 and is expected to reach USD 13.99 billion by 2029, expanding at a CAGR of 4.7% during the forecast period. Growing automation, rising quality requirements, and the integration of AI-driven vision systems are key factors accelerating market growth.
Key Market Trends & Insights
Market Size & Forecast:
The increasing complexity of manufactured products, stringent regulatory expectations, and the need for zero-defect production are driving accelerated investments in machine vision systems. As industries modernize through robotics, digital manufacturing, and smart-factory initiatives, the machine vision market will continue to play a critical role in enabling high-speed inspection, process optimization, predictive quality control, and enhanced production intelligence across global industrial operations.
Market Overview & Trends: Machine Vision Market
The machine vision market is at a pivotal stage where automation, robotics, AI, and data-driven production systems converge. In modern manufacturing, machine vision has become the "eyes" of automated systems, enabling real-time analysis, inspection, measurement, and classification at speeds far beyond human capability. From assembly lines to packaging floors, the technology ensures precision, reduces operational errors, enhances quality assurance, and supports continuous production cycles. As industries pursue zero-defect manufacturing standards, machine vision systems are increasingly embedded into robotic cells, conveyors, pick-and-place systems, and autonomous workstations.
AI-driven analytics and deep-learning capabilities are redefining expectations within the industrial machine vision market. Unlike rule-based vision systems, AI-enabled models can learn from sample images, adapt to product variations, and classify complex patterns, making them suitable for industries such as semiconductors, pharmaceuticals, and food processing. This transition from rule-based to learning-based vision marks a significant structural shift, allowing manufacturers to automate inspections previously considered too difficult for conventional machine vision.
Hardware innovation remains a strong trend. Advancements in CMOS sensors, 3D vision modules, hyperspectral imaging, and high-speed cameras allow for deeper inspection accuracy and broader application scope. Embedded and edge-vision systems-where processing occurs locally rather than in the cloud-enable faster cycle times and reduced latency. These capabilities are essential for the factory automation machine vision market, where robotic systems rely heavily on real-time visual feedback for guidance, alignment, picking, palletizing, and navigation.
Another major market trend is interoperability. As smart factories integrate PLCs, robots, conveyors, and digital twins, machine vision vendors focus on open standards, industrial Ethernet, and multi-camera synchronization to ensure seamless communication across ecosystems. This supports Industry 4.0 initiatives and improves system-level intelligence.
Global manufacturing shifts also shape the market. Asia-Pacific continues to make substantial investments in electronics, automotive, and semiconductor manufacturing, driving high-volume machine vision deployments. In Europe, strong regulatory pressures for quality and traceability accelerate adoption in pharmaceuticals, food safety, and automotive segments. North American industries prioritize automation due to rising labor costs, workforce shortages, and the need for high-mix, low-volume production flexibility.
Overall, the machine vision market is transitioning from standalone inspection systems to integrated, intelligent, and adaptive automation platforms that enhance productivity, operational visibility, and manufacturing competitiveness across every major industrial vertical.
Revenue & Spending Forecast: Machine Vision Market
The global machine vision market demonstrates a steady growth trajectory as industries deepen their reliance on automation, visual intelligence, and high-speed inspection. In 2024, the total market size stood at USD 11.10 billion, driven by robust demand for quality control, advanced imaging, and robotics-based manufacturing. By 2029, the market is projected to reach USD 13.99 billion, representing a CAGR of approximately 4.7% over the forecast period.
Market growth is supported by several structural factors. Manufacturing industries are confronting workforce shortages, rising labor costs, and increasing complexity in product variants. These pressures accelerate the shift toward automated inspection and robotic intelligence across the industrial machine vision market. The transition from manual or semi-automated inspection to AI-enabled vision systems allows companies to maintain speed, accuracy, and consistency across multi-shift operations.
Increasing deployment of collaborative robots, high-speed assembly systems, and automated packaging lines boosts investments in the factory automation machine vision market. As industrial plants modernize, machine vision becomes integral to predictive maintenance, inline measurement, and closed-loop quality control.
With the global push for smart manufacturing, real-time monitoring, and end-to-end traceability, the machine vision market will continue expanding across every major region. The expected increase from USD 11.10 billion to USD 13.99 billion signifies that machine vision is becoming one of the core technologies powering next-generation production systems.
This study examines the global machine vision market, covering all major technologies, hardware components, software solutions, and industrial applications that contribute to automated visual inspection and perception-driven automation. The scope includes both 2D and 3D systems, smart cameras, PC-based vision platforms, vision sensors, image-processing software, embedded vision units, deep-learning vision software, and integrated inspection systems.
The industrial machine vision market-which dominates the landscape-is assessed across a wide range of applications including defect detection, measurement, assembly verification, robotics guidance, code reading, predictive maintenance, and process optimization. The analysis incorporates traditional manufacturing industries such as automotive, electronics, semiconductors, packaging, metals, plastics, pharmaceuticals, and food & beverage. The factory automation machine vision market is evaluated in relation to modern production ecosystems, smart manufacturing, robotics integration, and advanced material-handling systems.
The study period covers 2024 as the base year with forecasts through 2029. Only top-level revenue values for the total market are included; no segment-level or region-level revenue values are presented. The geographic scope includes North America, Europe, Asia-Pacific, and emerging regions.
The analysis integrates industry trends, structural shifts, technology adoption cycles, robotics evolution, AI/ML integration, and standardization efforts relevant to machine vision. It focuses on how vision systems interact with automation infrastructure, digital manufacturing platforms, and smart-factory environments.
Market Segmentation Analysis: Machine Vision Market
The machine vision market is broadly segmented by component, product type, application, and end-user industry. Although revenue values are excluded for each segment, the structural breakdown highlights the market's diverse adoption landscape.
1. By Component
The ecosystem includes hardware (cameras, sensors, lenses, lighting, frame grabbers, embedded vision processors) and software (image acquisition, deep-learning vision platforms, analytics engines). Hardware forms the foundation of visual capture, while software increasingly determines system flexibility, accuracy, and scalability. AI-based training tools and cloud-enabled platforms are transforming how inspection data is analyzed.
2. By Product Type
Machine vision platforms fall into two main categories:
3. By Application
Machine vision is used for inspection, measurement, positioning, code reading, surface analysis, robot guidance, and assembly verification. Growth is strong in AI-driven inspection, 3D measurement, high-speed sorting, and robotic picking applications. Industries such as semiconductors, automotive, electronics, packaging, and pharmaceuticals rely heavily on advanced imaging to meet stringent quality and compliance requirements.
4. By Industry
End users range widely across sectors including automotive, electronics, FMCG, pharmaceuticals, metals, semiconductors, plastics, food and beverage, logistics, and medical devices. In the industrial machine vision market, electronics and semiconductor manufacturing remain among the largest adopters due to micro-scale inspection needs, while automotive and pharmaceuticals require consistent precision and regulatory traceability.
Together, these segments illustrate the diversity and depth of machine vision adoption across modern manufacturing environments.
Several fundamental forces are shaping the expansion of the machine vision market across global industries. First, the rising need for precision manufacturing, quality consistency, and defect minimization is compelling companies to replace manual inspection with automated vision systems. High-resolution sensors and AI-driven imaging enable detection of micro-defects and subtle anomalies that human operators often miss.
Second, automation is accelerating across the industrial machine vision market. Robotics, autonomous material-handling systems, and smart assembly lines require rapid, reliable visual feedback. Machine vision systems provide the perception layer for these automated workflows, guiding robotic arms, confirming part orientation, verifying assembly sequences, and ensuring the accuracy of high-speed pick-and-place operations.
Third, deep learning and AI are transforming what machine vision can achieve. AI-based models learn from image datasets, adapt to variations in shape or texture, and deliver better decision-making without extensive rule programming. This increases deployment flexibility across diverse industries.
Fourth, Industry 4.0 initiatives emphasize operational visibility, continuous optimization, and predictive quality management. Machine vision, when integrated with MES, SCADA, or ERP platforms, enables real-time quality analytics and closed-loop process control.
Finally, growth in the factory automation machine vision market is supported by rising labor shortages, higher production throughput targets, and increasing regulatory scrutiny in sectors such as pharmaceuticals and food processing.
Despite strong momentum, several challenges affect adoption in the machine vision market. One significant barrier is the high initial cost of advanced systems. While long-term ROI is typically strong, small and mid-sized manufacturers may struggle with upfront expenses related to high-performance cameras, lighting, sensors, and integration.
A second restraint is system complexity. Vision systems require calibration, lighting optimization, algorithm tuning, and environmental control. In dynamic production environments, changes in part design, lighting conditions, or line speed can necessitate frequent system adjustments. This is particularly challenging for factories lacking dedicated automation or data-science talent.
Third, deep-learning systems demand high-quality image datasets for training. In industries with rapidly changing product lines, collecting and labeling imagery can be time-consuming.
Fourth, some industrial sectors still rely on legacy equipment, making it difficult to integrate modern machine vision systems without broader process modifications. Connectivity issues, compatibility with existing control systems, and limited network bandwidth can slow adoption across the industrial machine vision market.
Cybersecurity concerns also emerge as more vision systems connect to factory networks or cloud platforms. Manufacturers must ensure secure data transmission, access control, and system integrity.
These restraints highlight the importance of vendor support, training, and flexible deployment models as adoption expands across global industries.
Competitive Landscape: Machine Vision Market
The global machine vision market is highly competitive, featuring established industrial automation leaders, specialized vision-system manufacturers, camera and sensor innovators, and emerging AI-driven solution providers. Companies differentiate themselves through imaging capabilities, software intelligence, integration services, and industry-specific expertise.
Key players include major automation firms, camera specialists, and integrated vision-solution vendors offering advanced hardware, deep-learning software, embedded vision platforms, and system integration. Many competitors provide turnkey solutions, combining lighting, optics, cameras, compute units, vision software, and custom inspection algorithms tailored to automotive, electronics, pharmaceutical, and packaging environments.
The industrial machine vision market is increasingly shaped by partnerships between vision providers and robotics companies. Collaborative robots rely heavily on real-time visual perception, driving strong integration between robotic arms and embedded or smart-camera systems. Suppliers also form alliances with industrial automation platforms, MES providers, and PLC manufacturers to create interoperable systems for smart factories.
Software capability has become a key differentiator. Vendors offering deep-learning toolkits, low-code inspection builders, or cloud-based analytics platforms enable faster deployment and more adaptable inspection workflows. In the factory automation machine vision market, vendors focus on high-speed processing, deterministic latency, and seamless integration with conveyors, pick-and-place units, and material-handling robots.
The landscape is also influenced by regional competitors specializing in cost-effective hardware for high-volume manufacturing, particularly in Asia-Pacific. Global leaders emphasize innovation, reliability, and compliance with international standards to maintain competitive advantage.