![]() |
市场调查报告书
商品编码
1916385
氮化镓装置市场分析及预测(至2035年):依应用、类型、技术、组件、装置、最终用户、製程、产品及功能划分Gallium Nitride Device Market Analysis and Forecast to 2035: Application, Type, Technology, Component, Device, End User, Process, Product, Functionality |
||||||
预计氮化镓装置市场规模将从2025年的41亿美元成长到2035年的63亿美元,复合年增长率约为17.5%。预计氮化镓装置市场规模将从2025年的41.324亿美元成长到2035年的206.43亿美元,2026年至2035年的复合年增长率约为17.5%。
氮化镓 (GaN) 已成为下一代功率和射频 (RF) 电子装置的关键宽能带隙(WBG) 平台,在关键地区,政策、技术和应用需求相互促进。政府蓝图和资助框架明确指出,包括 GaN 在内的宽能带隙功率电子装置对于提高国家能源效率和增强半导体韧性至关重要。美国能源局尖端材料与製造技术办公室 (AMMTO) 的《宽能带隙功率电子战略框架》(2025 年草案)指出,宽能带隙装置是降低交通运输、电网和资料中心系统转换损耗的关键装置,并将汽车逆变器、充电器和可再生能源列为重点部署领域,并给予优先支援。
在欧洲,2023年至2024年实施的《欧盟晶片法案》和《晶片联合计画》将向先进半导体试验生产线注入超过110亿欧元的公共资金。这其中包括一条专用的宽能带隙(WBG)试验生产线,旨在推动氮化镓(GaN)及相关技术的产业化,这是欧洲确保自身技术主权政策的一部分。在企业方面,英飞凌2023年年度报告指出,氮化镓在移动充电、数据中心电源、住宅太阳能逆变器和车载电动汽车充电器等领域“即将取得突破”,使其与碳化硅(SiC)一起成为公司电源产品组合中的主要增长动力。
| 市场区隔 | |
|---|---|
| 类型 | 光电元件、分离式功率元件、整合式功率元件、分离式射频元件、整合式射频元件 |
| 产品 | 表面黏着技术、通孔、晶片级封装、裸晶 |
| 科技 | 氮化镓基板碳化硅、氮化镓基板硅、氮化镓基板蓝宝石、体氮化镓 |
| 成分 | 电晶体、二极体、单晶片积体电路 (MMIC)、积体电路模组 (IC)、扩大机元件 |
| 目的 | 电讯与资讯通讯技术、汽车与电动出行、家用电子电器、工业与电力系统、国防与航太、能源与可再生能源系统等应用领域 |
| 装置 | 功率半导体、高频半导体、光半导体 |
| 流程 | MOCVD、HVPE |
| 最终用户 | 原始设备製造商、一级整合商、代工厂/整合装置製造商、契约製造製造商、研究机构和学术机构 |
| 功能 | 高频、高功率、高效率、混合型 |
从技术角度来看,同行评审的研究证实了氮化镓(GaN)的固有优势。 GaN 具有约 3.4 eV 的宽频隙、高临界场强和高电子迁移率,使其在功率转换和高频放大方面均比硅具有更快的开关速度、更高的功率密度和更高的效率。这些基本特性正在引领显着的发展趋势。在电力电子领域,近期基于 GaN 的併网太阳能逆变器和多转换器可再生能源系统的研究表明,其效率的提升使其能够实现高频、高功率运行,并製造出更紧凑的被动元件,直接面向太阳能和微电网应用。
在高频领域,氮化镓(GaN)功率放大器已成为5G大规模MIMO和雷达前端的核心技术。商用GaN功率放大器,例如Qorvo于2023年发布的QPA0524,针对C波段及邻近频谱的5G通讯和国防雷达进行了最佳化。未来的战略机会集中在三个方面。首先是电动车(EV)和充电基础设施。美国能源局(DOE)的垂直GaN车辆电气化计划以及英飞凌的企业声明表明,GaN将助力实现更高效、高功率的车载充电器和直流快速充电器。其次是可再生能源和电网。基于GaN的逆变器可用于太阳能发电和混合AC/DC微电网,预计将显着提高效率和功率密度,符合政府的清洁能源目标。第三是6G时代的射频系统。国际白皮书《为 6G 实现射频 (2023-2024)》预测,亚太兆赫和毫米波频段将对功率效率和频宽提出严格的要求,这将需要高功率密度的 GaN 前端,用于整合通讯和感测、先进雷达和射频能量应用。
细分市场概览
根据氮化镓(GaN)装置的功能细分,市场可分为高频、高功率、高效率和混合型GaN装置。高频GaN元件在功能细分市场中占据主导地位,这主要归功于其在5G基地台、射频前端模组、雷达、卫星通讯和国防电子等领域的重要角色。与硅和砷化镓(GaAs)相比,GaN具有更高的电子迁移率,从而能够实现更高的功率密度和更低的损耗,使其能够在毫米波频段运作。例如,2023年2月,恩智浦半导体(NXP Semiconductors)扩展了其用于5G大规模MIMO基地台的射频GaN产品线,目标是高频宏蜂窝/小型基地台基础设施。 2024年7月,Qorvo宣布了一项新的多年期国防射频GaN供应协议,进一步巩固了该领域在高频关键任务应用领域的领先地位。高功率GaN元件是成长第二快的细分市场,其成长动力主要来自电动车、可再生能源系统、直流快速充电器和工业电源等领域。氮化镓(GaN)在高温环境下的高电压处理能力使其能够实现更高的功率密度和更小的系统尺寸。例如,英飞凌科技于2024年3月发布了新一代650V CoolGaN™功率晶体管,用于电动车车载充电器和太阳能逆变器。 Wolfspeed也在2023年8月扩大了位于莫霍克谷工厂的GaN产能,以满足汽车和能源客户日益增长的需求,这表明该公司在高功率GaN领域持续加强投资。高效GaN装置在消费性电子产品、资料中心和电信设备的电源领域正迅速普及,因为更高的效率可以直接转化为更低的散热、更小的尺寸和更低的营运成本。 GaN更高的开关频率和更低的导通损耗使其成为紧凑型快速充电器和伺服器电源的理想选择。例如,Navitas Semiconductor于2023年5月资金筹措,用于在新设计的资料中心电源架构中采用GaNFast™积体电路。此外,Anchor Innovations 将于 2024 年 1 月推出一系列超紧凑型 GaN 基底快速充电转接器,展示以效率为中心的 GaN 技术如何重塑面向消费者和企业的主流电源解决方案。
氮化镓 (GaN) 元件市场可依产品封装方式细分为:表面黏着技术(SMD)、通孔封装、晶片级封装 (CSP) 和裸晶。行动电气化、快速充电设备、可再生能源电力系统和高频资料中心电源架构的融合正在推动这四大 GaN 封装细分市场的需求,从而为消费性电子和工业应用创造了机会。表面黏着技术封装 (SMD) 占据 GaN 装置市场的主导地位。这些紧凑、易于自动化组装的封装形式具有高功率密度、优异的散热性能和经济高效的製造能力,在消费性电子、汽车、电信和资料中心电源的量产中占据主导地位。例如,瑞萨电子于 2025 年 7 月发布了其新开发的 650V GaN FET。该产品提供 TOLT 和 TOLL 两种封装形式,适用于表面黏着技术,是继 2024 年收购 Transphorm 的 GaN 技术之后的一项重要产品发布。此次收购将瑞萨电子的 GaN 产品线从消费性电子电源转换应用扩展到了工业电源转换应用领域。表面黏着技术贴装氮化镓装置在加速其普及应用的伙伴关係中也扮演着重要角色。 2025年12月,安森美半导体宣布与全球多家代工厂建立战略合作伙伴关係,共同开发采用高效封装的先进650V氮化镓功率元件,适用于人工智慧资料中心、电动车充电、工业和航太系统等表面黏着技术应用。样品预计将于2026年初交付。
晶片级封装是成长最快的细分市场,其成长主要得益于超紧凑型消费性充电器、汽车电子产品以及对寄生效应要求极低的高频电源。例如,以GaNFast晶片级功率IC闻名的Navitas Semiconductor于2025年5月发布了一款全新的高效12kW GaN & SiC功率平台,显示紧凑型装置能够同时提升资料中心和人工智慧运算应用的效能和密度。製造能力的扩展也进一步推动了晶片级封装的发展。例如,德克萨斯于2024年10月宣布,将在日本将其GaN半导体产能扩大四倍,从而使高度整合、紧凑型GaN晶片能够在消费和工业市场广泛应用。通孔封装的成长较为温和,且仍具有重要意义,主要应用于传统工业应用和对机械强度要求极高的高可靠性领域。例如,瑞萨电子的第四代 GaN 产品提供表面黏着技术贴装和 TO-247(通孔)两种封装方式,确保为高功率工业转换器和马达驱动装置提供产品供应,而传统的基板安装仍然是这些应用的标准。
区域概览
按地区划分,氮化镓(GaN)装置市场分析涵盖北美、欧洲、亚太、拉丁美洲以及中东和非洲。亚太地区在2025年引领市场。该地区的成长主要得益于家用电子电器、电动车和通讯产业的强劲需求。中国在电力电子和快速充电应用领域主导GaN技术的应用,计画于2025年1月将GaN功率元件引入消费级充电器和工业系统。日本正积极推广GaN技术在汽车和工业系统的应用,计画于2025年3月将GaN功率模组整合到电动车动力传动系统和工厂自动化设备中。韩国正在加速GaN在电信和资料中心基础设施领域的应用,计划于2025年5月前推出用于5G基地台和伺服器电源的GaN射频和功率装置。印度正在扩大GaN在可再生能源和电力管理领域的应用,计划于2025年7月前推出用于电网的GaN逆变器和GaN转换器。
北美已成为氮化镓(GaN)装置市场的主要中心,占30%的市场。该地区的发展动力主要来自汽车、通讯和工业领域对高效能功率电子和射频应用的需求。美国主导这一应用趋势,于2025年3月推出了用于电动车和工业转换器高压运行的新一代GaN场效电晶体(FET)。同年7月,紧凑型GaN射频电晶体提升了5G网路和卫星通讯的效能;同年9月,基于GaN的功率模组实现了更低的散热需求和更长的使用寿命。
受电力电子、电动车和通讯领域日益增长的应用需求推动,欧洲氮化镓(GaN)装置市场正以16.5%的复合年增长率快速扩张。德国正引领氮化镓在汽车和工业电力系统的应用,计画于2025年2月将基于氮化镓的电力电子产品引入电动车动力传动系统。法国计画于2025年4月将高频氮化镓射频元件整合到航太和国防雷达系统。义大利和西班牙则致力于在可再生能源系统中应用氮化镓技术,并计划于2025年8月推出用于太阳能和风能发电的氮化镓逆变器和转换器。
预计到2025年,拉丁美洲氮化镓(GaN)装置市场规模将达到2.405亿美元,并因电力电子、可再生能源和通讯领域应用的不断扩大而持续成长。巴西主导在可再生能源和工业应用领域引领GaN元件的普及,计划于2025年2月推出用于太阳能逆变器和工业驱动器的GaN基功率模组。智利计划于2025年6月推出用于高效能功率转换的GaN基转换器。阿根廷和哥伦比亚计划于2025年8月将GaN高频电晶体整合到5G网路和无线系统中。
在中东和非洲地区,氮化镓(GaN)装置市场正以18.2%的复合年增长率快速成长,这主要得益于对节能电力电子、通讯基础设施和可再生能源系统的投资。 2025年2月,GaN元件将在中东的太阳能发电厂和智慧电网中得到应用。 2025年4月,GaN高频元件将在海湾国家的5G基地台和卫星通讯系统中投入使用。 2025年6月,高效能GaN射频和功率元件在以色列国防和航太系统的整合工作正在稳步推进。 2025年8月,基于GaN的转换器将开始逐步应用于非洲的太阳能发电设施和离网电力系统。
主要趋势和驱动因素
对能源效率和高功率密度的需求不断增长,将推动氮化镓装置的普及应用。
家用电子电器、资料中心、通讯和工业设备等领域对氮化镓 (GaN) 装置的需求。与传统的硅 MOSFET 相比,GaN 半导体具有显着降低的导通损耗、更高的开关频率和更优异的散热性能,从而实现更高效的功率转换和更低的能耗。随着装置尺寸不断缩小,同时对高功率的需求却不断提高,GaN 使设计人员能够使用更小的被动元件,降低散热需求,并实现更高的功率密度,从而支援紧凑轻量化的系统结构。从 2023 年到 2025 年,英飞凌、纳维达斯半导体、Power Integrations 和 Wise Integration 等主要企业扩展了其 GaN 功率 IC 和分立装置产品组合,以满足快速充电器、伺服器电源、电动车充电器和工业转换器等领域对效率的更高需求。因此,在那些将能源效率、温度控管和空间优化作为关键设计考虑的应用中,GaN 装置的应用越来越广泛。
汽车和工业系统的电气化推动了氮化镓装置的应用
全球汽车和工业领域电气化的快速发展,显着推动了对高性能电力电子装置的需求,这些装置能够在比传统硅元件更高的电压和频率下运作。氮化镓 (GaN) 装置具有更快的开关速度、卓越的效率和高功率密度,可用于电动车车载充电器、DC-DC 转换器和工业自动化系统中紧凑的轻量化功率。 GaN 装置的效率高达 96-98%,且散热性能优异,有助于 OEM 厂商延长电动车续航里程、减轻系统重量并提高整体能量转换效率。到 2023 年,用于汽车的 GaN 车载充电器的销量将超过 200 万台,这表明其在新电动车设计中得到了广泛应用。包括意法半导体 (STMicroelectronics)、Transphorm、英飞凌 (Infineon) 和罗姆半导体 (ROHM Semiconductor) 在内的主要半导体公司,正透过新产品发布、战略合作和产能扩张等方式推广高压和车规级 GaN 器件,从而巩固 GaN 作为下一代电动技术的工业系统地位。
Gallium Nitride Device Market is anticipated to expand from $4.1 billion in 2025 to $6.3 billion by 2035, growing at a CAGR of approximately 17.5%. The Gallium Nitride Device Market is anticipated to expand from $4,132.4 million in 2025 to $20,643.0 million by 2035, growing at a CAGR of approximately 17.5% from 2026 to 2035.
Gallium nitride (GaN) has consolidated its position as a core wide-bandgap platform for next-generation power and RF electronics, with policy, technology, and application pull now reinforcing one another across major regions. Government roadmaps and funding frameworks explicitly single out wide-bandgap power electronics, including GaN, as critical for national energy efficiency and semiconductor resilience; the U.S. Department of Energy's Advanced Materials and Manufacturing Technologies Office (AMMTO) Wide Bandgap Power Electronics Strategic Framework (draft released 2025) identifies WBG devices as essential to cutting conversion losses in transportation, grid, and data-center systems, framing targeted support for automotive inverters, chargers, and renewables as high-impact deployment arenas.
In Europe, the 2023-2024 implementation of the EU Chips Act and Chips Joint Undertaking channels more than EUR 11 billion of public funding into advanced semiconductor pilot lines, including a dedicated Wide Bandgap (WBG) Pilot Line to industrialize GaN and related technologies as part of Europe's sovereignty agenda. On the corporate side, Infineon's 2023 Annual Report explicitly states that GaN is "on the brink of a breakthrough" in mobile charging, data-center power supplies, residential solar inverters, and on-board EV chargers, and positions GaN as a key growth lever alongside SiC in its power portfolio.
| Market Segmentation | |
|---|---|
| Type | Optoelectronic Devices, Discrete Power Devices, Integrated Power Devices, Discrete RF Devices, Integrated RF Devices |
| Product | Surface-Mount, Through-Hole, Chip-Scale Package, Bare Die |
| Technology | GaN-on-SiC, GaN-on-Si, GaN-on-Sapphire, Bulk GaN |
| Component | Transistors, Diodes, MMICs, Integrated Modules (ICs), Amplifier Components |
| Application | Telecommunications & ICT, Automotive & E-Mobility, Consumer Electronics, Industrial & Power Systems, Defense & Aerospace, Energy & Renewable Energy Systems, Others Applications |
| Device | Power Semiconductors, RF Semiconductors, Opto-Semiconductors |
| Process | MOCVD, HVPE |
| End User | OEMs, Tier-1 Integrators, Foundries/IDMs, Contract Manufacturers, Research & Academics |
| Functionality | High-Frequency, High-Power, High-Efficiency, Hybrid |
Technologically, peer-reviewed work underlines GaN's intrinsic advantages: GaN's wide bandgap of about 3.4 eV, high critical field, and high electron mobility enable faster switching, higher power density, and greater efficiency than silicon in both power conversion and RF amplification. These fundamentals are translating into visible trends. In power electronics, recent studies on GaN-based grid-connected PV inverters and multi-converter renewable systems demonstrate efficiency gains that support higher-frequency, higher-power operation and more compact passives, directly targeting solar and microgrid applications.
In RF, GaN power amplifiers have become central to 5G massive-MIMO and radar front-ends, with commercial GaN PAs such as Qorvo's QPA0524, released in 2023, optimized for 5G communications and defense radar in C-band and adjacent spectra. Looking ahead, strategic opportunities cluster around three axes: first, EV and charging infrastructure, where DOE-backed vertical GaN programs for vehicle electrification and corporate messaging from Infineon point to GaN enabling more efficient, higher-power onboard chargers and DC fast chargers; second, renewables and grid, where GaN-based inverters for PV and hybrid AC/DC microgrids promise step-change efficiency and power-density improvements that align with government clean-energy targets; and third, 6G-era RF systems, where international white papers on RF enabling 6G (2023-2024) foresee stringent power efficiency and bandwidth demands in sub-THz and mmWave regimes that favor high-power-density GaN front-ends for joint communication-sensing, advanced radar, and RF energy applications.
Segment Overview
Based on the Functionality segmentation of the GaN device market, the market is segmented into High-Frequency, High-Power, High-Efficiency, and Hybrid GaN devices. Among these, High-Frequency GaN devices lead the functionality segment, primarily due to their critical role in 5G base stations, RF front-end modules, radar, satellite communications, and defense electronics. GaN's high electron mobility enables operation at millimeter-wave frequencies with superior power density and lower losses than silicon or GaAs. For example, in February 2023, NXP Semiconductors expanded its RF GaN portfolio for 5G massive-MIMO base stations, targeting high-frequency macro and small-cell infrastructure, while in July 2024, Qorvo announced new multi-year defense RF GaN supply contracts, reinforcing the dominance of this segment in high-frequency mission-critical applications. High-Power GaN devices represent the next strongest growth segment, supported by electric vehicles, renewable energy systems, fast DC chargers, and industrial power supplies. GaN's ability to handle high voltages at elevated temperatures allows higher power density and smaller system footprints. As an illustration, Infineon Technologies launched its 650 V CoolGaN(TM) power transistor generation in March 2024, aimed at EV onboard chargers and solar inverters, while Wolfspeed expanded its Mohawk Valley GaN fab capacity in August 2023 to meet rising demand from automotive and energy customers, highlighting sustained investment momentum in high-power GaN. High-Efficiency GaN devices are gaining rapid traction in consumer electronics, data centers, and telecom power supplies, where efficiency improvements directly reduce heat, size, and operating costs. GaN enables higher switching frequencies and lower conduction losses, making it ideal for compact fast chargers and server power units. For instance, Navitas Semiconductor secured new funding-backed design wins in May 2023 for GaNFast(TM) ICs in data-center power architectures, and Anker Innovations launched a new GaN-based ultra-compact fast-charging adapter lineup in January 2024, demonstrating how efficiency-focused GaN is reshaping mainstream consumer and enterprise power solutions.
Based on the Product segment packaging of the GaN device market, the market is segmented into Surface-Mount, Through-Hole, Chip-Scale Package, and Bare Die. Electrification of mobility, fast-charging consumer electronics, renewable energy power systems, and high-frequency data-center power architectures are jointly driving demand across all four GaN packaging sub-segments, creating opportunities from consumer to industrial applications. Surface-Mount packages lead the GaN device market. These compact, automated-assembly-friendly formats dominate high-volume manufacturing for consumer, automotive, telecom, and data-center power supplies because they offer high power density, thermal performance, and cost-effective production. For example, Renesas launched new 650 V GaN FETs in July 2025 - available in surface-mount-friendly TOLT and TOLL configurations marking a major product rollout after its acquisition of Transphorm's GaN technology in 2024. This broadened Renesas' GaN portfolio across consumer to industrial power conversion applications. Surface-mount GaN devices are also key in partnerships accelerating their use. onsemi announced in December 2025 a strategic collaboration with GlobalFoundries to co-develop advanced 650 V GaN power products that will use efficient packaging suitable for surface-mount applications across AI data centers, EV charging, industrial, and aerospace systems, with samples planned in early 2026.
Chip-Scale Packages are the fastest-growing sub-segment, driven by ultra-compact consumer chargers, automotive electronics, and high-frequency power supplies requiring minimal parasitic effects. For instance, companies like Navitas Semiconductor - known for GaNFast chip-level power ICs - showcased new 12 kW GaN & SiC power platforms with high efficiency in May 2025, underscoring how compact devices push both performance and density for data-center and AI compute applications. Chip-scale implementations are further supported by manufacturing capacity expansions such as Texas Instruments' October 2024 announcement of quadrupling GaN semiconductor capacity in Japan, enabling broader deployment of highly integrated, small-footprint GaN chips across consumer and industrial markets. Through-Hole packages show moderate growth and remain relevant mainly for legacy industrial applications and high-reliability segments where mechanical robustness is critical. For example, Renesas' Gen IV GaN launches include TO-247 (through-hole) options alongside surface-mount offerings, ensuring availability for high-power industrial converters and motor drives where traditional board assembly is still prevalent.
Geographical Overview
Based on region, the GaN device market is studied across North America, Europe, Asia-Pacific, Latin America, and Middle East & Africa. Asia-Pacific dominated the market in 2025. The region's growth is driven by strong demand from consumer electronics, electric vehicles, and telecommunications. China is leading GaN adoption in power electronics and fast-charging applications, with GaN-based power devices deployed in consumer chargers and industrial systems in January 2025. Japan is advancing GaN technology for automotive and industrial systems, integrating GaN power modules into EV powertrains and factory automation equipment in March 2025. South Korea is adopting GaN for telecom and data center infrastructure, implementing GaN RF and power devices in 5G base stations and server power supplies in May 2025. India is increasing GaN use in renewable energy and power management, introducing GaN-based converters for solar inverters and grid applications in July 2025.
North America is emerging as a major hub for the GaN device market, holding a market share of 30%. The region is driven by high-efficiency power electronics and RF applications across automotive, telecom, and industrial sectors. The United States is spearheading adoption: in March 2025, next-generation GaN FETs were introduced for higher voltage operation in EVs and industrial converters; in July 2025, compact GaN RF transistors enhanced 5G network and satellite communication performance; and in September 2025, GaN-based power modules demonstrated reduced cooling requirements and longer lifetimes.
Europe's GaN device market is expanding at a CAGR of 16.5% due to rising adoption in power electronics, electric mobility, and telecommunications. Germany is advancing GaN adoption in automotive and industrial power systems, implementing GaN-based power electronics in EV powertrains in February 2025. France is integrating high-frequency GaN RF devices into aerospace and defense radar systems in April 2025. Italy and Spain are leveraging GaN in renewable energy systems, deploying GaN-based inverters and converters for solar and wind applications in August 2025.
The Latin American GaN device market, valued at USD 240.5 million in 2025, is growing due to increasing adoption in power electronics, renewable energy, and telecommunications. Brazil is leading adoption for renewable energy and industrial applications, introducing GaN-based power modules for solar inverters and industrial drives in February 2025. Chile is deploying GaN-based converters for high-efficiency power conversion in June 2025. Argentina and Colombia are integrating GaN RF transistors into 5G networks and wireless systems in August 2025.
In the Middle East and Africa, the GaN device market is growing at a CAGR of 18.2%, driven by investments in energy-efficient power electronics, telecommunications infrastructure, and renewable energy systems. The Middle East is adopting GaN devices in solar power plants and smart grids in February 2025. Gulf countries are implementing GaN RF devices in 5G base stations and satellite communication systems in April 2025. Israel is integrating high-performance GaN RF and power devices into defense and aerospace systems in June 2025. Africa is gradually deploying GaN-based converters for solar installations and off-grid power systems in August 2025.
Key Trends and Drivers
Rising Demand for Energy Efficiency and High Power Density Driving GaN Device Adoption-
The growing focus on energy-efficient and high-performance electronics is fueling demand for gallium nitride (GaN) devices across consumer electronics, data centers, telecom, and industrial equipment. GaN semiconductors offer significantly lower conduction losses, higher switching frequencies, and superior thermal performance compared with traditional silicon MOSFETs, enabling more efficient power conversion and reduced energy consumption. As devices shrink while delivering higher power outputs, GaN allows designers to use smaller passive components, reduce cooling requirements, and achieve higher power density, supporting compact and lightweight system architectures. Between 2023 and 2025, leading companies such as Infineon, Navitas Semiconductor, Power Integrations, and Wise Integration expanded GaN power IC and discrete portfolios to meet these efficiency-driven demands in fast chargers, server power supplies, EV chargers, and industrial converters. Consequently, GaN devices are increasingly preferred in applications where energy efficiency, thermal management, and space optimization are critical design priorities.
Electrification of Automotive and Industrial Systems Driving GaN Device Adoption-
The rapid global shift toward electrification in automotive and industrial sectors is significantly boosting demand for high-performance power electronics capable of operating at higher voltages and frequencies than conventional silicon solutions. Gallium nitride (GaN) devices provide faster switching speeds, superior efficiency, and higher power density, enabling compact, lightweight power stages in EV onboard chargers, DC-DC converters, and industrial automation systems. With efficiencies reaching 96-98% and enhanced thermal performance, GaN-based solutions help OEMs extend EV driving range, reduce system weight, and improve overall energy conversion. By 2023, automotive GaN onboard chargers surpassed 2 million units, highlighting widespread adoption in new EV designs. Leading semiconductor companies, including STMicroelectronics, Transphorm, Infineon, and ROHM Semiconductor, are advancing high-voltage and automotive-grade GaN devices through new launches, strategic partnerships, and capacity expansions, solidifying GaN as a critical enabling technology for next-generation electric mobility and industrial electrification.
Research Scope