封面
市场调查报告书
商品编码
1528987

自主水下航行器 (AUV) 市场规模 - 按有效负载类型、类型、子系统、应用和预测,2024 年至 2032 年

Autonomous Underwater Vehicle (AUV) Market Size - By Payload Type, By Type, By Sub-system, By Application & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 270 Pages | 商品交期: 2-3个工作天内

价格
简介目录

由于技术创新以及不断增长的国防和安全需求,2024 年至 2032 年间,全球自主水下航行器 (AUV) 市场规模将以 14% 的复合年增长率扩大。感测器、自主性和资料处理方面的进步增强了 AUV 在军事行动、水雷对抗和水下监视等多种应用中的能力。随着世界各国政府优先考虑国防行动中的海上安全和效率,对专用 AUV 的需求持续成长。这种对创新和安全的双重关注凸显了 AUV 在增强海军能力和应对全球水下环境中新威胁的关键作用。

例如,2023 年 7 月,GRSE 在加尔各答推出了一款轻型自主水下航行器 (AUV),专为水雷对抗行动而设计。由 GRSE 与航太 Engineering Pvt. 合作开发。有限公司,这款长 2.15m 的单兵便携式 AUV 增强了防御能力。它突显了对能够增强水下防御能力的专用AUV的需求不断增长,这可能会刺激製造商之间的创新和竞争。 GRSE 与航太工程兵之间的合作。有限公司也反映了合作伙伴关係推动 AUV 产业技术进步的趋势。

自主水下航行器 (AUV) 产业根据有效载荷类型、类型、子系统、应用和区域进行细分。

在水下环境中实现精确资料收集的技术进步的推动下,到 2032 年,感测器领域将获得显着增长。这些感测器增强了对于海洋研究、国防和石油勘探至关重要的导航、成像和环境监测能力。随着对准确和即时资料的需求不断增加,感测器技术在塑造水下作业的未来方面发挥关键作用。它们与 AUV 系统的整合凸显了它们在水下勘探和工业应用中的至关重要性。

由于需要高效的水下勘探和打捞任务,到 2032 年,搜寻和打捞作业部分将大幅成长。 AUV 在深海作业中表现出色,具有定位和检索物件、进行调查以及绘製水下地形图的能力。随着海上活动的增加以及对可靠自主解决方案的需求,搜寻和打捞领域将大幅成长,使 AUV 成为海上打捞、防御和灾难应变应用中的重要工具。

由于海事安全措施、海上石油和天然气勘探以及水下研究计划的增加,亚太地区 AUV 市场份额从 2024 年到 2032 年将出现显着的复合年增长率。在政府投资和技术进步的支持下,中国、日本和澳洲等国家在 AUV 技术采用方面处于领先地位。该地区在海上活动中的战略定位以及机器人和感测技术的持续发展使其成为自主水下航行器(AUV)产业的重要贡献者。

目录

第 1 章:方法与范围

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
  • 供应商格局
    • 原物料供应商
    • 零件供应商
    • 技术提供者
    • 製造商
    • 终端用户
  • 利润率分析
  • 技术与创新格局
  • 专利分析
  • 重要新闻和倡议
  • 监管环境
  • 衝击力
    • 成长动力
      • 对海洋学研究和测绘的需求不断增长
      • 扩大海上石油和天然气勘探活动
      • 感测器和导航系统的技术进步
      • 深海资源矿产勘探
    • 产业陷阱与挑战
      • 初始投资和营运成本高
      • 监管限制和海事法
  • 成长潜力分析
  • 波特的分析
  • PESTEL分析

第 4 章:竞争格局

  • 介绍
  • 公司市占率分析
  • 竞争定位矩阵
  • 战略展望矩阵

第 5 章:市场估计与预测:按有效负载类型 2018 - 2032 年

  • 主要趋势
  • 相机
  • 感应器
  • 合成孔径声纳
  • 迴声测深仪
  • 声学多普勒电流分析仪
  • 其他的

第 6 章:市场估计与预测:按类型,2021 - 2032

  • 主要趋势
  • 浅水AUV
  • 中型AUV
  • 大型AUV

第 7 章:市场估计与预测:按子系统,2021 - 2032

  • 主要趋势
  • 推进力
  • 驱动系统
  • 避免碰撞
  • 有效载荷和成像
  • 通讯与导航

第 8 章:市场估计与预测:依应用分类,2021 - 2032

  • 主要趋势
  • 军事与国防
  • 石油和天然气
  • 环境监测
  • 海洋学
  • 考古与探索
  • 搜寻及打捞行动

第 9 章:市场估计与预测:按地区划分,2018 年 - 2032 年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 义大利
    • 西班牙
    • 俄罗斯
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳新银行
    • 东南亚
    • 亚太地区其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地区
  • MEA
    • 阿联酋
    • 南非
    • 沙乌地阿拉伯
    • MEA 的其余部分

第 10 章:公司简介

  • Aquabotix
  • Atlas Elektronik
  • Bluefin Robotics
  • ECA Group
  • Eca Robotics
  • Falmouth Scientific, Inc.
  • Graal Tech
  • Hydroid
  • International Submarine Engineering
  • Kongsberg Maritime
  • Liquid Robotics
  • Lockheed Martin
  • Nautilus Marine Service
  • Oceanalpha
  • OceanServer Technology
  • Saab Seaeye
  • Soil Machine Dynamics
  • Subsea 7
  • Teledyne Gavia
简介目录
Product Code: 2279

Global Autonomous Underwater Vehicle (AUV) Market size will expand at a 14% CAGR between 2024 and 2032, attributed to technological innovations and increasing defense and security needs. Advances in sensors, autonomy, and data processing enhance AUV capabilities for diverse applications in military operations, mine countermeasures, and underwater surveillance. As governments worldwide prioritize maritime security and efficiency in defense operations, the demand for specialized AUVs continues to rise. This dual focus on innovation and security underscores AUVs' pivotal role in enhancing naval capabilities and addressing emerging threats in underwater environments globally.

For instance, in July 2023, GRSE launched a lightweight autonomous underwater vehicle (AUV) in Kolkata designed for mine countermeasure operations. Developed by GRSE in collaboration with Aerospace Engineering Pvt. Ltd., the 2.15m long, man-portable AUV enhances defense capabilities. It highlights the increasing demand for specialized AUVs capable of enhancing underwater defense capabilities, potentially spurring innovation and competition among manufacturers. The collaboration between GRSE and Aerospace Engineering Pvt. Ltd. also reflects a trend towards partnerships driving technological advancements in the AUV industry.

The autonomous underwater vehicle (AUV) industry is fragmented based on payload type, type, sub-system, application, and region.

The sensors segment will garner remarkable gains through 2032, spurred by advancements in technology enabling precise data collection in underwater environments. These sensors enhance navigation, imaging, and environmental monitoring capabilities crucial for marine research, defense, and oil exploration. With increasing demand for accurate and real-time data, sensor technologies play a pivotal role in shaping the future of underwater operations. Their integration into AUV systems underscores their critical importance in underwater exploration and industry applications.

The search and salvage operation segment will see a considerable surge by 2032, owing to the need for efficient underwater exploration and recovery missions. AUVs excel in deep-sea operations, offering capabilities in locating and retrieving objects, conducting surveys, and mapping underwater terrains. With increasing maritime activities and the demand for reliable autonomous solutions, the search and salvage segment will see substantial growth, positioning AUVs as essential tools in marine salvage, defense, and disaster response applications.

Asia Pacific AUV market share will experience a notable CAGR from 2024 to 2032 due to increasing maritime security measures, offshore oil and gas exploration, and underwater research initiatives. Countries like China, Japan, and Australia lead in AUV technology adoption, bolstered by government investments and technological advancements. The region's strategic positioning in maritime activities and ongoing developments in robotics and sensing technologies make it a crucial contributor to the autonomous underwater vehicle (AUV) industry.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definitions
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates & calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 360-degree synopsis, 2018 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Supplier landscape
    • 3.2.1 Raw material supplier
    • 3.2.2 Component supplier
    • 3.2.3 Technology provider
    • 3.2.4 Manufacturers
    • 3.2.5 End-user
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news & initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Rising demand for oceanographic research and mapping
      • 3.8.1.2 Expansion of offshore oil and gas exploration activities
      • 3.8.1.3 Technological advancements in sensors and navigation systems
      • 3.8.1.4 Exploration of deep-sea resources and minerals
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 High initial investment and operational costs
      • 3.8.2.2 Regulatory restrictions and maritime laws
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
    • 3.10.1 Supplier Sub-system
    • 3.10.2 Buyer Sub-system
    • 3.10.3 Threat of new entrants
    • 3.10.4 Threat of substitutes
    • 3.10.5 Industry rivalry
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Payload Type 2018 - 2032 ($Bn, Units)

  • 5.1 Key trends
  • 5.2 Cameras
  • 5.3 Sensors
  • 5.4 Synthetic aperture sonar
  • 5.5 Echo sounders
  • 5.6 Acoustic doppler current profilers
  • 5.7 Others

Chapter 6 Market Estimates & Forecast, By Type, 2021 - 2032 ($Bn, Units)

  • 6.1 Key trends
  • 6.2 Shallow AUVs
  • 6.3 Medium AUVs
  • 6.4 Large AUVs

Chapter 7 Market Estimates & Forecast, By Sub-system, 2021 - 2032 ($Bn, Units)

  • 7.1 Key trends
  • 7.2 Propulsion
  • 7.3 Drive system
  • 7.4 Collision avoidance
  • 7.5 Payloads & imaging
  • 7.6 Communication & navigation

Chapter 8 Market Estimates & Forecast, By Application, 2021 - 2032 ($Bn, Units)

  • 8.1 Key trends
  • 8.2 Military & defense
  • 8.3 Oil & gas
  • 8.4 Environment monitoring
  • 8.5 Oceanography
  • 8.6 Archaeology & exploration
  • 8.7 Search & salvage operation

Chapter 9 Market Estimates & Forecast, By Region, 2018 - 2032 ($Bn, Units)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 UK
    • 9.3.2 Germany
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Russia
    • 9.3.7 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 South Korea
    • 9.4.5 ANZ
    • 9.4.6 Southeast Asia
    • 9.4.7 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
    • 9.5.4 Rest of Latin America
  • 9.6 MEA
    • 9.6.1 UAE
    • 9.6.2 South Africa
    • 9.6.3 Saudi Arabia
    • 9.6.4 Rest of MEA

Chapter 10 Company Profiles

  • 10.1 Aquabotix
  • 10.2 Atlas Elektronik
  • 10.3 Bluefin Robotics
  • 10.4 ECA Group
  • 10.5 Eca Robotics
  • 10.6 Falmouth Scientific, Inc.
  • 10.7 Graal Tech
  • 10.8 Hydroid
  • 10.9 International Submarine Engineering
  • 10.10 Kongsberg Maritime
  • 10.11 Liquid Robotics
  • 10.12 Lockheed Martin
  • 10.13 Nautilus Marine Service
  • 10.14 Oceanalpha
  • 10.15 OceanServer Technology
  • 10.16 Saab Seaeye
  • 10.17 Soil Machine Dynamics
  • 10.18 Subsea 7
  • 10.19 Teledyne Gavia