封面
市场调查报告书
商品编码
1532462

演算法交易市场规模 - 按组件(软体、服务)、按部署模式(本地、基于云端)、按交易类型(外汇、股票、交易所交易基金、债券、加密货币)、按行业垂直和预测, 2024 - 2032

Algorithmic Trading Market Size - By Component (Software, Services), By Deployment Mode (On-premises, Cloud-based), By Trading Type (Foreign Exchange, Equity, Exchange-traded Funds, Bonds, Cryptocurrencies), By Industry Verticals & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 280 Pages | 商品交期: 2-3个工作天内

价格
简介目录

在领先金融公司 MampA 併购不断增加的推动下,全球演算法交易市场 2024 年至 2032 年间复合年增长率将超过 13%。这些策略整合正在推动创新并扩大演算法交易解决方案的范围。 MampA 活动使公司能够整合先进技术、增强其交易平台并利用资料分析功能。这带来了更复杂的演算法,可以即时分析大量市场资料、优化交易策略并提高执行效率。例如,2024 年 7 月,基于云端的科技公司 Clear Street 公布了收购专门从事加拿大和美国股票的演算法执行解决方案公司的计画。 Clear Street 已达成协议,收购 Instinet 的 Fox River 演算法交易业务。

此外,收购使公司能够进入新的市场和客户群,从而扩大演算法交易在不同行业和地区的采用。合併后的实体增加了对演算法交易技术的投资,增强了竞争优势和市场流动性。随着金融机构持续进行策略併购,对尖端演算法交易解决方案的需求预计将上升,推动市场进一步成长,并提高交易业务的整体效率和获利能力。

演算法交易行业的整体价值根据组件、部署模式、交易类型、行业垂直和区域进行分类。

2024 年至2032 年,服务领域的演算法交易市场收入将实现令人称讚的复合年增长率。财产损失等风险变得至关重要。全面的商业汽车保险可针对财务损失和营运中断提供保护,保护企业资产并确保连续性。商用车数量的增加和风险管理意识的增强导致对这些政策的需求增加。因此,商业汽车保险市场正在不断扩大,以满足各行业不断变化的需求。

从 2024 年到 2032 年,交易所交易领域将显着成长。随着企业扩大货车和皮卡车队,他们需要全面的保险,以防范事故、窃盗和损坏等风险。日常营运对这些车辆的日益依赖凸显了需要客製化保险解决方案来解决其特定风险。因此,商业汽车保险市场正在不断扩大,以满足使用货车和皮卡的企业的多样化需求。

亚太地区演算法交易市场从 2024 年到 2032 年将呈现显着的复合年增长率。随着公司越来越依赖商用车辆进行运营,这种类型的保险对于保护其资产变得至关重要。不断增加的道路事故以及对全面风险管理解决方案的渴望进一步推动了对碰撞保险的需求。这一趋势凸显了其在维护车队安全和营运连续性方面的重要性,从而推动了市场成长。

目录

第 1 章:方法与范围

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
  • 供应商格局
    • 演算法开发者
    • 技术提供者
    • 交易平台提供者
    • 顾问公司
    • 最终用户
  • 利润率分析
  • 技术与创新格局
  • 专利分析
  • 重要新闻和倡议
  • 监管环境
  • 衝击力
    • 成长动力
      • 交易策略中越来越多地采用自动化
      • 对更快执行和降低交易成本的需求
      • 扩大电子交易平台和交易所
      • 全球化带来跨境贸易机会
    • 产业陷阱与挑战
      • 容易受到技术故障和系统故障的影响
      • 演算法交易策略缺乏透明度
  • 成长潜力分析
  • 波特的分析
  • PESTEL分析

第 4 章:竞争格局

  • 介绍
  • 公司市占率分析
  • 竞争定位矩阵
  • 战略展望矩阵

第 5 章:市场估计与预测:按组成部分 2021 - 2032 年

  • 主要趋势
  • 软体
    • 演算法
    • 交易平台
    • 风险管理工具
  • 服务
    • 咨询
    • 执行
    • 支援与维护

第 6 章:市场估计与预测:依部署模式,2021 - 2032 年

  • 主要趋势
  • 本地
  • 基于云端

第 7 章:市场估计与预测:依交易类型,2021 - 2032

  • 主要趋势
  • 外汇(Forex)
  • 公平
  • 交易所交易基金 (ETF)
  • 债券
  • 加密货币
  • 其他的

第 8 章:市场估计与预测:按产业垂直划分,2021 - 2032 年

  • 主要趋势
  • 银行与金融
  • 经纪自营商
  • 其他的

第 9 章:市场估计与预测:按地区,2021 - 2032

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 义大利
    • 西班牙
    • 俄罗斯
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳新银行
    • 东南亚
    • 亚太地区其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地区
  • MEA
    • 阿联酋
    • 南非
    • 沙乌地阿拉伯
    • MEA 的其余部分

第 10 章:公司简介

  • AlgoTrader
  • Automated Trading SoftTech
  • Codebase Technologies
  • CQG
  • Deltix
  • InfoReach
  • Marquee by Goldman Sachs
  • MetaTrader
  • Nasdaq
  • Optiver
  • Pragmatic
  • QuantHouse
  • Raptor Trading Systems
  • Refinitiv (formerly Reuters)
  • Tethys
  • Tick Data
  • Trading Technologies
  • Virtu Financial
  • Wissolution
简介目录
Product Code: 9512

Global Algorithmic Trading Market will witness over 13% CAGR between 2024 and 2032, fueled by the rising mergers and acquisitions M&A among leading financial companies. These strategic consolidations are driving innovation and expanding the reach of algorithmic trading solutions. M&A activities enable firms to integrate advanced technologies, enhance their trading platforms, and leverage data analytics capabilities. This results in more sophisticated algorithms that can analyze vast amounts of market data in real time, optimize trading strategies, and improve execution efficiency. For instance, in July 2024, cloud-based technology firm Clear Street unveiled plans to acquire an algorithmic execution solutions company specializing in Canadian and US equities. Clear Street has reached an agreement to purchase Instinet's Fox River algorithmic trading business.

Additionally, acquisitions allow firms to access new markets and client bases, broadening the adoption of algorithmic trading across different sectors and geographies. The increased investment in algorithmic trading technology by merged entities fosters competitive advantages and market liquidity. As financial institutions continue to pursue strategic mergers and acquisitions, the demand for cutting-edge algorithmic trading solutions is expected to rise, driving further growth in the market and enhancing the overall efficiency and profitability of trading operations.

The overall Algorithmic Trading Industry value is classified based on the component, deployment mode, trading type, industry vertical, and region.

The algorithmic trading market revenue from the services segment will register a commendable CAGR from 2024 to 2032. As companies increasingly rely on fleets for transportation, delivery, and logistics, robust insurance solutions become crucial to manage risks such as accidents, theft, and property damage. Comprehensive commercial auto insurance offers protection against financial losses and operational disruptions, safeguarding business assets and ensuring continuity. The rising number of commercial vehicles and growing awareness of risk management contribute to the increased demand for these policies. Consequently, the commercial auto insurance market is expanding to meet the evolving needs of businesses across various sectors.

The exchange traded segment will witness appreciable growth from 2024 to 2032. These vehicles are crucial for various commercial activities, including logistics, delivery, and field services. As businesses expand their fleets of vans and pickups, they require comprehensive insurance coverage to protect against risks such as accidents, theft, and damage. The increasing reliance on these vehicles for daily operations highlights the need for tailored insurance solutions that address their specific risks. Consequently, the commercial auto insurance market is expanding to cater to the diverse needs of businesses utilizing vans and pickups.

Asia Pacific algorithmic trading market will exhibit a notable CAGR from 2024 to 2032. Collision coverage protects businesses by covering repair or replacement costs for vehicles damaged in accidents, regardless of fault. As companies increasingly depend on commercial vehicles for their operations, the need for this type of coverage becomes essential to safeguard their assets. Rising road incidents and the desire for comprehensive risk management solutions further drive the demand for collision coverage. This trend highlights its importance in maintaining fleet safety and operational continuity, fueling market growth.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates & calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Supplier landscape
    • 3.2.1 Algorithm developers
    • 3.2.2 Technology providers
    • 3.2.3 Trading platform providers
    • 3.2.4 Consulting firms
    • 3.2.5 End user
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news & initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Increasing adoption of automation in trading strategies
      • 3.8.1.2 Demand for faster execution and reduced transaction costs
      • 3.8.1.3 Expansion of electronic trading platforms and exchanges
      • 3.8.1.4 Globalization leading to cross-border trading opportunities
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 Vulnerability to technological glitches and system failures
      • 3.8.2.2 Lack of transparency in algorithmic trading strategies
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Component 2021 - 2032 ($ Bn)

  • 5.1 Key trends
  • 5.2 Software
    • 5.2.1 Algorithm
    • 5.2.2 Trading platform
    • 5.2.3 Risk management tools
  • 5.3 Services
    • 5.3.1 Consulting
    • 5.3.2 Implementation
    • 5.3.3 Support & maintenance

Chapter 6 Market Estimates & Forecast, By Deployment Mode, 2021 - 2032 ($ Bn)

  • 6.1 Key trends
  • 6.2 On-premises
  • 6.3 Cloud-based

Chapter 7 Market Estimates & Forecast, By Trading Type, 2021 - 2032 ($ Bn)

  • 7.1 Key trends
  • 7.2 Foreign exchange (Forex)
  • 7.3 Equity
  • 7.4 Exchange-traded funds (ETFs)
  • 7.5 Bonds
  • 7.6 Cryptocurrencies
  • 7.7 Others

Chapter 8 Market Estimates & Forecast, By Industry Verticals, 2021 - 2032 ($ Bn)

  • 8.1 Key trends
  • 8.2 Banking & finance
  • 8.3 Broker-dealers
  • 8.4 Others

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2032 ($ Bn)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 UK
    • 9.3.2 Germany
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Russia
    • 9.3.7 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 South Korea
    • 9.4.5 ANZ
    • 9.4.6 Southeast Asia
    • 9.4.7 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
    • 9.5.4 Rest of Latin America
  • 9.6 MEA
    • 9.6.1 UAE
    • 9.6.2 South Africa
    • 9.6.3 Saudi Arabia
    • 9.6.4 Rest of MEA

Chapter 10 Company Profiles

  • 10.1 AlgoTrader
  • 10.2 Automated Trading SoftTech
  • 10.3 Codebase Technologies
  • 10.4 CQG
  • 10.5 Deltix
  • 10.6 InfoReach
  • 10.7 Marquee by Goldman Sachs
  • 10.8 MetaTrader
  • 10.9 Nasdaq
  • 10.10 Optiver
  • 10.11 Pragmatic
  • 10.12 QuantHouse
  • 10.13 Raptor Trading Systems
  • 10.14 Refinitiv (formerly Reuters)
  • 10.15 Tethys
  • 10.16 Tick Data
  • 10.17 Trading Technologies
  • 10.18 Virtu Financial
  • 10.19 Wissolution