封面
市场调查报告书
商品编码
1616046

人工智慧车辆侦测系统市场机会、成长动力、产业趋势分析与预测 2024 - 2032

AI Vehicle Inspection System Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 180 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2023年,全球人工智慧车辆检查系统市场价值为12亿美元,预计2024年至2032年复合年增长率为18%。透明度和效率。将人工智慧驱动的损坏检测系统整合到数位市场中可显着提高车辆状况评估的准确性。公司正在利用创新工具来提供详细且可靠的车辆资讯。例如,2024 年 1 月,OPENLANE, Inc.

推出了 Visual Boost AI,这是一种先进的损坏检测迭加层,适用于 OPENLANE 美国市场上每辆经销商委託的车辆。这种由人工智慧驱动的技术透过在状况报告中包含的照片上清楚地标记检测到的外部损坏来增强车辆检查报告。市场依组件分为硬体、软体和服务。 2023年,硬体领域的价值将超过5亿美元。

能够检测微小缺陷和损坏的高解析度摄影机和先进感测器正在推动人工智慧车辆检测系统市场损坏检测领域的显着增长。汽车行业和车队营运商正在寻求提高检查的精度和可靠性。先进的成像技术甚至可以识别最小的缺陷。高解析度相机提供详细的视觉效果,能够侦测传统检查方法可能遗漏的细微问题。

市场范围
开始年份 2023年
预测年份 2024-2032
起始值 12亿美元
预测值 57 亿美元
复合年增长率 18%

人工智慧车辆侦测系统市场按应用分为损坏检测、保险索赔评估、品质控制、安全检查等。人们越来越关注降低营运成本和改善车辆生命週期管理,这推动了对人工智慧驱动的损坏检测系统的需求。先进的传感器可提高评估车辆零件状况的准确性。这项技术进步提高了损坏检测的有效性,并有助于提高维护和维修过程的效率。

北美在全球人工智慧车辆侦测系统市场中占据主导地位,到2023年,其主要份额将超过35%。安全法规。该地区主要汽车製造商和科技公司的存在也有助于人工智慧检测系统的快速开发和采用。参与者越来越多地寻求创新解决方案来简化汽车检查并提高汽车行业的营运效率。例如,2024 年7 月,Click-Ins 宣布与Draiver 建立策略合作伙伴关係。 。

目录

第 1 章:方法与范围

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
  • 供应商格局
    • 硬体供应商
    • 软体开发商
    • 服务提供者
    • 系统整合商
    • 最终用户
  • 利润率分析
  • 技术与创新格局
  • 专利分析
  • 重要新闻和倡议
  • 监管环境
  • 衝击力
    • 成长动力
      • 对车辆安全和品质控制的日益关注
      • 人工智慧和机器学习技术的进步
      • 不断成长的汽车工业和车队管理部门
      • 快速转向电动车
    • 产业陷阱与挑战
      • 与现有系统的整合挑战
      • 初期投资高
  • 成长潜力分析
  • 波特的分析
  • PESTEL分析

第 4 章:竞争格局

  • 介绍
  • 公司市占率分析
  • 竞争定位矩阵
  • 战略展望矩阵

第 5 章:市场估计与预测:按组成部分,2021 - 2032 年

  • 主要趋势
  • 硬体
    • 相机
    • 感应器
    • 扫描仪
    • 其他的
  • 软体
    • 数据分析平台
    • 人工智慧和机器学习演算法
    • 状态监控软体
    • 其他的
  • 服务
    • 安装与集成
    • 维护与支援
    • 软体升级

第 6 章:市场估计与预测:依技术分类,2021 - 2032 年

  • 主要趋势
  • 影像处理
  • 电脑视觉
  • 机器学习
  • 深度学习
  • 其他的

第 7 章:市场估计与预测:依应用分类,2021 - 2032

  • 主要趋势
  • 损坏侦测
  • 保险理赔评估
  • 品质管制
  • 安全检查
  • 其他的

第 8 章:市场估计与预测:按最终用户划分,2021 - 2032 年

  • 主要趋势
  • 汽车整车厂
  • 保险公司
  • 汽车租赁和租赁机构
  • 车队营运商
  • 其他的

第 9 章:市场估计与预测:按地区,2021 - 2032

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 义大利
    • 西班牙
    • 俄罗斯
    • 北欧人
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
    • 东南亚
    • 亚太地区其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地区
  • MEA
    • 阿联酋
    • 南非
    • 沙乌地阿拉伯
    • MEA 的其余部分

第 10 章:公司简介

  • ADACOR
  • AIS (Automotive Intelligent Solutions)
  • Altoros
  • Automate.AI
  • Carscan
  • Daedalus AI
  • Dataline Technologies
  • DeepAuto
  • DeGould
  • Intellisystems Technologies
  • Konica Minolta, Inc.
  • Monk AI
  • ProovStation
  • Ravin AI
  • Sensata Technologies
  • Shenzhen Chuhui Technology Co., Ltd.
  • Testbed Telematica
  • Tractable
  • UVeye
  • Visual AI Labs
简介目录
Product Code: 11215

The Global AI Vehicle Inspection System Market was valued at USD 1.2 billion in 2023 and is expected to grow at 18% CAGR from 2024 to 2032. The automotive industry is increasingly adopting digital solutions, emphasizing advanced technologies to improve transparency and efficiency in vehicle transactions. The integration of AI-powered damage detection systems into digital marketplaces significantly enhances the accuracy of vehicle condition assessments. Companies are leveraging innovative tools to provide detailed and reliable vehicle information. For instance, in January 2024, OPENLANE, Inc.

introduced Visual Boost AI, an advanced damage detection overlay available for every dealer-consigned vehicle in OPENLANE's U.S. marketplace. This AI-driven technology enhances vehicle inspection reports by clearly marking detected exterior damage on photos included in the condition report. The market is segmented by component into hardware, software, and services. In 2023, the hardware segment was valued at over USD 500 million.

High-resolution cameras and advanced sensors capable of detecting minute defects and damages are driving significant growth in the damage detection segment of the AI vehicle inspection system market. Automotive industries and fleet operators are seeking to enhance the precision and reliability of their inspections. Sophisticated imaging technologies can identify even the smallest imperfections. High-resolution cameras provide detailed visuals that enable the detection of subtle issues that traditional inspection methods might miss.

Market Scope
Start Year2023
Forecast Year2024-2032
Start Value$1.2 Billion
Forecast Value$5.7 Billion
CAGR18%

The AI vehicle inspection system market is categorized by application into damage detection, insurance claim assessment, quality control, safety inspection, and others. The growing focus on reducing operational costs and improving vehicle lifecycle management is driving the demand for AI-powered damage detection systems. Advanced sensors offer enhanced accuracy in evaluating the condition of vehicle components. This technological evolution improves the effectiveness of damage detection and contributes to more efficient maintenance and repair processes.

North America dominated the global AI vehicle inspection system market with a major share of over 35% in 2023. The region's leadership is attributed to its advanced automotive industry, high adoption rate of new technologies, and stringent vehicle safety regulations. The presence of major automotive manufacturers and technology companies in the region also contributes to the rapid development and adoption of AI inspection systems. Players are increasingly seeking innovative solutions to streamline vehicle inspections and enhance operational efficiency in the automotive industry. For instance, in July 2024, Click-Ins announced a strategic partnership with Draiver.Through this collaboration, Draiver now offers Click-Ins' AI-driven vehicle inspection technology directly to its customers across multiple automotive sectors in the U.S. and international markets.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates & calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Supplier landscape
    • 3.2.1 Hardware suppliers
    • 3.2.2 Software developers
    • 3.2.3 Service providers
    • 3.2.4 System integrators
    • 3.2.5 End-users
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news & initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Rising focus on vehicle safety and quality control
      • 3.8.1.2 Advancements in AI and machine learning technologies
      • 3.8.1.3 Growing automotive industry and fleet management sector
      • 3.8.1.4 Rapid shift towards electric vehicles
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 Integration challenges with existing systems
      • 3.8.2.2 High initial investment
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
    • 3.10.1 Supplier power
    • 3.10.2 Buyer power
    • 3.10.3 Threat of new entrants
    • 3.10.4 Threat of substitutes
    • 3.10.5 Industry rivalry
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Component, 2021 - 2032 ($Bn)

  • 5.1 Key trends
  • 5.2 Hardware
    • 5.2.1 Cameras
    • 5.2.2 Sensors
    • 5.2.3 Scanners
    • 5.2.4 Others
  • 5.3 Software
    • 5.3.1 Data analysis platforms
    • 5.3.2 AI & machine learning algorithms
    • 5.3.3 Condition monitoring software
    • 5.3.4 Others
  • 5.4 Service
    • 5.4.1 Installation & integration
    • 5.4.2 Maintenance & support
    • 5.4.3 Software upgradation

Chapter 6 Market Estimates & Forecast, By Technology, 2021 - 2032 ($Bn)

  • 6.1 Key trends
  • 6.2 Image processing
  • 6.3 Computer vision
  • 6.4 Machine learning
  • 6.5 Deep learning
  • 6.6 Others

Chapter 7 Market Estimates & Forecast, By Application, 2021 - 2032 ($Bn)

  • 7.1 Key trends
  • 7.2 Damage detection
  • 7.3 Insurance claim assessment
  • 7.4 Quality control
  • 7.5 Safety inspection
  • 7.6 Others

Chapter 8 Market Estimates & Forecast, By End User, 2021 - 2032 ($Bn)

  • 8.1 Key trends
  • 8.2 Automotive OEMs
  • 8.3 Insurance companies
  • 8.4 Car rental & leasing agencies
  • 8.5 Fleet operators
  • 8.6 Others

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2032 ($Bn)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 UK
    • 9.3.2 Germany
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Russia
    • 9.3.7 Nordics
    • 9.3.8 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 Australia
    • 9.4.5 South Korea
    • 9.4.6 Southeast Asia
    • 9.4.7 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
    • 9.5.4 Rest of Latin America
  • 9.6 MEA
    • 9.6.1 UAE
    • 9.6.2 South Africa
    • 9.6.3 Saudi Arabia
    • 9.6.4 Rest of MEA

Chapter 10 Company Profiles

  • 10.1 ADACOR
  • 10.2 AIS (Automotive Intelligent Solutions)
  • 10.3 Altoros
  • 10.4 Automate.AI
  • 10.5 Carscan
  • 10.6 Daedalus AI
  • 10.7 Dataline Technologies
  • 10.8 DeepAuto
  • 10.9 DeGould
  • 10.10 Intellisystems Technologies
  • 10.11 Konica Minolta, Inc.
  • 10.12 Monk AI
  • 10.13 ProovStation
  • 10.14 Ravin AI
  • 10.15 Sensata Technologies
  • 10.16 Shenzhen Chuhui Technology Co., Ltd.
  • 10.17 Testbed Telematica
  • 10.18 Tractable
  • 10.19 UVeye
  • 10.20 Visual AI Labs