封面
市场调查报告书
商品编码
1638861

医疗保健数位孪生市场机会、成长驱动因素、产业趋势分析与预测 2024 - 2032 年

Healthcare Digital Twins Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 135 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2023 年,全球医疗保健数位孪生市场估值为13 亿美元,预计2024 年至2032 年复合年增长率将达到42.6%。和即时资料的整合推动的医疗保健系统内的分析。

向个人化医疗的转变是医疗保健领域采用数位孪生技术的主要驱动力。数位孪生能够创建精确的、针对特定患者的模拟,从而製定量身定制的治疗计划。透过以数位方式复製患者的生物系统,医疗保健提供者可以预测他们对不同治疗的反应,从而帮助优化个人的医疗照护和结果。

医疗保健数位孪生市场分为软体和服务。 2023 年,软体领域占最大市场份额,创造 7.787 亿美元。数位孪生软体可帮助医疗保健专业人员和研究人员能够即时创建详细的患者模型并与之互动。这些软体解决方案支援各种应用,包括预测分析、个人化治疗计划和手术准备。透过利用先进的资料分析、人工智慧 (AI) 和机器学习,数位孪生软体有助于模拟患者特定的场景,提供对治疗效果和疾病进展的准确预测。

市场范围
开始年份 2023年
预测年份 2024-2032
起始值 13亿美元
预测值 312 亿美元
复合年增长率 42.6%

在应用方面,医疗保健数位孪生市场分为个人化医疗、药物发现、手术规划以及医疗设备设计和测试等领域。其中,个人化医疗领域预计将显着资料,到 2032 年可能达到 102 亿美元。治疗反应并预测结果-世界干预。这对于管理癌症、糖尿病和心血管疾病等慢性疾病特别有价值,在这些疾病中,个人化的治疗计划对于提高疗效和患者预后至关重要。随着基因组学、人工智慧和巨量资料的进步,数位孪生可以整合不同的资料来源,建构更全面、更准确的模型,进一步增强个人化医疗保健。

在北美,美国在医疗保健数位孪生市场中占有最大份额,2023年收入为4.437亿美元。的发展数位孪生模型。这些技术可以实现更有效的个人化治疗并改善患者的治疗效果。此外,监管机构和政府措施的支持促进了数位孪生解决方案的广泛采用,鼓励医疗保健提供者投资这些技术,以实现更好的药物开发和患者管理。

目录

第 1 章:方法与范围

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
  • 产业影响力
    • 成长动力
      • 对个人化医疗和预测性医疗保健的需求不断增长
      • 物联网与即时资料分析的集成
      • 技术进步
      • 扩大远距医疗和远距监控
    • 产业陷阱与挑战
      • 安全问题和投资挑战
  • 成长潜力分析
  • 监管环境
  • 技术景观
  • 差距分析
  • 未来市场趋势
  • 启动场景
  • 波特的分析
  • PESTEL分析

第 4 章:竞争格局

  • 介绍
  • 公司市占率分析
  • 公司矩阵分析
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 战略仪表板

第 5 章:市场估计与预测:按类型,2021 - 2032

  • 主要趋势
  • 软体
  • 服务

第 6 章:市场估计与预测:按应用分类,2021 - 2032

  • 主要趋势
  • 个人化医疗
  • 药物发现与开发
  • 手术计划
  • 医疗器材设计与测试
  • 其他应用

第 7 章:市场估计与预测:按最终用途,2021 - 2032 年

  • 主要趋势
  • 医院和诊所
  • 临床研究组织(CRO)
  • 研究和诊断实验室
  • 其他最终用户

第 8 章:市场估计与预测:按地区,2021 - 2032

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 荷兰
  • 亚太地区
    • 中国
    • 日本
    • 印度
    • 澳洲
    • 韩国
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中东和非洲
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第 9 章:公司简介

  • Ansys
  • Dassault Systems (3DS System)
  • Faststream Technologies
  • Microsoft
  • Oracle
  • Philips Healthcare
  • Predictive Healthcare
  • PrediSurge
  • Q Bio
  • Siemens Healthineers
  • ThoughtWire
  • Twin Health
  • Unlearn AI
  • Verto Healthcare
  • Virtonomy
简介目录
Product Code: 12209

The Global Healthcare Digital Twins Market was valued at USD 1.3 billion in 2023 and is projected to expand at 42.6% CAGR from 2024 to 2032. This growth is largely fueled by the increasing demand for personalized medicine and the integration of IoT and real-time data analytics within healthcare systems.

The shift towards personalized medicine is a major driver behind the adoption of digital twin technology in healthcare. Digital twins enable the creation of precise, patient-specific simulations that allow for tailored treatment plans. By replicating a patient's biological systems digitally, healthcare providers can predict how they might respond to different treatments, helping to optimize medical care and outcomes for individuals.

The healthcare digital twins market is divided into software and services. In 2023, the software segment held the largest share of the market, generating USD 778.7 million. Digital twin software aid enables healthcare professionals and researchers to create and interact with detailed patient models in real time. These software solutions support a variety of applications, including predictive analytics, personalized treatment plans, and surgical preparations. By utilizing advanced data analytics, artificial intelligence (AI), and machine learning, digital twin software helps simulate patient-specific scenarios, offering accurate predictions on treatment efficacy and disease progression.

Market Scope
Start Year2023
Forecast Year2024-2032
Start Value$1.3 Billion
Forecast Value$31.2 Billion
CAGR42.6%

In terms of application, the healthcare digital twins market is segmented into areas like personalized medicine, drug discovery, surgical planning, and medical device design and testing. Among these, the personalized medicine segment is expected to grow significantly, potentially reaching USD 10.2 billion by 2032. Digital twin technology facilitates a detailed virtual model of a patient's physiological and genetic data, allowing healthcare providers to simulate treatment responses and predict outcomes before initiating real-world interventions. This is particularly valuable for managing chronic conditions such as cancer, diabetes, and cardiovascular diseases, where personalized treatment plans are crucial to improving effectiveness and patient outcomes. With advancements in genomics, AI, and big data, digital twins can integrate diverse data sources to build more comprehensive and accurate models, further enhancing personalized healthcare.

In North America, the U.S. holds the largest share of the healthcare digital twins market, with a revenue of USD 443.7 million in 2023. The U.S. leads in healthcare technology innovation, with substantial investments in AI and machine learning, which drive the development of advanced digital twin models. These technologies enable more effective personalized treatments and improved patient outcomes. Additionally, support from regulatory bodies and government initiatives promotes the widespread adoption of digital twin solutions, encouraging healthcare providers to invest in these technologies for better drug development and patient management.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definitions
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates & calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Increasing demand for personalized medicine and predictive healthcare
      • 3.2.1.2 Integration of IoT and real-time data analytics
      • 3.2.1.3 Advancements in technology
      • 3.2.1.4 Expansion of telehealth and remote monitoring
    • 3.2.2 Industry pitfalls & challenges
      • 3.2.2.1 Security concerns and investment challenges
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
  • 3.5 Technological landscape
  • 3.6 Gap analysis
  • 3.7 Future market trends
  • 3.8 Start-up scenario
  • 3.9 Porter's analysis
  • 3.10 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Company matrix analysis
  • 4.4 Competitive analysis of major market players
  • 4.5 Competitive positioning matrix
  • 4.6 Strategy dashboard

Chapter 5 Market Estimates and Forecast, By Type, 2021 - 2032 ($ Mn)

  • 5.1 Key trends
  • 5.2 Software
  • 5.3 Services

Chapter 6 Market Estimates and Forecast, By Application, 2021 - 2032 ($ Mn)

  • 6.1 Key trends
  • 6.2 Personalized medicine
  • 6.3 Drug discovery & development
  • 6.4 Surgical planning
  • 6.5 Medical device designing & testing
  • 6.6 Other applications

Chapter 7 Market Estimates and Forecast, By End Use, 2021 - 2032 ($ Mn)

  • 7.1 Key trends
  • 7.2 Hospitals and clinics
  • 7.3 Clinical research organizations (CRO)
  • 7.4 Research & diagnostic laboratories
  • 7.5 Other end users

Chapter 8 Market Estimates and Forecast, By Region, 2021 - 2032 ($ Mn)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 France
    • 8.3.4 Italy
    • 8.3.5 Spain
    • 8.3.6 Netherlands
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 Japan
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 South Korea
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
  • 8.6 Middle East and Africa
    • 8.6.1 South Africa
    • 8.6.2 Saudi Arabia
    • 8.6.3 UAE

Chapter 9 Company Profiles

  • 9.1 Ansys
  • 9.2 Dassault Systems (3DS System)
  • 9.3 Faststream Technologies
  • 9.4 Microsoft
  • 9.5 Oracle
  • 9.6 Philips Healthcare
  • 9.7 Predictive Healthcare
  • 9.8 PrediSurge
  • 9.9 Q Bio
  • 9.10 Siemens Healthineers
  • 9.11 ThoughtWire
  • 9.12 Twin Health
  • 9.13 Unlearn AI
  • 9.14 Verto Healthcare
  • 9.15 Virtonomy