![]() |
市场调查报告书
商品编码
1755267
人工智慧和机器学习操作化软体市场机会、成长动力、产业趋势分析和 2025 - 2034 年预测AI and Machine Learning Operationalization Software Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034 |
2024年,全球人工智慧和机器学习运营化软体市场规模达39亿美元,预计到2034年将以22.7%的复合年增长率成长,达到234亿美元。这得益于数据驱动决策需求的不断增长,以及企业对可扩展、自动化模型部署的需求日益增长。各组织机构正在迅速采用这些解决方案,以简化人工智慧工作流程、减少营运摩擦、确保合规性并加速创新,尤其是在製造业、金融业、医疗保健业和电子商务业等行业。
随着人工智慧和机器学习应用成为核心业务营运不可或缺的一部分,企业寻求强大的平台来即时部署、监控和维护模型。手动模型管理的低效率正推动市场向能够提供大规模人工智慧全生命週期支援的平台发展,以确保所有营运环节的准确性和速度始终保持一致。企业寻求能够在不断变化的营运环境中保持一致性、韧性和灵活性的平台。企业明显转向使用能够简化机器学习工作流程复杂性的工具,从而使组织能够有效率地从实验阶段过渡到全面实施。企业现在正在寻求能够消除技术障碍并简化资料撷取、特征工程、模型验证和部署后监控等流程的平台。这种转变正在减少对大型资料科学团队的依赖,并赋能跨职能使用者(从分析师到 IT 团队)进行人工智慧专案协作。
市场范围 | |
---|---|
起始年份 | 2024 |
预测年份 | 2025-2034 |
起始值 | 39亿美元 |
预测值 | 234亿美元 |
复合年增长率 | 22.7% |
2024年,解决方案细分市场创造了23亿美元的收入,到2034年将达到160亿美元。这一势头凸显了人们对全週期人工智慧软体的日益依赖,这些软体能够简化从资料准备到即时模型监控的所有流程。企业正在转向这些解决方案,以加快部署进度并更快地创造价值,尤其是在内部资料科学专业知识有限的环境中。透过提供自动化和可扩展性,这些平台对于财务、营运、行销和客户体验等业务部门至关重要。
2024年,云端部署领域占据了62%的份额,这得益于其适应性、成本效益以及与现有数位生态系统的无缝整合。云端基础设施使企业能够集中和协调分散式团队中的AI功能(例如模型版本控制、治理和协作),从而确保一致的效能和更快的迭代周期。它在推动AI访问民主化方面发挥的作用,使其成为在不同业务环境中扩展营运的首选。
2024年,北美人工智慧和机器学习运营化软体市场占据了48%的市场份额,这得益于成熟的人工智慧实施、强劲的云端运算应用以及对人工智慧研发的持续投入。在美国,对监管合规性、营运透明度和竞争敏捷性的高度关注,促使企业在企业规模的人工智慧营运方面投入大量资金。
DataRobot、Google云端、IBM、H2O.ai、微软、SAS Institute、亚马逊网路服务 (AWS)、Dataiku、Databricks、C3.ai。领先的公司在平台整合、使用者介面改进和云端原生功能方面投入大量资金。许多公司专注于建立统一的环境,提供涵盖模型训练、部署、治理和监控的全生命週期 AI 支援。此外,公司正在与云端服务供应商和企业软体供应商建立策略联盟,以扩大覆盖范围并增强功能。对自动化 MLOps 功能、无程式码/低程式码环境和预先建置 AI 工作流程的投资,使非技术团队能够更广泛地采用该技术。
The Global AI and Machine Learning Operationalization Software Market was valued at USD 3.9 billion in 2024 and is estimated to grow at a CAGR of 22.7% to reach USD 23.4 billion by 2034, propelled by increasing demand for data-driven decision-making and the growing need for scalable, automated model deployment across enterprises. Organizations are rapidly adopting these solutions to streamline AI workflows, reduce operational friction, ensure regulatory compliance, and accelerate innovation-especially within sectors like manufacturing, finance, healthcare, and e-commerce.
As artificial intelligence and machine learning applications become integral to core business operations, companies seek robust platforms to deploy, monitor, and maintain models in real-time. The inefficiency of manual model management is driving the market toward platforms that offer full lifecycle support for AI at scale, ensuring consistent accuracy and speed across operations. Enterprises seek platforms that maintain consistency, resilience, and flexibility across evolving operational landscapes. There's a clear shift toward tools that simplify the complexities of machine learning workflows, allowing organizations to move from experimentation to full-scale implementation efficiently. Businesses are now seeking platforms that abstract technical hurdles and streamline processes such as data ingestion, feature engineering, model validation, and post-deployment monitoring. This transition is reducing reliance on large data science teams and empowering cross-functional users-from analysts to IT teams-to collaborate on AI initiatives.
Market Scope | |
---|---|
Start Year | 2024 |
Forecast Year | 2025-2034 |
Start Value | $3.9 Billion |
Forecast Value | $23.4 Billion |
CAGR | 22.7% |
In 2024, the solutions segment generated USD 2.3 billion and will reach USD 16 billion by 2034. This momentum underscores the increasing reliance on full-cycle AI software that streamlines everything from data preparation to real-time model monitoring. Enterprises are turning to these solutions to accelerate deployment timelines and drive value faster, particularly in environments where in-house data science expertise is limited. By offering automation and scalability, these platforms are becoming essential for business units across finance, operations, marketing, and customer experience.
Cloud-based deployment segment held a 62% share in 2024, driven by its adaptability, cost-effectiveness, and seamless integration with existing digital ecosystems. Cloud infrastructure allows enterprises to centralize and coordinate AI functions-like model versioning, governance, and collaboration-within distributed teams, ensuring consistent performance and faster iteration cycles. Its role in democratizing AI access has made it the preferred choice for scaling operations across diverse business environments.
North America AI and Machine Learning Operationalization Software Market held a 48% share in 2024, bolstered by mature AI implementation, robust cloud adoption, and continuous investment in AI R&D. In the U.S., heightened focus on regulatory compliance, operational transparency, and competitive agility is prompting companies to invest heavily in operationalizing AI at enterprise scale.
DataRobot, Google Cloud, IBM, H2O.ai, Microsoft, SAS Institute, Amazon Web Services (AWS), Dataiku, Databricks, C3.ai. Leading firms invest heavily in platform integration, user interface improvements, and cloud-native functionality. Many focus on building unified environments that offer full-lifecycle AI support-spanning model training, deployment, governance, and monitoring. Additionally, companies are forming strategic alliances with cloud providers and enterprise software vendors to expand reach and enhance functionality. Investments in automated MLOps capabilities, no-code/low-code environments, and prebuilt AI workflows enable wider adoption across non-technical teams.