封面
市场调查报告书
商品编码
1797722

低温超导材料市场机会、成长动力、产业趋势分析及2025-2034年预测

Cryogenic Superconductor Materials Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 210 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024年,全球低温超导材料市场规模达28亿美元,预计2034年将以9.3%的复合年增长率成长,达到70亿美元。随着关键产业越来越多地采用先进技术,全球对低温超导材料的需求日益增长。这些材料能够在极低温下实现零电阻导电,正成为从清洁能源到高精度医学成像等各个领域的关键组件。其独特的电气特性协助打造节能基础设施,并日益被视为支持下一代电力系统和科学创新的关键。全球范围内的节能目标持续推动超导材料的应用,使其成为永续发展努力的一部分。

低温超导材料市场 - IMG1

超导体能够无损耗地传输电力,使其成为升级现代电网的重要解决方案,尤其是在再生能源占比不断扩大的背景下。整合超导电缆的基础设施建设有助于稳定和增强电力传输,提供优于传统方法的性能。同时,医疗保健和科研行业仍然是这些材料的强劲终端用户。核磁共振扫描仪等医疗技术依靠超冷超导磁铁产生强大而稳定的磁场,以实现精确的内部成像。随着技术进步和医疗保健需求的不断增长,超导磁铁的用途也在不断扩大。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 28亿美元
预测值 70亿美元
复合年增长率 9.3%

低温超导体 (LTS) 领域在 2024 年创造了 11 亿美元的市场规模,预计到 2034 年将达到 29 亿美元。这些超导体主要由铌钛 (NbTi) 和铌锡 (Nb3Sn) 等化合物组成,在低于 20 开尔文(约 -253°C)的温度下表现最佳。其主导地位源于其技术成熟度、稳定性以及数十年的发展,这些发展带来了精良且经济高效的製造流程。 LTS 材料凭藉其久经考验的性能,尤其是在能够可靠地维持稳定低温环境的应用中,仍然是许多商用系统的实用首选。

超导导线市场在2024年占了45%的市占率。这些导线因其能够无阻力传输电流而备受推崇,这意味着零能量损耗和无与伦比的运作效率。它们能够处理更高的电流密度,从而能够建立具有更高磁场强度的紧凑系统,这对于医学、能源和研究领域的先进技术至关重要。超导导线紧凑的体积和性能优势持续吸引那些寻求提高电源效率和系统可靠性的行业的需求。

2024年,美国低温超导材料市场规模达7.381亿美元,预计2034年将以9.1%的复合年增长率成长。受医疗保健、电力基础设施和高科技产业对超导技术的广泛应用所推动,美国仍处于该领域的领先地位。 MRI系统是美国此类材料的主要应用领域,随着诊断影像技术的不断发展,对下一代超导材料的需求也不断增长。这些系统利用高度稳定的磁场,这得益于冷却至低温的超导线圈。随着医疗保健服务的扩展以及旧系统的升级和更换,对这些专用材料的需求持续强劲。

全球低温超导材料市场的领导公司包括 Cryomagnetics、Hyper Tech Research、SAMRI Advanced Material、American Superconductor Corporation、Western Superconducting Technologies、Bruker Energy & Supercon Technologies、THEVA Dunnschichttechnik、Sam Dong、SuperPower 和住友电气工业。低温超导材料领域的公司正在大力投资先进研发,以提高材料性能、降低生产成本并提高可扩展性。许多公司正专注于与大学和研究机构合作,以加速下一代超导合金的开发。另一个关键策略是扩大製造能力并整合垂直运营,以更好地控制供应链。公司还优先考虑定制,为 MRI 系统、电力传输和量子计算提供特定应用的超导体。

目录

第一章:方法论与范围

第二章:执行摘要

第三章:行业洞察

  • 产业生态系统分析
    • 供应商格局
    • 利润率
    • 每个阶段的增值
    • 影响价值链的因素
    • 中断
  • 产业衝击力
    • 成长动力
    • 产业陷阱与挑战
    • 市场机会
  • 成长潜力分析
  • 监管格局
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 波特的分析
  • PESTEL分析
  • 价格趋势
    • 按地区
  • 未来市场趋势
  • 技术和创新格局
    • 当前的技术趋势
    • 新兴技术
  • 专利格局
  • 贸易统计(HS编码)(註:仅提供重点国家的贸易统计资料)
    • 主要进口国
    • 主要出口国
  • 永续性和环境方面
    • 永续实践
    • 减少废弃物的策略
    • 生产中的能源效率
    • 环保倡议
  • 碳足迹考量

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 按地区
      • 北美洲
      • 欧洲
      • 亚太地区
      • 拉丁美洲
      • MEA
  • 公司矩阵分析
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 关键进展
    • 併购
    • 伙伴关係与合作
    • 新产品发布
    • 扩张计划

第五章:市场规模及预测:依材料类型,2021-2034

  • 主要趋势
  • 低温超导体(LTS)
    • 铌钛(NbTi)合金
    • 铌锡(Nb3Sn)化合物
    • 二硼化镁(MgB2)
  • 高温超导体(HTS)
    • YBCO(YBa2Cu3O7)材料
    • BSCCO(Bi2Sr2Ca2Cu3O10)材料
    • 铁基超导体
    • 其他 HTS 材料(TBCCO、汞基)
  • 新兴超导材料
    • 拓朴超导体
    • 有机超导体
    • 室温超导体
    • 混合和复合材料

第六章:市场规模及预测:依产品形式,2021-2034

  • 主要趋势
  • 超导导线
    • 圆线产品
      • 多丝线结构
      • 交流损耗特性及应用
    • 扁平线材及带材产品
      • 涂层导体技术
      • 高电流密度应用
    • 绞合导体和成缆导体
      • 大电流应用
      • 融合磁铁和电源线的使用
  • 块体超导材料
    • 单晶块体材料
      • 俘获场磁铁应用
      • 磁浮系统
    • 多晶块体材料
      • 经济高效的批量应用
      • 磁屏蔽和轴承
    • 纹理和取向材料
      • 增强的性能特征
      • 专业高场应用
  • 薄膜超导体
    • 外延薄膜
      • 电子和感测器应用
      • 量子装置集成
    • 多层和异质结构薄膜
      • 高阶量子运算应用
      • 约瑟夫森结技术
  • 超导粉末和前驱体
    • 原料粉末
    • 前驱化学物质和化合物
    • 特种加工材料

第七章:市场规模及预测:依最终用途,2021-2034

  • 主要趋势
  • 医疗保健应用
    • 磁振造影(MRI)系统
    • 核磁共振(NMR)光谱
      • 超高场 NMR 系统(>1 Ghz)
      • 研究和药物应用
    • 粒子治疗与医疗加速器
      • 质子和离子治疗系统
      • 紧凑型加速器开发
  • 能源和电力应用
    • 输配电
      • 超导电力电缆
      • 故障电流限制器
      • 电力变压器和变电站
    • 储能係统
      • 超导磁能储存(SMES)
      • 电网稳定和电能质量
      • 再生能源整合
    • 发电机和电动机
      • 风力发电机
      • 船舶推进电机
      • 工业马达应用
  • 聚变能与研究
    • 磁约束聚变反应器
      • Iter计画和国际合作
      • 私人核融合公司倡议
      • 环形和极向场线圈
    • 高能物理研究
      • 粒子加速器与对撞机
      • 大型强子对撞机(LHC)应用
      • 未来的加速器项目
  • 量子计算与电子学
    • 量子计算系统
      • 超导量子位元技术
      • 量子处理器开发
      • 低温量子运算基础设施
    • 超导电子学
      • 单光子侦测器(SSPDS)
      • 鱿鱼感测器和磁力仪
      • 约瑟夫森结器件
    • 量子感测器和计量学
      • 超灵敏磁场检测
      • 重力波探测
  • 交通运输应用
    • 磁浮系统
      • 高铁运输
      • 城市交通应用
    • 电动航空
      • 飞机推进电机
      • 轻量级电力系统
  • 工业和科学应用
    • 材料加工与製造
    • 磁分离系统
    • 科学研究仪器

第八章:市场规模及预测:按地区,2021-2034

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 义大利
    • 西班牙
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第九章:公司简介

  • American Superconductor Corporation
  • SuperPower
  • Sumitomo Electric Industries
  • Bruker Energy & Supercon Technologies
  • Hyper Tech Research
  • THEVA Dunnschichttechnik
  • Western Superconducting Technologies
  • SAMRI Advanced Material
  • Sam Dong
  • Cryomagnetics
简介目录
Product Code: 14460

The Global Cryogenic Superconductor Materials Market was valued at USD 2.8 billion in 2024 and is estimated to grow at a CAGR of 9.3% to reach USD 7 billion by 2034. As critical industries increasingly adopt advanced technologies, demand for cryogenic superconductors is gaining traction across the globe. These materials, capable of conducting electricity with zero resistance at extremely low temperatures, are becoming essential components in sectors ranging from clean energy to high-precision medical imaging. Their unique electrical properties enable energy-efficient infrastructure and are increasingly being viewed as key to supporting next-generation power systems and scientific innovation. Energy efficiency goals worldwide continue to push the adoption of superconducting materials as part of larger sustainability efforts.

Cryogenic Superconductor Materials Market - IMG1

Superconductors can transmit electricity without energy loss, making them a vital solution for upgrading modern grids-especially as the share of renewable energy expands. Infrastructure development that integrates superconducting cables can help stabilize and enhance power transmission, offering superior performance over conventional methods. Meanwhile, the healthcare and scientific research industries remain strong end-users of these materials. Medical technologies such as MRI scanners depend on supercooled superconducting magnets to generate powerful, steady magnetic fields for precise internal imaging. Their usage is expanding in line with technological advancement and rising healthcare needs.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$2.8 Billion
Forecast Value$7 Billion
CAGR9.3%

The low temperature superconductors (LTS) segment generated USD 1.1 billion in 2024 and is expected to reach USD 2.9 billion by 2034. These superconductors, primarily composed of compounds such as niobium-titanium (NbTi) and niobium-tin (Nb3Sn), function optimally at temperatures under 20 Kelvin (around -253°C). Their dominance is due to technological maturity, stability, and decades of development that have led to refined, cost-effective manufacturing processes. LTS materials remain a practical and preferred choice for many commercial systems because of their proven performance, especially in applications where stable, low-temperature environments can be reliably maintained.

The superconducting wires segment held a 45% share in 2024. These wires are valued for their ability to transmit electric current without resistance, translating to zero energy loss and unmatched operational efficiency. Their capability to handle higher current densities also allows for compact systems with greater magnetic field strengths-essential for advanced technologies in medicine, energy, and research. Their compact footprint and performance advantages continue to attract demand from industries seeking to improve power efficiency and system reliability.

United States Cryogenic Superconductor Materials Market was valued at USD 738.1 million in 2024 and is expected to grow at a CAGR of 9.1% through 2034. The United States remains at the forefront of this sector, driven by adoption of superconducting technologies in healthcare, power infrastructure, and high-tech industries. MRI systems are the primary application for these materials in the US, and as diagnostic imaging technology continues to evolve, so does the need for next-generation superconducting materials. These systems utilize highly stable magnetic fields, made possible by superconducting coils cooled to cryogenic temperatures. As healthcare services expand, along with upgrades and replacements of older systems, the demand for these specialized materials remains consistently strong.

Leading companies operating in the Global Cryogenic Superconductor Materials Market include Cryomagnetics, Hyper Tech Research, SAMRI Advanced Material, American Superconductor Corporation, Western Superconducting Technologies, Bruker Energy & Supercon Technologies, THEVA Dunnschichttechnik, Sam Dong, SuperPower, and Sumitomo Electric Industries Companies in the cryogenic superconductor materials space are investing heavily in advanced R&D to enhance material performance, reduce production costs, and increase scalability. Many are focusing on partnerships with universities and research institutions to accelerate the development of next-generation superconducting alloys. Another key strategy is expanding their manufacturing capabilities and integrating vertical operations for better supply chain control. Firms are also prioritizing customization, offering application-specific superconductors for MRI systems, power transmission, and quantum computing.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Material type
    • 2.2.3 End use
  • 2.3 TAM analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin
    • 3.1.3 Value addition at each stage
    • 3.1.4 Factor affecting the value chain
    • 3.1.5 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
    • 3.2.2 Industry pitfalls and challenges
    • 3.2.3 Market opportunities
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
    • 3.6.1 Technology and innovation landscape
    • 3.6.2 Current technological trends
    • 3.6.3 Emerging technologies
  • 3.7 Price trends
    • 3.7.1 By region
  • 3.8 Future market trends
  • 3.9 Technology and innovation landscape
    • 3.9.1 Current technological trends
    • 3.9.2 Emerging technologies
  • 3.10 Patent landscape
  • 3.11 Trade statistics (HS code) (Note: the trade statistics will be provided for key countries only)
    • 3.11.1 Major importing countries
    • 3.11.2 Major exporting countries
  • 3.12 Sustainability and environmental aspects
    • 3.12.1 Sustainable practices
    • 3.12.2 Waste reduction strategies
    • 3.12.3 Energy efficiency in production
    • 3.12.4 Eco-friendly initiatives
  • 3.13 Carbon footprint considerations

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 By region
      • 4.2.1.1 North America
      • 4.2.1.2 Europe
      • 4.2.1.3 Asia Pacific
      • 4.2.1.4 LATAM
      • 4.2.1.5 MEA
  • 4.3 Company matrix analysis
  • 4.4 Competitive analysis of major market players
  • 4.5 Competitive positioning matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans

Chapter 5 Market Size and Forecast, By Material Type, 2021-2034 (USD Million) (Tons)

  • 5.1 Key trends
  • 5.2 Low temperature superconductors (LTS)
    • 5.2.1 Niobium-Titanium (NbTi) alloys
    • 5.2.2 Niobium-Tin (Nb3Sn) compounds
    • 5.2.3 Magnesium diboride (MgB2)
  • 5.3 High temperature superconductors (HTS)
    • 5.3.1 YBCO (YBa2Cu3O7) materials
    • 5.3.2 BSCCO (Bi2Sr2Ca2Cu3O10) materials
    • 5.3.3 Iron-based superconductors
    • 5.3.4 Other HTS materials (TBCCO, Hg-based)
  • 5.4 Emerging superconductor materials
    • 5.4.1 Topological superconductors
    • 5.4.2 Organic superconductors
    • 5.4.3 Room temperature superconductor
    • 5.4.4 Hybrid and composite materials

Chapter 6 Market Size and Forecast, By Product Form, 2021-2034 (USD Million) (Tons)

  • 6.1 Key trends
  • 6.2 Superconducting wires
    • 6.2.1 Round wire products
      • 6.2.1.1 Multifilamentary wire construction
      • 6.2.1.2 AC loss characteristics and applications
    • 6.2.2 Flat wire and tape products
      • 6.2.2.1 Coated conductor technology
      • 6.2.2.2 High current density applications
    • 6.2.3 Stranded and cabled conductors
      • 6.2.3.1 High current applications
      • 6.2.3.2 Fusion magnet and power cable use
  • 6.3 Bulk superconductor materials
    • 6.3.1 Single crystal bulk materials
      • 6.3.1.1 Trapped field magnet applications
      • 6.3.1.2 Magnetic levitation systems
    • 6.3.2 Polycrystalline bulk materials
      • 6.3.2.1 Cost-effective bulk applications
      • 6.3.2.2 Magnetic shielding and bearings
    • 6.3.3 Textured and oriented materials
      • 6.3.3.1 Enhanced performance characteristics
      • 6.3.3.2 Specialized high-field applications
  • 6.4 Thin film superconductors
    • 6.4.1 Epitaxial thin films
      • 6.4.1.1 Electronic and sensor applications
      • 6.4.1.2 Quantum device integration
    • 6.4.2 Multilayer and heterostructure films
      • 6.4.2.1 Advanced quantum computing applications
      • 6.4.2.2 Josephson junction technology
  • 6.5 Superconducting powders and precursors
    • 6.5.1 Raw material powders
    • 6.5.2 Precursor chemicals and compounds
    • 6.5.3 Specialty processing materials

Chapter 7 Market Size and Forecast, By End Use, 2021-2034 (USD Million) (Tons)

  • 7.1 Key trends
  • 7.2 Medical and healthcare applications
    • 7.2.1 Magnetic resonance imaging (MRI) systems
    • 7.2.2 Nuclear magnetic resonance (NMR) spectroscopy
      • 7.2.2.1 Ultra-high field NMR systems (>1 Ghz)
      • 7.2.2.2 Research and pharmaceutical applications
    • 7.2.3 Particle therapy and medical accelerators
      • 7.2.3.1 Proton and ion therapy systems
      • 7.2.3.2 Compact accelerator development
  • 7.3 Energy and power applications
    • 7.3.1 Power transmission and distribution
      • 7.3.1.1 Superconducting power cables
      • 7.3.1.2 Fault current limiters
      • 7.3.1.3 Power transformers and substations
    • 7.3.2 Energy storage systems
      • 7.3.2.1 Superconducting magnetic energy storage (SMES)
      • 7.3.2.2 Grid stabilization and power quality
      • 7.3.2.3 Renewable energy integration
    • 7.3.3 Electric generators and motors
      • 7.3.3.1 Wind turbine generators
      • 7.3.3.2 Ship propulsion motors
      • 7.3.3.3 Industrial motor applications
  • 7.4 Fusion energy and research
    • 7.4.1 Magnetic confinement fusion reactors
      • 7.4.1.1 Iter project and international collaboration
      • 7.4.1.2 Private fusion company initiatives
      • 7.4.1.3 Toroidal and poloidal field coils
    • 7.4.2 High energy physics research
      • 7.4.2.1 Particle accelerators and colliders
      • 7.4.2.2 Large hadron collider (LHC) applications
      • 7.4.2.3 Future accelerator projects
  • 7.5 Quantum computing and electronics
    • 7.5.1 Quantum computing systems
      • 7.5.1.1 Superconducting qubit technology
      • 7.5.1.2 Quantum processor development
      • 7.5.1.3 Cryogenic quantum computing infrastructure
    • 7.5.2 Superconducting electronics
      • 7.5.2.1 Single photon detectors (SSPDS)
      • 7.5.2.2 Squid sensors and magnetometers
      • 7.5.2.3 Josephson junction devices
    • 7.5.3 Quantum sensors and metrology
      • 7.5.3.1 Ultra-sensitive magnetic field detection
      • 7.5.3.2 Gravitational wave detection
  • 7.6 Transportation applications
    • 7.6.1 Magnetic levitation (Maglev) systems
      • 7.6.1.1 High-speed rail transportation
      • 7.6.1.2 Urban transit applications
    • 7.6.2 Electric aviation
      • 7.6.2.1 Aircraft propulsion motors
      • 7.6.2.2 Lightweight power systems
  • 7.7 Industrial and scientific applications
    • 7.7.1 Materials processing and manufacturing
    • 7.7.2 Magnetic separation systems
    • 7.7.3 Scientific research instruments

Chapter 8 Market Size and Forecast, By Region, 2021-2034 (USD Million) (Tons)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 UK
    • 8.3.2 Germany
    • 8.3.3 France
    • 8.3.4 Italy
    • 8.3.5 Spain
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 South Korea
    • 8.4.5 Australia
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
  • 8.6 MEA
    • 8.6.1 South Africa
    • 8.6.2 Saudi Arabia
    • 8.6.3 UAE

Chapter 9 Company Profiles

  • 9.1 American Superconductor Corporation
  • 9.2 SuperPower
  • 9.3 Sumitomo Electric Industries
  • 9.4 Bruker Energy & Supercon Technologies
  • 9.5 Hyper Tech Research
  • 9.6 THEVA Dunnschichttechnik
  • 9.7 Western Superconducting Technologies
  • 9.8 SAMRI Advanced Material
  • 9.9 Sam Dong
  • 9.10 Cryomagnetics