封面
市场调查报告书
商品编码
1858798

汽车级晶片雷达解决方案市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)

Automotive Radar-on-Chip Solution Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 230 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球汽车晶片雷达解决方案市值为 33 亿美元,预计到 2034 年将以 14.1% 的复合年增长率增长至 120 亿美元。

汽车级晶片雷达解决方案市场 - IMG1

人们对道路安全的日益关注以及围绕高级驾驶辅助系统 (ADAS) 的监管要求的不断提高,直接推动了对晶片级雷达 (RoC) 技术的需求。随着车辆越来越多地向自动化和智慧驾驶功能转型,这些紧凑型雷达解决方案能够提供更强大的侦测能力,用于碰撞避免、自适应巡航控制和交通辅助。消费者敦促汽车製造商提供能够在实际驾驶条件下高效运行的高性能安全系统,这使得晶片级雷达整合至关重要。这些晶片级雷达系统能够实现软体定义的功能,同时最大限度地减少尺寸、能耗和系统重量,这些都是电动车 (EV) 普及的关键因素。製造商面临着在不影响电动车性能或续航里程的前提下达到安全标准的压力,这促使 RoC 解决方案得到广泛应用。随着全球提高车辆自主性的措施不断推进,对高精度、低延迟雷达感测系统的需求变得更加迫切。这些解决方案支援诸如自动车道管理和低能见度障碍物侦测等功能,有助于为完全自动驾驶环境奠定基础。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 33亿美元
预测值 120亿美元
复合年增长率 14.1%

2024年,硬体部分占据了62.4%的市场份额,预计到2034年将以14.6%的复合年增长率成长。硬体部分在该领域占据主导地位,因为它包含了雷达运作所必需的整合式射频前端、天线和数位讯号处理器。发展趋势是采用高度整合的单晶片架构,将多个元件整合到紧凑的外形尺寸中。汽车雷达硬体也正在向多频段和多通道功能转型,工作频率涵盖24、77和79 GHz,在各种驾驶场景下提供更高的解析度、更广的探测范围和更强大的性能。

77 GHz频段在2024年占据了58%的市场份额,预计到2034年将以13.9%的复合年增长率成长。这些片上雷达解决方案正在为ADAS和自动驾驶汽车平台的远端应用树立标竿。 77 GHz雷达技术以其更高的解析度、更远的侦测距离和更小的干扰而着称,如今已成为下一代汽车雷达系统的首选频率。

美国汽车晶片雷达解决方案市场占86.6%的市场份额,预计2024年市场规模将达到6.01亿美元。美国在半导体创新领域的强大实力,以及ADAS(高级驾驶辅助系统)功能的快速普及和自动驾驶汽车的快速发展,是其市场领先地位的主要驱动力。从小型车到豪华车型,美国车辆如今都配备了雷达系统,可提供自适应巡航控制、紧急煞车和车道维持辅助等功能。随着市场对具备即时感知能力的AI驱动型高解析度雷达模组的需求不断增长,对先进的77 GHz多通道晶片雷达解决方案的需求也持续加速。

汽车级雷达解决方案市场的主要企业包括罗伯特博世、采埃孚、德州仪器 (TI)、英飞凌科技、大陆集团、瑞萨电子和恩智浦半导体。这些市场领导者正大力投资研发,致力于缩小硬体尺寸,并透过先进的讯号处理和人工智慧驱动的演算法提升效能。各公司专注于开发可扩展的平台,以支援多频段雷达运作并与更广泛的ADAS架构整合。与OEM厂商的策略合作使得企业能够共同开发针对特定车型客製化的雷达模组。许多公司也正在优化晶片组,使其与电动车架构相匹配,在不影响精度的前提下降低能耗。

目录

第一章:方法论

  • 市场范围和定义
  • 研究设计
    • 研究方法
    • 资料收集方法
  • 资料探勘来源
    • 地区/国家
  • 基准估算和计算
    • 基准年计算
    • 市场估算的关键趋势
  • 初步研究和验证
    • 原始资料
  • 预报
  • 研究假设和局限性

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
    • 利润率分析
    • 成本结构
    • 每个阶段的价值增加
    • 影响价值链的因素
    • 中断
  • 价值链分析
    • 上游价值链
    • 中游价值链
    • 下游价值链
  • 产业影响因素
    • 成长驱动因素
      • 提高ADAS采用率
      • 自动驾驶汽车的发展
      • 紧凑一体化设计
      • 提高车辆电气化程度
    • 产业陷阱与挑战
      • 高昂的开发和生产成本
      • 恶劣环境下的技术挑战
      • 供应链中断
      • 网路安全问题
    • 市场机会
      • 新兴市场的扩张
      • 与人工智慧和感测器融合的集成
      • 政府奖励措施和安全法规
      • 商用和车队车辆的采用
  • 成长潜力分析
  • 监管环境
    • 联合国欧洲经济委员会第152号法规-高级紧急煞车系统(AEBS)
    • 欧盟通用安全法规 (GSR) 2024/2144
    • 美国联邦机动车辆安全标准(FMVSS)
    • 中国工信部智慧网联汽车指南2024
    • 日本多学科自动驾驶安全框架
  • 波特的分析
  • PESTEL 分析
  • 未来趋势
  • 技术与创新格局
    • 目前技术
      • 77 GHz 与 79 GHz 毫米波雷达技术
      • 4D成像雷达
      • 基于CMOS和SiGe的雷达SoC
    • 新兴技术
      • 数位波束形成雷达
      • 人工智慧驱动的雷达讯号处理
      • 雷达视觉感测器融合SoC
  • 价格趋势
    • 副产品
    • 按地区
  • 专利分析
  • 成本細項分析
  • 永续性和环境方面
    • 永续实践
    • 减少废弃物策略
    • 生产中的能源效率
    • 环保倡议
    • 碳足迹考量
  • 车辆系统整合与感测器融合
    • 多感测器架构的复杂性
    • 雷达-摄影机融合挑战
    • 雷达-光达融合策略
    • ECU整合和处理要求
    • 即时资料融合演算法
  • ADAS应用效能最佳化
    • 特定应用雷达要求
    • 范围与分辨率之间的权衡
    • 角度解析度增强需求
    • 速度测量精度
    • 多目标侦测能力
  • 雷达晶片设计与製造挑战
    • 硅製程技术选择
    • 射频电路设计的复杂性
    • 封装内天线集成
    • 热管理解决方案
    • 功耗优化
  • 汽车供应链与资格认证
    • 汽车级零件认证
    • AEC-Q100 合规性要求
    • 长期供应保障
    • 供应链风险缓解
  • 软体-硬体协同设计演进
    • 软体定义雷达架构
    • 可配置讯号处理
    • 空中升级功能
    • 人工智慧演算法集成
  • 汽车安全标准合规性
    • ISO 26262 功能安全要求
    • ASIL评级及风险评估
    • 安全案例开发
    • 危害分析与风险评估(HARA)
  • 环境与营运挑战
    • 天气条件性能
    • 干扰缓解策略
    • 多路径反射处理
    • 城市峡谷表演
    • 温度变化补偿
  • 成本优化与价值工程
    • 晶片架构成本分析
    • 集成度与成本之间的权衡
    • 批量生产经济学
    • 系统总成本最佳化

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东非洲
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 战略展望矩阵
  • 关键进展
    • 併购
    • 合作伙伴关係与合作
    • 新产品发布
    • 扩张计划和资金

第五章:市场估算与预测:依组件划分,2021-2034年

  • 主要趋势
  • 硬体
    • 射频前端与天线
    • 讯号处理器
    • 感测器封装及模组
  • 软体
    • 讯号处理软体
    • 感测器融合与人工智慧软体
    • 校准与测试软体
  • 服务

第六章:市场估计与预测:依频段划分,2021-2034年

  • 主要趋势
  • 24 GHz
  • 77 GHz
  • 79 GHz

第七章:市场估算与预测:依区间划分,2021-2034年

  • 主要趋势
  • 短程雷达(SRR)
  • 中程雷达(MRR)
  • 远程雷达(LRR)
  • 成像雷达

第八章:市场估算与预测:以一体化程度划分,2021-2034年

  • 主要趋势
  • 仅收发器型晶片雷达
  • 完整的雷达SoC(系统单晶片)
  • 数位/成像雷达晶片

第九章:市场估计与预测:依应用领域划分,2021-2034年

  • 主要趋势
  • ADAS安全系统
    • 盲点侦测(BSD)
    • 自动紧急煞车(AEB)
    • 自适应巡航控制(ACC)
    • 避免碰撞
  • 自动驾驶功能
    • 高速公路自动驾驶
    • 城市自动驾驶
    • 感测器融合
  • 机舱内解决方案
  • 电动车专用解决方案

第十章:市场估计与预测:依地区划分,2021-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 俄罗斯
    • 北欧
    • 波兰
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳新银行
    • 越南
    • 新加坡
    • 印尼
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第十一章:公司简介

  • 全球参与者
    • Texas Instruments
    • NXP Semiconductors
    • Infineon Technologies
    • Analog Devices
    • STMicroelectronics
    • Renesas Electronics
    • Qualcomm Technologies
    • Broadcom
  • 区域玩家
    • Continental
    • Robert Bosch
    • Denso
    • Aptiv
    • Valeo
    • Magna International
    • ZF Friedrichshafen
    • Veoneer (Arriver)
  • 新兴参与者和颠覆者
    • Arbe Robotics
    • Oculii Corp (Ambarella)
    • Uhnder
    • Steradian Semiconductors
    • Echodyne
    • Metawave
    • Ainstein AI
    • RFISee
    • Vayyar Imaging
简介目录
Product Code: 14878

The Global Automotive Radar-on-Chip Solution Market was valued at USD 3.3 billion in 2024 and is estimated to grow at a CAGR of 14.1% to reach USD 12 billion by 2034.

Automotive Radar-on-Chip Solution Market - IMG1

Growing focus on road safety and the rise of regulatory mandates surrounding advanced driver-assistance systems (ADAS) directly driving demand for radar-on-chip technologies. As vehicles increasingly shift toward automation and intelligent driving features, these compact radar solutions offer enhanced detection capabilities for collision avoidance, adaptive cruise control, and traffic assistance. Consumers are pushing automakers to deliver high-performance safety systems that operate efficiently in real-world driving conditions, making radar-on-chip integration essential. These chip-level radar systems allow software-defined functionality while minimizing size, energy consumption, and system weight, key elements in electric vehicle (EV) adoption. Manufacturers are under pressure to meet safety benchmarks without impacting EV performance or range, encouraging the widespread adoption of RoC solutions. As global initiatives for higher vehicle autonomy progress, the need for high-precision, low-latency radar sensing systems becomes even more critical. These solutions support functionalities such as automated lane management and obstacle detection under poor visibility, helping to set the foundation for fully autonomous driving environments.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$3.3 Billion
Forecast Value$12 Billion
CAGR14.1%

In 2024, the hardware segment accounted for a 62.4% share and is forecasted to grow at a CAGR of 14.6% through 2034. Hardware leads this space as it includes the integrated RF front-end, antennas, and digital signal processors essential for radar operation. The trend is toward highly integrated single-chip architectures that merge multiple components into a compact form factor. Automotive radar hardware is also transitioning to multi-band and multi-channel capabilities operating across 24, 77, and 79 GHz, offering improved resolution, expanded range, and robust performance across all driving scenarios.

The 77 GHz segment held a 58% share in 2024 and is projected to grow at a CAGR of 13.9% through 2034. These radar-on-chip solutions are setting the benchmark for long-range applications in ADAS and autonomous vehicle platforms. Known for delivering higher resolution, extended detection range, and minimal interference, 77 GHz radar technology is now the go-to frequency for next-generation automotive radar systems.

US Automotive Radar-on-Chip Solution Market held an 86.6% share, generating USD 601 million in 2024. The country's strong foothold in semiconductor innovation, paired with rapid adoption of ADAS features and autonomous vehicle development, drives this leadership. From compact cars to luxury models, vehicles in the US now come equipped with radar-enabled systems that offer adaptive cruise control, emergency braking, and lane assistance. As demand grows for AI-driven, high-resolution radar modules capable of real-time perception, the push for sophisticated 77 GHz multi-channel radar-on-chip solutions continues to accelerate.

Key companies in the Automotive Radar-on-Chip Solution Market are Robert Bosch, ZF Friedrichshafen, Texas Instruments (TI), Infineon Technologies, Continental, Renesas Electronics, and NXP Semiconductors. Leading players in the Automotive Radar-on-Chip Solution Market are heavily investing in R&D to miniaturize hardware while improving performance through advanced signal processing and AI-driven algorithms. Companies are focusing on developing scalable platforms that support multi-band radar operation and integrate with broader ADAS architectures. Strategic partnerships with OEMs enable co-development of radar modules customized for specific vehicle classes. Many firms are also optimizing chipsets to align with EV architectures by reducing energy consumption without compromising accuracy.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis, 2021 - 2034
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Component
    • 2.2.3 Frequency band
    • 2.2.4 Range
    • 2.2.5 Integration level
    • 2.2.6 Application
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook
  • 2.6 Strategic recommendations
    • 2.6.1 Supply chain diversification strategy
    • 2.6.2 Product portfolio enhancement
    • 2.6.3 Partnership and alliance opportunities
    • 2.6.4 Cost management and pricing strategy

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin analysis
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Value chain analysis
    • 3.2.1 Upstream value chain
    • 3.2.2 Midstream value chain
    • 3.2.3 Downstream value chain
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
      • 3.3.1.1 Increasing ADAS adoption
      • 3.3.1.2 Growth of autonomous vehicles
      • 3.3.1.3 Compact and integrated design
      • 3.3.1.4 Increasing vehicle electrification
    • 3.3.2 Industry pitfalls and challenges
      • 3.3.2.1 High development and production costs
      • 3.3.2.2 Technical challenges in harsh environments
      • 3.3.2.3 Supply chain disruptions
      • 3.3.2.4 Cybersecurity concerns
    • 3.3.3 Market opportunities
      • 3.3.3.1 Expansion in emerging markets
      • 3.3.3.2 Integration with ai and sensor fusion
      • 3.3.3.3 Government incentives and safety regulations
      • 3.3.3.4 Adoption in commercial and fleet vehicles
  • 3.4 Growth potential analysis
  • 3.5 Regulatory landscape
    • 3.5.1 UNECE regulation no. 152 - advanced emergency braking systems (AEBS)
    • 3.5.2 Eu general safety regulation (GSR) 2024/2144
    • 3.5.3 US federal motor vehicle safety standards (FMVSS)
    • 3.5.4 China miit intelligent and connected vehicle guidelines 2024
    • 3.5.5 Japan mlit autonomous driving safety framework
  • 3.6 Porter's analysis
  • 3.7 PESTEL analysis
  • 3.8 Future trends
  • 3.9 Technology and Innovation landscape
    • 3.9.1 Current technologies
      • 3.9.1.1 77 ghz and 79 ghz mmwave radar technology
      • 3.9.1.2 4d imaging radar
      • 3.9.1.3 CMOS and SiGe-based radar socs
    • 3.9.2 Emerging technologies
      • 3.9.2.1 Digital beamforming radar
      • 3.9.2.2 AI-powered radar signal processing
      • 3.9.2.3 Radar-vision sensor fusion Socs
  • 3.10 Price trends
    • 3.10.1 By product
    • 3.10.2 By region
  • 3.11 Patent analysis
  • 3.12 Cost breakdown analysis
  • 3.13 Sustainability and environmental aspects
    • 3.13.1 Sustainable practices
    • 3.13.2 Waste reduction strategies
    • 3.13.3 Energy efficiency in production
    • 3.13.4 Eco-friendly Initiatives
    • 3.13.5 Carbon footprint considerations
  • 3.14 Vehicle System Integration & Sensor Fusion
    • 3.14.1 Multi-sensor architecture complexity
    • 3.14.2 Radar-camera fusion challenges
    • 3.14.3 Radar-LiDAR integration strategies
    • 3.14.4 ECU integration & processing requirements
    • 3.14.5 Real-time data fusion algorithms
  • 3.15 ADAS Application Performance Optimization
    • 3.15.1 Application-specific radar requirements
    • 3.15.2 Range vs resolution trade-offs
    • 3.15.3 Angular resolution enhancement needs
    • 3.15.4 Velocity measurement accuracy
    • 3.15.5 Multi-target detection capabilities
  • 3.16 Radar Chip Design & Manufacturing Challenges
    • 3.16.1 Silicon process technology selection
    • 3.16.2 RF circuit design complexity
    • 3.16.3 Antenna-in-package integration
    • 3.16.4 Thermal management solutions
    • 3.16.5 Power consumption optimization
  • 3.17 Automotive Supply Chain & Qualification
    • 3.17.1 Automotive-grade component qualification
    • 3.17.2 AEC-Q100 compliance requirements
    • 3.17.3 Long-term supply assurance
    • 3.17.4 Supply chain risk mitigation
  • 3.18 Software-Hardware Co-Design Evolution
    • 3.18.1 Software-defined radar architecture
    • 3.18.2 Configurable signal processing
    • 3.18.3 Over-the-air update capabilities
    • 3.18.4 AI algorithm integration
  • 3.19 Automotive Safety Standards Compliance
    • 3.19.1 ISO 26262 functional safety requirements
    • 3.19.2 ASIL rating & risk assessment
    • 3.19.3 Safety case development
    • 3.19.4 Hazard analysis & risk assessment (HARA)
  • 3.20 Environmental & Operational Challenges
    • 3.20.1 Weather condition performance
    • 3.20.2 Interference mitigation strategies
    • 3.20.3 Multi-path reflection handling
    • 3.20.4 Urban canyon performance
    • 3.20.5 Temperature variation compensation
  • 3.21 Cost Optimization & Value Engineering
    • 3.21.1 Chip architecture cost analysis
    • 3.21.2 Integration level vs cost trade-offs
    • 3.21.3 Volume production economics
    • 3.21.4 Total system cost optimization

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis, 2024
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 Latin America
    • 4.2.5 Middle East Africa
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New Product Launches
    • 4.6.4 Expansion Plans and funding

Chapter 5 Market Estimates & Forecast, By Component, 2021 - 2034 ($Mn)

  • 5.1 Key trends
  • 5.2 Hardware
    • 5.2.1 RF Front-End & Antennas
    • 5.2.2 Signal Processors
    • 5.2.3 Sensor Packaging & Modules
  • 5.3 Software
    • 5.3.1 Signal Processing Software
    • 5.3.2 Sensor Fusion & AI Software
    • 5.3.3 Calibration & Testing Software
  • 5.4 Services

Chapter 6 Market Estimates & Forecast, By Frequency band, 2021 - 2034 ($Mn)

  • 6.1 Key trends
  • 6.2 24 GHz
  • 6.3 77 GHz
  • 6.4 79 GHz

Chapter 7 Market Estimates & Forecast, By Range, 2021 - 2034 ($Mn)

  • 7.1 Key trends
  • 7.2 Short-Range Radar (SRR)
  • 7.3 Medium-Range Radar (MRR)
  • 7.4 Long-Range Radar (LRR)
  • 7.5 Imaging Radar

Chapter 8 Market Estimates & Forecast, By Integration level, 2021 - 2034 ($Mn)

  • 8.1 Key trends
  • 8.2 Transceiver-Only Radar-on-Chip
  • 8.3 Complete Radar SoC (System-on-Chip)
  • 8.4 Digital/Imaging Radar Chips

Chapter 9 Market Estimates & Forecast, By Application, 2021 - 2034 ($Mn)

  • 9.1 Key trends
  • 9.2 ADAS Safety Systems
    • 9.2.1 Blind-spot detection (BSD)
    • 9.2.2 Autonomous emergency braking (AEB)
    • 9.2.3 Adaptive cruise control (ACC)
    • 9.2.4 Collision avoidance
  • 9.3 Autonomous Driving Functions
    • 9.3.1 Highway autopilot
    • 9.3.2 Urban automated driving
    • 9.3.3 Sensor fusion
  • 9.4 In cabin solution
  • 9.5 EV specific solutions

Chapter 10 Market Estimates & Forecast, By Region, 2021 - 2034 ($Mn)

  • 10.1 Key trends
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 France
    • 10.3.4 Italy
    • 10.3.5 Spain
    • 10.3.6 Russia
    • 10.3.7 Nordics
    • 10.3.8 Poland
  • 10.4 Asia Pacific
    • 10.4.1 China
    • 10.4.2 India
    • 10.4.3 Japan
    • 10.4.4 South Korea
    • 10.4.5 ANZ
    • 10.4.6 Vietnam
    • 10.4.7 Singapore
    • 10.4.8 Indonesia
  • 10.5 Latin America
    • 10.5.1 Brazil
    • 10.5.2 Mexico
    • 10.5.3 Argentina
  • 10.6 MEA
    • 10.6.1 South Africa
    • 10.6.2 Saudi Arabia
    • 10.6.3 UAE

Chapter 11 Company Profiles

  • 11.1 Global players
    • 11.1.1 Texas Instruments
    • 11.1.2 NXP Semiconductors
    • 11.1.3 Infineon Technologies
    • 11.1.4 Analog Devices
    • 11.1.5 STMicroelectronics
    • 11.1.6 Renesas Electronics
    • 11.1.7 Qualcomm Technologies
    • 11.1.8 Broadcom
  • 11.2 Regional players
    • 11.2.1 Continental
    • 11.2.2 Robert Bosch
    • 11.2.3 Denso
    • 11.2.4 Aptiv
    • 11.2.5 Valeo
    • 11.2.6 Magna International
    • 11.2.7 ZF Friedrichshafen
    • 11.2.8 Veoneer (Arriver)
  • 11.3 Emerging players and disruptors
    • 11.3.1 Arbe Robotics
    • 11.3.2 Oculii Corp (Ambarella)
    • 11.3.3 Uhnder
    • 11.3.4 Steradian Semiconductors
    • 11.3.5 Echodyne
    • 11.3.6 Metawave
    • 11.3.7 Ainstein AI
    • 11.3.8 RFISee
    • 11.3.9 Vayyar Imaging