封面
市场调查报告书
商品编码
1766197

汽车片上雷达技术市场机会、成长动力、产业趋势分析及 2025 - 2034 年预测

Automotive Radar-on-Chip Technology Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 160 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球汽车片上雷达技术市场价值为 17 亿美元,预计到 2034 年将以 15.6% 的复合年增长率增长至 69 亿美元。随着原始设备製造商 (OEM) 将自动驾驶技术从 2 级以上提升到 4 级,对复杂且可扩展的感知系统的需求持续成长。片上雷达技术将天线、收发器和讯号处理组件整合到单一晶片上,与传统雷达模组相比,可显着降低整体系统成本、最小化尺寸并简化复杂性。这种整合对于节省空间和功耗至关重要的电动和紧凑型汽车尤其有利。随着车队营运商和汽车产业加大对自动驾驶能力的推动,雷达感测器在各个车辆领域的重要性日益增加,因此将片上雷达提升为战略重点。

汽车片上雷达技术市场 - IMG1

微波毫米波 (mmWave) CMOS 和 RF-CMOS 技术的进步加速了晶片雷达系统的发展。这些改进使得所有工作在 76 至 81 GHz 频率范围内的雷达组件能够整合到单一晶片中,从而减小尺寸、降低功耗并降低成本。片上雷达晶片的经济量产和高良率进一步支持了其在汽车製造业的应用。此外,现代片上雷达晶片整合了人工智慧 (AI) 和机器视觉处理器,可增强物体侦测和分类能力,从而实现软体定义、可更新的雷达系统,从而提高适应性并延长产品寿命。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 17亿美元
预测值 69亿美元
复合年增长率 15.6%

单晶片系统级晶片 (SoC) 解决方案引领市场,2024 年市场规模达 9 亿美元。这些单晶片 SoC 将雷达功能(包括射频收发器和讯号处理)与逻辑电路整合在一个晶片上,从而提高了能源效率,降低了製造成本,并简化了车辆整合。随着原始设备製造商 (OEM) 专注于车队电气化和数位化,这种紧凑的设计变得越来越重要。对于高级运算需求或客製化高级驾驶辅助系统 (ADAS) 中的冗余,多晶片模组仍然是首选。同时,整合雷达阵列在高清雷达应用中越来越受欢迎。

乘用车市场占据主导地位,2024 年市场规模达 11 亿美元。 SUV 是乘用车中成长最快的子类别,这得益于消费者对搭载 ADAS 功能的大型车款的偏好。片上雷达解决方案能够经济高效地平衡高级和中级安全功能,尤其适用于风险降低至关重要的轿车和入门级掀背车。

2024年,亚太地区汽车片上雷达技术市场占了43%的市场。强劲的汽车产量、ADAS(高级驾驶辅助系统)的普及率不断提高以及强有力的政府倡议推动了该地区的成长。高产量使该地区的原始设备製造商在采用经济高效的雷达技术方面具有优势。中国等国大力推动L3+自动驾驶,加速了雷达在电动和智慧汽车的应用。国家级计画透过产业领袖与科技公司之间的合作,支持国内片上雷达的开发。日本和韩国专注于缩小晶片尺寸和功耗,并将多晶片系统整合到单晶片解决方案中。新兴的城市空中交通雷达SoC和多模态ADAS感测器正在由地区汽车製造商开发和整合。

全球汽车片上雷达技术市场的主要参与者包括法雷奥、德州仪器、罗伯特博世、英飞凌科技、大陆集团、电装株式会社、恩智浦半导体、采埃孚和 Arbe Robotics。为巩固市场地位,汽车片上雷达领域的公司优先进行研发,致力于在更小的尺寸内增强整合度、能源效率和运算能力。与汽车原始设备製造商和技术公司的合作可以为不断发展的自动驾驶需求提供客製化解决方案。对支援人工智慧的雷达系统和软体可更新平台的策略性投资提高了产品的适应性和使用寿命。扩大製造能力以提高晶片产量和降低成本仍然是重点,遵守全球汽车标准也是如此。各公司也利用合作伙伴关係和合资企业来加速创新和扩大生产,同时透过在地化的生产和分销网络瞄准新兴市场。

目录

第一章:方法论

  • 市场范围和定义
  • 研究设计
    • 研究方法
    • 资料收集方法
  • 资料探勘来源
    • 地区
    • 国家
  • 基础估算与计算
    • 基准年计算
    • 市场评估的主要趋势
  • 初步研究和验证
    • 主要来源
  • 预测模型
  • 研究假设和局限性

第二章:执行摘要

第三章:行业洞察

  • 产业生态系统分析
    • 供应商格局
    • 利润率
    • 成本结构
    • 每个阶段的增值
    • 影响价值链的因素
    • 中断
  • 产业衝击力
    • 成长动力
      • 安全法规和 NCAP 要求
      • ADAS 和自动驾驶需求不断增加
      • 与人工智慧和感测器融合的集成
      • 政府资助的流动计划
    • 产业陷阱与挑战
      • 复杂的校准和验证
      • 研发和晶片开发成本高
    • 市场机会
      • 3级以上自动驾驶
      • 新兴市场渗透
      • 具有4D成像功能的下一代雷达
  • 成长潜力分析
  • 监管格局
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 波特的分析
  • PESTEL分析
  • 技术和创新格局
    • 当前的技术趋势
    • 新兴技术
  • 成本細項分析
  • 专利分析
  • 永续性和环境方面
    • 永续实践
    • 减少废弃物的策略
    • 生产中的能源效率
    • 环保倡议
    • 碳足迹考量
  • 消费者行为分析
    • OEM与售后市场偏好
    • 成本效益决策因素
  • 售后市场趋势分析
    • 雷达系统维护和保修
    • 晶片更换週期
    • 一级供应商与OEM车型的成本与效益对比

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 战略展望矩阵
  • 关键进展
    • 併购
    • 伙伴关係与合作
    • 新产品发布
    • 扩张计划和资金

第五章:市场估计与预测:按频段,2021 - 2034 年

  • 主要趋势
  • 24 GHz
  • 77 GHz
  • 79 GHz

第六章:市场估计与预测:依范围,2021 - 2034 年

  • 主要趋势
  • 短程雷达(SRR)
  • 中程雷达(MRR)
  • 远程雷达(LRR)

第七章:市场估计与预测:依技术分类,2021 - 2034 年

  • 主要趋势
  • 单晶片SoC
  • 多晶片模组
  • 综合雷达阵列

第八章:市场估计与预测:依车型,2021 - 2034 年

  • 主要趋势
  • 搭乘用车
    • 掀背车
    • 轿车
    • 越野车
  • 商用车
    • 轻型商用车(LCV)
    • 中型商用车(MCV)
    • 重型商用车(HCV)

第九章:市场估计与预测:依销售管道,2021 - 2034 年

  • 主要趋势
  • OEM
  • 售后市场

第 10 章:市场估计与预测:按应用,2021 年至 2034 年

  • 主要趋势
  • 自适应巡航控制 (ACC)
  • 盲点侦测(BSD)
  • 前方碰撞警示 (FCW)
  • 自动紧急煞车(AEB)
  • 高级停车辅助
  • 自动驾驶汽车的角雷达
  • 其他的

第 11 章:市场估计与预测:按地区,2021 年至 2034 年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 义大利
    • 西班牙
    • 俄罗斯
    • 北欧人
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲
    • 东南亚
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 阿联酋
    • 沙乌地阿拉伯
    • 南非

第十二章:公司简介

  • Analog Devices
  • Aptiv
  • Arbe Robotics
  • Artsys360
  • Autoliv
  • Calterah Semiconductor Technology
  • Continental
  • Delphi Technologies
  • Denso
  • HELLA GmbH
  • Infineon Technologies
  • NXP Semiconductors
  • Renesas Electronics
  • Robert Bosch
  • Steradian Semiconductors
  • Texas Instruments
  • Uhnder
  • Valeo
  • Veoneer
  • ZF Friedrichshafen
简介目录
Product Code: 14107

The Global Automotive Radar-on-Chip Technology Market was valued at USD 1.7 billion in 2024 and is estimated to grow at a CAGR of 15.6% to reach USD 6.9 billion by 2034. As original equipment manufacturers (OEMs) push advancements from Level 2+ to Level 4 autonomy, the demand for sophisticated and scalable perception systems continues to rise. Radar-on-chip technology integrates antennas, transceivers, and signal processing components onto a single chip, significantly lowering overall system costs, minimizing size, and simplifying complexity compared to traditional radar modules. This integration is particularly beneficial for electric and compact vehicles, where saving space and power is critical. With fleet operators and the automotive industry ramping up their push for autonomous driving capabilities, radar sensors' importance grows across vehicle segments, elevating RoC to a strategic priority.

Automotive Radar-on-Chip Technology Market - IMG1

Advancements in microwave millimeter-wave (mmWave) CMOS and RF-CMOS technologies have accelerated the development of radar-on-chip systems. These improvements allow all radar components operating in the 76 to 81 GHz frequency range to be integrated into a single die, reducing size, power consumption, and costs. Economical mass production of RoC chips with high yields further supports adoption in automotive manufacturing. Moreover, modern RoC chips incorporate artificial intelligence (AI) and machine vision processors for enhanced object detection and classification, resulting in software-defined, updatable radar systems that improve adaptability and extend product life.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$1.7 Billion
Forecast Value$6.9 Billion
CAGR15.6%

Single-chip system-on-chip (SoC) solutions led the market, generating USD 900 million in 2024. These single-chip SoCs combine radar functions-including RF transceivers and signal processing-with logic circuitry on one chip, enhancing power efficiency, reducing manufacturing costs, and simplifying vehicle integration. This compact design becomes increasingly important as OEMs focus on fleet electrification and digitalization. For advanced computing needs or redundancy in customized advanced driver-assistance systems (ADAS), multi-chip modules remain preferred. Meanwhile, integrated radar arrays are gaining traction in high-definition radar applications.

The passenger vehicle segment dominated the market with USD 1.1 billion in 2024. SUVs are the fastest-growing subcategory within passenger vehicles, driven by consumer preference for larger models that incorporate ADAS features. Radar-on-chip solutions balance advanced and mid-level safety functionalities cost-effectively, especially for sedans and entry-level hatchbacks where risk mitigation is critical.

Asia Pacific Automotive Radar-on-Chip Technology Market captured a 43% share in 2024. Growth here is fueled by strong vehicle production, increasing penetration of ADAS, and robust government initiatives. High manufacturing volumes give regional OEMs advantages in adopting cost-efficient radar technologies. The push toward Level 3+ autonomous driving in countries like China has accelerated radar adoption in electric and intelligent vehicles. National programs support domestic radar-on-chip development through partnerships among industry leaders and tech firms. Japan and South Korea focus on reducing chip size and power consumption, and integrating multi-chip systems into single-chip solutions. Emerging urban air mobility radar SoCs and multi-modal ADAS sensors are being developed and integrated by regional automotive manufacturers.

Key players in the Global Automotive Radar-on-Chip Technology Market include Valeo, Texas Instruments, Robert Bosch, Infineon Technologies, Continental, Denso Corporation, NXP Semiconductors, ZF Friedrichshafen, and Arbe Robotics. To reinforce their market presence, companies in the automotive radar-on-chip space are prioritizing research and development focused on enhancing integration, power efficiency, and computational capabilities within smaller form factors. Collaboration with automotive OEMs and technology firms enables tailored solutions for evolving autonomous driving requirements. Strategic investments in AI-enabled radar systems and software-updatable platforms boost product adaptability and lifespan. Expanding manufacturing capabilities to improve chip yields and reduce costs remains a focus, as does compliance with global automotive standards. Firms are also leveraging partnerships and joint ventures to accelerate innovation and scale production while targeting emerging markets through localized production and distribution networks.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Region
    • 1.3.2 Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Frequency band
    • 2.2.3 Range
    • 2.2.4 Technology
    • 2.2.5 Vehicle
    • 2.2.6 Sales Channel
    • 2.2.7 Application
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Safety regulations and NCAP mandates
      • 3.2.1.2 Rising ADAS and autonomous demand
      • 3.2.1.3 Integration with AI and sensor fusion
      • 3.2.1.4 Government-funded mobility programs
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 Complex calibration and validation
      • 3.2.2.2 High R&D and chip development costs
    • 3.2.3 Market opportunities
      • 3.2.3.1 Level 3+autonomy adoption
      • 3.2.3.2 Emerging markets penetration
      • 3.2.3.3 Next-gen radar with 4D imaging
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
  • 3.8 Cost breakdown analysis
  • 3.9 Patent analysis
  • 3.10 Sustainability and environmental aspects
    • 3.10.1 Sustainable practices
    • 3.10.2 Waste reduction strategies
    • 3.10.3 Energy efficiency in production
    • 3.10.4 Eco-friendly initiatives
    • 3.10.5 Carbon footprint considerations
  • 3.11 Consumer behavior analysis
    • 3.11.1 OEM vs aftermarket preferences
    • 3.11.2 Cost–performance decision factors
  • 3.12 Analysis of aftermarket trends
    • 3.12.1 Radar system maintenance & warranties
    • 3.12.2 Chip replacement cycles
    • 3.12.3 Cost vs benefit for Tier 1 vs OEM models

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 Latin America
    • 4.2.5 Middle East & Africa
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans and funding

Chapter 5 Market Estimates & Forecast, By Frequency Band, 2021 - 2034 ($Mn)

  • 5.1 Key trends
  • 5.2 24 GHz
  • 5.3 77 GHz
  • 5.4 79 GHz

Chapter 6 Market Estimates & Forecast, By Range, 2021 - 2034 ($Mn)

  • 6.1 Key trends
  • 6.2 Short-Range Radar (SRR)
  • 6.3 Medium-Range Radar (MRR)
  • 6.4 Long-Range Radar (LRR)

Chapter 7 Market Estimates & Forecast, By Technology, 2021 - 2034 ($Mn)

  • 7.1 Key trends
  • 7.2 Single-chip SoC
  • 7.3 Multi-chip module
  • 7.4 Integrated radar arrays

Chapter 8 Market Estimates & Forecast, By Vehicle, 2021 - 2034 ($Mn)

  • 8.1 Key trends
  • 8.2 Passenger vehicle
    • 8.2.1 Hatchback
    • 8.2.2 Sedan
    • 8.2.3 SUV
  • 8.3 Commercial vehicle
    • 8.3.1 Light Commercial Vehicle (LCV)
    • 8.3.2 Medium Commercial Vehicle (MCV)
    • 8.3.3 Heavy Commercial Vehicles (HCV)

Chapter 9 Market Estimates & Forecast, By Sales Channel, 2021 - 2034 ($Mn)

  • 9.1 Key trends
  • 9.2 OEM
  • 9.3 Aftermarket

Chapter 10 Market Estimates & Forecast, By Application, 2021 - 2034 ($Mn)

  • 10.1 Key trends
  • 10.2 Adaptive Cruise Control (ACC)
  • 10.3 Blind Spot Detection (BSD)
  • 10.4 Forward Collision Warning (FCW)
  • 10.5 Automatic Emergency Braking (AEB)
  • 10.6 Advanced parking assist
  • 10.7 Corner radar for autonomous vehicles
  • 10.8 Others

Chapter 11 Market Estimates & Forecast, By Region, 2021 - 2034 ($Bn, Units)

  • 11.1 Key trends
  • 11.2 North America
    • 11.2.1 U.S.
    • 11.2.2 Canada
  • 11.3 Europe
    • 11.3.1 UK
    • 11.3.2 Germany
    • 11.3.3 France
    • 11.3.4 Italy
    • 11.3.5 Spain
    • 11.3.6 Russia
    • 11.3.7 Nordics
  • 11.4 Asia Pacific
    • 11.4.1 China
    • 11.4.2 India
    • 11.4.3 Japan
    • 11.4.4 South Korea
    • 11.4.5 Australia
    • 11.4.6 Southeast Asia
  • 11.5 Latin America
    • 11.5.1 Brazil
    • 11.5.2 Mexico
    • 11.5.3 Argentina
  • 11.6 MEA
    • 11.6.1 UAE
    • 11.6.2 Saudi Arabia
    • 11.6.3 South Africa

Chapter 12 Company Profiles

  • 12.1 Analog Devices
  • 12.2 Aptiv
  • 12.3 Arbe Robotics
  • 12.4 Artsys360
  • 12.5 Autoliv
  • 12.6 Calterah Semiconductor Technology
  • 12.7 Continental
  • 12.8 Delphi Technologies
  • 12.9 Denso
  • 12.10 HELLA GmbH
  • 12.11 Infineon Technologies
  • 12.12 NXP Semiconductors
  • 12.13 Renesas Electronics
  • 12.14 Robert Bosch
  • 12.15 Steradian Semiconductors
  • 12.16 Texas Instruments
  • 12.17 Uhnder
  • 12.18 Valeo
  • 12.19 Veoneer
  • 12.20 ZF Friedrichshafen