封面
市场调查报告书
商品编码
1858838

氮化镓(GaN)功率晶片在电动车领域的市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)

Gallium Nitride (GaN) Power Chips for EVs Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 210 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球电动车用氮化镓 (GaN) 功率晶片市场价值为 2.97 亿美元,预计到 2034 年将以 15.5% 的复合年增长率增长至 15 亿美元。

电动车用氮化镓 (GaN) 功率晶片市场 - IMG1

这一强劲成长与汽车製造商日益大规模地整合高频、高密度转换架构的趋势相符。随着电动车的普及和充电基础设施的不断完善,车辆及其配套系统对高效能电力电子产品的整体需求正在加速成长。 2024年,全球电动车销量达1,700万辆,占新车总销量的20%以上。全球电动车保有量已成长至近5,800万辆,持续推动对更有效率电力转换解决方案的需求。基于氮化镓(GaN)的车载充电器因其在效率和尺寸缩小方面的显着优势而备受青睐。它们能够提高功率密度并减轻重量,从而提升电动车的续航里程和系统整合度。氮化镓技术的最新进展也支援高密度双向运行,这对于未来的车网互动(V2G)应用至关重要。从分立元件到整合式驱动器、开关和保护电路的氮化镓模组的转变,进一步提升了系统性能,降低了电磁干扰,并改善了散热管理。公私合作在加速这些宽禁带解决方案的商业化过程中发挥了关键作用。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 2.97亿美元
预测值 15亿美元
复合年增长率 15.5%

2024年,横向GaN元件市场占有率达到70%,预计2034年将以16.1%的复合年增长率成长。由于这些装置适用于车用充电器、辅助系统和工作电压高达650V的DC-DC转换器,因此已成为电动车电力电子设备的核心。得益于硅基AlGaN/GaN HEMT架构,这些元件具有高电子迁移率和高击穿场强,与传统的硅基元件相比,在高电压下导通电阻显着降低。

2024年,电压范围在100V至650V的中压氮化镓(GaN)装置占据了67%的市场份额,预计2025年至2034年间将以16%的复合年增长率成长。此电压等级涵盖了众多电动车应用,包括车载充电器和直流-直流转换器,适用于目前的400V电池平台和未来的800V架构。在此电压范围内,氮化镓装置具有卓越的开关速度和效率,能够实现紧凑轻巧的电源转换系统,这对于高密度电动车应用至关重要。

2024年,中国用于电动车的氮化镓(GaN)功率晶片市场规模预计将达到7,340万美元。作为全球最大的电动车市场,中国约占全球电动车销量的三分之二,光是2023年就交付了超过800万辆。如此庞大的市场规模为GaN组件创造了巨大的潜在市场,因为每辆电动车和充电站都需要高性能的功率电子装置。此外,政府对新能源汽车的大力支持、国内半导体研发的蓬勃发展以及电动车基础设施的广泛部署,都进一步巩固了中国在电动车领域的领先地位,使其超越了印度、韩国和日本等其他区域竞争对手。

积极引领电动车氮化镓 (GaN) 功率晶片市场的关键企业包括 Transphorm、GaN Systems、英飞凌科技、罗姆半导体、Navitas、EPC、Power Integrations、Innoscience、意法半导体和德州仪器。为了巩固自身市场地位,GaN 功率晶片领域的领导企业正大力投资研发,以开发高性能、符合汽车级标准的 GaN 解决方案,从而支援更高的功率密度和更佳的热效率。许多厂商正从分立产品转向整合解决方案,例如采用共封装半桥模组,将驱动器、开关和保护功能整合于一体,以简化设计、最大限度地降低电磁干扰 (EMI) 并提高可靠性。此外,这些企业也积极寻求与汽车製造商和一级供应商建立策略合作伙伴关係,以加速在电动车平台的设计中胜出。

目录

第一章:方法论与范围

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
      • 原料
      • 外延生长和晶圆製造
      • 製造商
      • 模组和系统整合商
      • 原始设备製造商
      • 充电基础设施和能源营运商
    • 成本结构
    • 利润率
    • 每个阶段的价值增加
    • 影响供应链的因素
    • 颠覆者
  • 对力的影响
    • 成长驱动因素
      • 政府电动车推广强制令及政策支持
      • 对高效电力电子产品的需求不断增长
      • 汽车产业力求轻量化和紧凑化解决方案
      • 快速充电基础设施建设的成长
    • 产业陷阱与挑战
      • 高昂的初始设备和製造成本
      • 高压氮化镓装置供应有限
      • 汽车资格认证和可靠性挑战
    • 市场机会
      • 新兴的48V轻度混合动力汽车细分市场
      • 兆瓦级充电基础设施建设
      • 垂直氮化镓技术商业化
      • 区域製造本地化倡议
  • 成长潜力分析
  • 监管环境
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 波特的分析
  • PESTEL 分析
  • 技术趋势与创新生态系统
    • 目前技术
      • 增强型架构与耗尽型架构
      • 硅基板、碳化硅基板和原生氮化镓基板
      • 闸极驱动技术及整合
      • 热管理解决方案
    • 新兴技术
      • 垂直氮化镓装置开发
      • 氮化镓钻石冷却技术
      • 整体式整合与系统级封装
      • 人工智慧驱动的装置优化
  • 价格趋势分析
    • 按地区
    • 副产品
  • 生产统计
    • 生产中心
    • 消费中心
    • 进出口
  • 成本細項分析
  • 专利分析
  • 永续性和环境方面
    • 永续实践
    • 减少废弃物策略
    • 生产中的能源效率
    • 环保倡议
    • 碳足迹考量
  • 最佳情况
  • 包装创新与先进技术
    • 目前包装技术
    • 先进包装创新
    • 热管理创新
    • 互连技术
  • 氮化镓与碳化硅竞争分析
    • 比较矩阵
    • 总拥有成本 (TCO)
  • OEM采纳路线图及策略
  • 设计导入流程及验证
  • 栅极驱动器技术及集成
  • 快速充电基础设施的影响

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • MEA
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 战略展望矩阵
  • 关键进展
    • 併购
    • 合作伙伴关係与合作
    • 新产品发布
    • 扩张计划和资金

第五章:市场估算与预测:依设备架构划分,2021-2034年

  • 主要趋势
  • 横向氮化镓器件
  • 垂直氮化镓装置

第六章:市场估算与预测:依电压等级划分,2021-2034年

  • 主要趋势
  • 低电压(≤100V)
  • 中压(100V-650V)
  • 高压(>650V)

第七章:市场估价与预测:依包装类型划分,2021-2034年

  • 主要趋势
  • 独立包装
  • 电源模组
  • 整合功率级

第八章:市场估算与预测:依应用领域划分,2021-2034年

  • 主要趋势
  • 牵引逆变器
  • 车用充电器(OBC)
  • 直流-直流转换器
  • 充电基础设施
  • 辅助电源系统

第九章:市场估算与预测:以推进方式划分,2021-2034年

  • 主要趋势
  • 电池电动车(BEV)
  • 插电式混合动力车(PHEV)
  • 轻度混合动力电动车(MHEV)
  • 燃料电池电动车(FCEV)

第十章:市场估价与预测:依车辆类型划分,2021-2034年

  • 主要趋势
  • 搭乘用车
    • 掀背车
    • 轿车
    • SUV
  • 商用车辆
    • 低容量性状
    • MCV
    • C型肝炎
  • 两轮和三轮车

第十一章:市场估价与预测:依销售管道划分,2021-2034年

  • 主要趋势
  • OEM
  • 售后市场

第十二章:市场估计与预测:依地区划分,2021-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 俄罗斯
    • 北欧
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
    • 菲律宾
    • 印尼
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第十三章:公司简介

  • Global Leaders
    • EPC
    • Transphorm
    • GaN Systems
    • Navitas
    • Infineon Technologies
    • STMicroelectronics
    • Rohm
    • Texas Instruments
    • Nexperia
    • Vishay
  • Regional Champions
    • Innoscience
    • NexGen Power Systems
    • Cambridge GaN Devices
    • Fuji Electric
    • Littelfuse
    • Toshiba
    • Renesas
    • Semikron
  • 新兴参与者
    • VisIC Technologies
    • Qorvo
    • Macom
    • Integra Technologies
    • Akash Systems
    • Kyma Technologies
    • Power Integrations
    • Panasonic
    • SweGaN
    • GeneSiC
    • Fujitsu
简介目录
Product Code: 14914

The Global Gallium Nitride (GaN) Power Chips for EVs Market was valued at USD 297 million in 2024 and is estimated to grow at a CAGR of 15.5% to reach USD 1.5 billion by 2034.

Gallium Nitride (GaN) Power Chips for EVs Market - IMG1

The robust expansion aligns with automakers increasingly integrating high-frequency, high-density conversion architectures at scale. As EV adoption grows alongside expanding charging infrastructure, the overall demand for efficient power electronics in both vehicles and supporting systems is accelerating. In 2024, global EV sales reached 17 million and accounted for over 20% of all new car sales. The global EV fleet has grown to nearly 58 million, fueling consistent demand for more efficient power conversion solutions. GaN-based onboard chargers are gaining traction due to their significant advantages in efficiency and size reduction. They enable increased power density and lower weight, improving EV range and system integration. Recent advancements in GaN technology also support high-density, bidirectional operations, a key feature for future vehicle-to-grid applications. The transition from discrete components to integrated GaN modules combining drivers, switches, and protection circuits has further enhanced system performance, reduced electromagnetic interference, and improved thermal management. Public-private efforts have been instrumental in accelerating the commercialization of these wide-bandgap solutions.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$297 Million
Forecast Value$1.5 Billion
CAGR15.5%

In 2024, the lateral GaN devices segment held a 70% share and is projected to grow at a CAGR of 16.1% through 2034. These devices have become the backbone of EV power electronics due to their suitability for onboard chargers, auxiliary systems, and DC-DC converters operating up to 650 V. Their high electron mobility and elevated breakdown field strength, enabled by AlGaN/GaN HEMT architecture on silicon, allow for significantly lower on-resistance at higher voltages when compared to traditional silicon-based components.

The medium-voltage GaN devices, ranging from 100 V to 650 V, held a 67% share in 2024 and are forecasted to grow at a CAGR of 16% between 2025 and 2034. This voltage class covers many EV applications, including onboard chargers and DC-DC converters in both current 400 V battery platforms and future 800 V architectures. Within this range, GaN devices deliver superior switching speeds and efficiency, enabling compact and lightweight power conversion systems critical for high-density EV applications.

China Gallium Nitride (GaN) Power Chips for EVs Market generated USD 73.4 million in 2024. As the largest EV market globally, China accounted for roughly two-thirds of global EV sales, delivering over 8 million units in 2023 alone. This massive scale has created a vast addressable market for GaN components, as every vehicle and charging site requires high-performance power electronics. Additionally, strong government support for NEVs, domestic semiconductor development, and widespread deployment of EV infrastructure continue to solidify China's leadership over other regional players such as India, South Korea, and Japan.

Key companies actively shaping the Gallium Nitride (GaN) Power Chips for EVs Market include Transphorm, GaN Systems, Infineon Technologies, ROHM Semiconductor, Navitas, EPC, Power Integrations, Innoscience, STMicroelectronics, and Texas Instruments. To enhance their positioning, leading companies in the GaN power chip sector are heavily investing in R&D to develop high-performance, automotive-qualified GaN solutions that support higher power densities and better thermal efficiency. Many players are shifting from discrete products to integrated solutions such as co-packaged half-bridge modules combining drivers, switches, and protection features to simplify design, minimize EMI, and improve reliability. Strategic partnerships with automakers and Tier 1 suppliers are also being pursued to accelerate design wins in EV platforms.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Device architecture
    • 2.2.3 Voltage
    • 2.2.4 Application
    • 2.2.5 Propulsion
    • 2.2.6 Package
    • 2.2.7 Vehicle
    • 2.2.8 Sales Channel
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Key decision points for industry executives
    • 2.4.2 Critical success factors for market players
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
      • 3.1.1.1 Raw material
      • 3.1.1.2 Epitaxy & wafer fabrication
      • 3.1.1.3 Manufacturers
      • 3.1.1.4 Module & system integrators
      • 3.1.1.5 OEMs
      • 3.1.1.6 Charging infrastructure & energy operators
    • 3.1.2 Cost structure
    • 3.1.3 Profit margin
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factors impacting the supply chain
    • 3.1.6 Disruptors
  • 3.2 Impact on forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Government EV adoption mandates and policy support
      • 3.2.1.2 Rising demand for high-efficiency power electronics
      • 3.2.1.3 Automotive industry push for lightweight and compact solutions
      • 3.2.1.4 Growth in fast-charging infrastructure development
    • 3.2.2 Industry pitfalls & challenges
      • 3.2.2.1 High initial device and manufacturing costs
      • 3.2.2.2 Limited availability of high-voltage GaN devices
      • 3.2.2.3 Automotive qualification and reliability challenges
    • 3.2.3 Market opportunities
      • 3.2.3.1 Emerging 48V mild hybrid vehicle segment
      • 3.2.3.2 Megawatt charging infrastructure development
      • 3.2.3.3 Vertical GaN technology commercialization
      • 3.2.3.4 Regional manufacturing localization initiatives
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology trends & innovation ecosystem
    • 3.7.1 Current technologies
      • 3.7.1.1 Enhancement-mode vs depletion-mode architectures
      • 3.7.1.2 Silicon vs SiC vs native GaN substrates
      • 3.7.1.3 Gate drive technology and integration
      • 3.7.1.4 Thermal management solutions
    • 3.7.2 Emerging technologies
      • 3.7.2.1 Vertical GaN device development
      • 3.7.2.2 GaN-on-diamond cooling technology
      • 3.7.2.3 Monolithic integration and system-in-package
      • 3.7.2.4 AI-driven device optimization
  • 3.8 Price trend analysis
    • 3.8.1 By region
    • 3.8.2 By Products
  • 3.9 Production statistics
    • 3.9.1 Production hubs
    • 3.9.2 Consumption hubs
    • 3.9.3 Export and import
  • 3.10 Cost breakdown analysis
  • 3.11 Patent analysis
  • 3.12 Sustainability and environmental aspects
    • 3.12.1 Sustainable practices
    • 3.12.2 Waste reduction strategies
    • 3.12.3 Energy efficiency in production
    • 3.12.4 Eco-friendly initiatives
    • 3.12.5 Carbon footprint considerations
  • 3.13 Best case scenario
  • 3.14 Packaging Innovation & Advanced Technologies
    • 3.14.1 Current Packaging Technologies
    • 3.14.2 Advanced Packaging Innovations
    • 3.14.3 Thermal Management Innovations
    • 3.14.4 Interconnect Technologies
  • 3.15 GaN vs SiC Competitive Analysis
    • 3.15.1 Comparison Matrix
    • 3.15.2 Total Cost of Ownership (TCO)
  • 3.16 OEM Adoption Roadmap & Strategy
  • 3.17 Design-In Process & Qualification
  • 3.18 Gate Driver Technology & Integration
  • 3.19 Fast-Charging Infrastructure Impact

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 LATAM
    • 4.2.5 MEA
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans and funding

Chapter 5 Market Estimates & Forecast, By Device Architecture, 2021 - 2034 ($Bn, Units)

  • 5.1 Key trends
  • 5.2 Lateral GaN devices
  • 5.3 Vertical GaN devices

Chapter 6 Market Estimates & Forecast, By Voltage, 2021 - 2034 ($Bn, Units)

  • 6.1 Key trends
  • 6.2 Low voltage (≤100V)
  • 6.3 Medium voltage (100V-650V)
  • 6.4 High voltage (>650V)

Chapter 7 Market Estimates & Forecast, By Package, 2021 - 2034 ($Bn, Units)

  • 7.1 Key trends
  • 7.2 Discrete packages
  • 7.3 Power modules
  • 7.4 Integrated power stages

Chapter 8 Market Estimates & Forecast, By Application, 2021 - 2034 ($Bn, Units)

  • 8.1 Key trends
  • 8.2 Traction inverters
  • 8.3 On-board chargers (OBC)
  • 8.4 DC-DC converters
  • 8.5 Charging infrastructure
  • 8.6 Auxiliary power systems

Chapter 9 Market Estimates & Forecast, By Propulsion, 2021 - 2034 ($Bn, Units)

  • 9.1 Key trends
  • 9.2 Battery electric vehicles (BEV)
  • 9.3 Plug-in hybrid electric vehicles (PHEV)
  • 9.4 Mild hybrid electric vehicles (MHEV)
  • 9.5 Fuel cell electric vehicles (FCEV)

Chapter 10 Market Estimates & Forecast, By Vehicle, 2021 - 2034 ($Bn, Units)

  • 10.1 Key trends
  • 10.2 Passenger cars
    • 10.2.1 Hatchback
    • 10.2.2 Sedan
    • 10.2.3 SUV
  • 10.3 Commercial vehicles
    • 10.3.1 LCV
    • 10.3.2 MCV
    • 10.3.3 HCV
  • 10.4 Two & three wheelers

Chapter 11 Market Estimates & Forecast, By Sales Channel, 2021 - 2034 ($Bn, Units)

  • 11.1 Key trends
  • 11.2 OEM
  • 11.3 Aftermarket

Chapter 12 Market Estimates & Forecast, By Region, 2021 - 2034 ($Bn, Units)

  • 12.1 Key trends
  • 12.2 North America
    • 12.2.1 US
    • 12.2.2 Canada
  • 12.3 Europe
    • 12.3.1 Germany
    • 12.3.2 UK
    • 12.3.3 France
    • 12.3.4 Italy
    • 12.3.5 Spain
    • 12.3.6 Russia
    • 12.3.7 Nordics
  • 12.4 Asia Pacific
    • 12.4.1 China
    • 12.4.2 India
    • 12.4.3 Japan
    • 12.4.4 Australia
    • 12.4.5 South Korea
    • 12.4.6 Philippines
    • 12.4.7 Indonesia
  • 12.5 Latin America
    • 12.5.1 Brazil
    • 12.5.2 Mexico
    • 12.5.3 Argentina
  • 12.6 MEA
    • 12.6.1 South Africa
    • 12.6.2 Saudi Arabia
    • 12.6.3 UAE

Chapter 13 Company Profiles

  • 13.1 Global Leaders
    • 13.1.1 EPC
    • 13.1.2 Transphorm
    • 13.1.3 GaN Systems
    • 13.1.4 Navitas
    • 13.1.5 Infineon Technologies
    • 13.1.6 STMicroelectronics
    • 13.1.7 Rohm
    • 13.1.8 Texas Instruments
    • 13.1.9 Nexperia
    • 13.1.10 Vishay
  • 13.2 Regional Champions
    • 13.2.1 Innoscience
    • 13.2.2 NexGen Power Systems
    • 13.2.3 Cambridge GaN Devices
    • 13.2.4 Fuji Electric
    • 13.2.5 Littelfuse
    • 13.2.6 Toshiba
    • 13.2.7 Renesas
    • 13.2.8 Semikron
  • 13.3 Emerging Players
    • 13.3.1 VisIC Technologies
    • 13.3.2 Qorvo
    • 13.3.3 Macom
    • 13.3.4 Integra Technologies
    • 13.3.5 Akash Systems
    • 13.3.6 Kyma Technologies
    • 13.3.7 Power Integrations
    • 13.3.8 Panasonic
    • 13.3.9 SweGaN
    • 13.3.10 GeneSiC
    • 13.3.11 Fujitsu