封面
市场调查报告书
商品编码
1858843

金属有机框架(MOFs)在气体分离领域的市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)

Metal-Organic Frameworks (MOFs) for Gas Separation Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 210 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球用于气体分离的金属有机框架 (MOF) 市场价值为 911 万美元,预计到 2034 年将以 36% 的复合年增长率增长至 1.967 亿美元。

用于气体分离的金属有机框架(MOFs)市场 - IMG1

低能耗气体分离替代方案需求的不断增长推动了市场的快速扩张。传统的低温蒸馏和变压吸附等技术能耗高,因此,由于金属有机框架(MOF)材料具有更高的效率和选择性,各行业纷纷转向基于MOF的系统。这些材料具有高比表面积和可调控的孔结构,能够以显着降低的能耗实现高效的气体分离,从而提供了一种创新解决方案。此外,全球对碳减排和环境永续发展的推动,也加速了对碳捕获、利用和封存(CCUS)技术的投资。 MOF材料因其在选择性二氧化碳捕获方面的优异性能,在该领域展现出巨大的价值。溶剂热法、机械化学法和微波辅助合成法等可扩展生产技术的进步,进一步降低了製造成本,同时提高了产量。耐用且可回收的MOF材料的开发,也有助于弥合实验室规模创新与实际工业应用之间的差距,从而推动了整个市场的持续成长。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 911万美元
预测值 1.967亿美元
复合年增长率 36%

2024年,二氧化碳分离市场规模达到441万美元,预计2025年至2034年将以36.4%的复合年增长率成长。该应用领域在全球脱碳进程中发挥重要作用,因此引领市场。金属有机框架(MOF)固有的孔隙率和选择性使其成为天然气和烟气环境中二氧化碳吸附的理想材料,促进了其在排放密集型产业的广泛应用。随着限制工业碳排放的迫切性日益增强,基于MOF的捕集系统在能源和重工业领域的部署正呈现强劲成长动能。

2024年,电力和公用事业行业的市场价值为499万美元。该产业的领先地位得益于发电设施中MOF整合碳捕集系统的日益普及。 MOF具有高再生效率和选择性,使其适用于燃烧后捕集应用,尤其是在高排放能源基础设施中。

2024年,北美金属有机框架(MOF)气体分离市场占39.8%的份额。该地区的成长主要得益于对清洁能源计划和碳减排策略的大量投资。石油化工和电力生产等行业正在部署基于MOF的气体分离装置,以提高能源效率并满足日益严格的环境法规。在积极的研发支持下,MOF膜开发和合成技术的不断进步进一步推动了其在该地区的应用。

全球气体分离用金属有机框架(MOFs)市场的主要参与者包括Numat Technologies、Atomis Inc.、Honeywell国际、巴斯夫、大金工业等。这些领先企业正优先考虑创新、规模化生产和策略合作,以巩固其市场地位。他们大力投资研发,致力于开发具有更高分离效率和更低再生成本的高稳定性、可回收的MOF。许多公司正专注于优化合成技术,例如微波辅助或机械化学工艺,以降低生产成本并提高材料的一致性。

目录

第一章:方法论

  • 市场范围和定义
  • 研究设计
    • 研究方法
    • 资料收集方法
  • 资料探勘来源
    • 全球的
    • 地区/国家
  • 基准估算和计算
    • 基准年计算
    • 市场估算的关键趋势
  • 初步研究和验证
    • 原始资料
  • 预测模型
  • 研究假设和局限性

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
    • 利润率
    • 每个阶段的价值增加
    • 影响价值链的因素
    • 中断
  • 产业影响因素
    • 成长驱动因素
    • 产业陷阱与挑战
      • 供应链的复杂性
    • 市场机会
  • 成长潜力分析
  • 监管环境
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 波特的分析
  • PESTEL 分析
  • 价格趋势
    • 按地区
    • 副产品
  • 未来市场趋势
  • 技术与创新格局
    • 当前技术趋势
    • 新兴技术
  • 专利格局
  • 贸易统计(註:仅提供重点国家的贸易统计)
    • 主要进口国
    • 主要出口国
  • 永续性和环境方面
    • 永续实践
    • 减少废弃物策略
    • 生产中的能源效率
    • 环保倡议
  • 碳足迹考量

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 按地区
      • 北美洲
      • 欧洲
      • 亚太地区
      • 拉丁美洲
      • MEA
  • 公司矩阵分析
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 关键进展
    • 併购
    • 合作伙伴关係与合作
    • 新产品发布
    • 扩张计划

第五章:市场估计与预测:依技术划分,2021-2034年

  • 主要趋势
  • 填充床吸附剂
    • 变压吸附应用
    • 变温吸附系统
    • 真空变压吸附技术
  • 纯MOF膜
  • 混合基质膜
  • 结构化吸附剂
    • 整体式和蜂窝状涂层技术
    • 传热传质优化

第六章:市场估算与预测:依应用领域划分,2021-2034年

  • 主要趋势
  • 一氧化碳分离
    • 燃烧后捕集应用
    • 燃烧前和工业製程集成
    • 直接空气捕集技术集成
  • 烃类分离
    • 天然气脱硫和加工
    • 烯烃/石蜡分离技术
    • C2/C3回收纯化系统
  • 轻气体分离
    • 氢气纯化与回收
    • 氧/氮分离技术
    • 稀有气体的回收与循环利用
  • 特种气体分离
    • 有毒气体捕获与中和
    • 冷媒回收和循环利用系统
    • 微量污染物去除技术

第七章:市场估算与预测:依最终用途产业划分,2021-2034年

  • 主要趋势
  • 电力和公用事业部门
    • 燃煤电厂改造应用
    • 天然气复合循环一体化
    • 电网级储能应用
    • 公用事业规模的直接空气捕集项目
  • 石油、天然气和石化业
    • 炼油厂气体处理应用
    • 天然气处理和脱硫
    • 石油化工製程一体化
  • 製造业部门
    • 水泥业二氧化碳捕集应用
    • 钢铁和铝工艺集成
    • 氨和氢气生产纯化
    • 化学製造製程优化
  • 电子和特种应用领域
    • 半导体有毒气体处理
    • 製药製程应用
    • 研究和实验室系统
    • 特种化学品生产

第八章:市场估算与预测:依地区划分,2021-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
    • 亚太其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 南非
    • 阿联酋
    • 中东和非洲其他地区

第九章:公司简介

  • BASF SE
  • Numat Technologies
  • Daikin Industries
  • Honeywell International
  • Atomis Inc
  • Air Liquide
  • novoMOF AG
  • Nuada (formerly MOF Technologies Ltd)
  • Framergy Inc
  • ProfMOF
  • MOF Apps
  • Immaterial Labs
  • Mosaic Materials
  • promethean particles
  • MOFgen
简介目录
Product Code: 14885

The Global Metal-Organic Frameworks (MOFs) for Gas Separation Market was valued at USD 9.11 million in 2024 and is estimated to grow at a CAGR of 36% to reach USD 196.70 million by 2034.

Metal-Organic Frameworks (MOFs) for Gas Separation Market - IMG1

The rapid market expansion is fueled by the growing demand for low-energy gas separation alternatives. Traditional techniques such as cryogenic distillation and pressure swing adsorption are energy-intensive, pushing industries to shift toward MOF-based systems due to their superior efficiency and selectivity. These materials provide an innovative solution by offering high surface area and tunable pore structures, which allow for effective gas separation at significantly reduced energy requirements. Additionally, the global push toward carbon reduction and environmental sustainability is accelerating investments in carbon capture, utilization, and storage technologies. MOFs are proving especially valuable in this domain due to their performance in selective CO2 capture. Technological advancements in scalable production techniques, such as solvothermal, mechanochemical, and microwave-assisted synthesis, are further lowering fabrication costs while enhancing production volumes. The development of durable and recyclable MOFs is also helping bridge the gap between lab-scale innovation and real-world industrial deployment, contributing to the overall market's upward trajectory.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$9.11 Million
Forecast Value$196.70 Million
CAGR36%

The CO2 separation segment reached USD 4.41 million in 2024 and is forecast to grow at a CAGR of 36.4% from 2025 to 2034. This application leads the market due to its strong role in global decarbonization efforts. The inherent porosity and selectivity of MOFs make them ideal for CO2 adsorption in natural gas and flue gas environments, encouraging more widespread adoption in emission-intensive sectors. As the urgency to limit industrial carbon output intensifies, the deployment of MOF-based capture systems is seeing greater momentum across energy and heavy manufacturing segments.

The power and utilities sector was valued at USD 4.99 million in 2024. The segment's dominance is supported by rising installations of MOF-integrated carbon capture systems across power generation facilities. The ability of MOFs to deliver high regeneration efficiency and selectivity makes them suitable for post-combustion capture applications, especially in emissions-heavy energy infrastructure.

North America Metal-Organic Frameworks (MOFs) for Gas Separation Market held 39.8% share in 2024. The region's growth is driven by substantial investments in clean energy initiatives and carbon reduction strategies. Sectors such as petrochemicals and electricity generation are deploying MOF-based gas separation units to improve energy efficiency and meet tightening environmental regulations. Continuous progress in MOF membrane development and synthesis technologies, backed by active R&D, is further elevating adoption across the region.

Key players active in the Global Metal-Organic Frameworks (MOFs) for Gas Separation Market include Numat Technologies, Atomis Inc., Honeywell International, BASF SE, Daikin Industries, and others. Leading companies in the Metal-Organic Frameworks (MOFs) for Gas Separation Market are prioritizing innovation, scalability, and strategic collaboration to strengthen their market positions. They are investing significantly in R&D to develop highly stable and recyclable MOFs with enhanced separation efficiency and lower regeneration costs. Many firms are focusing on optimizing synthesis techniques such as microwave-assisted or mechanochemical processes to reduce production expenses and improve material consistency.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Technology
    • 2.2.3 Application
    • 2.2.4 End use Industry
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future Outlook and Strategic Recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier Landscape
    • 3.1.2 Profit Margin
    • 3.1.3 Value addition at each stage
    • 3.1.4 Factor affecting the value chain
    • 3.1.5 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 Supply chain complexity
    • 3.2.3 Market opportunities
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
    • 3.6.1 Technology and Innovation landscape
    • 3.6.2 Current technological trends
    • 3.6.3 Emerging technologies
  • 3.7 Price trends
    • 3.7.1 By region
    • 3.7.2 By product
  • 3.8 Future market trends
  • 3.9 Technology and Innovation landscape
    • 3.9.1 Current technological trends
    • 3.9.2 Emerging technologies
  • 3.10 Patent Landscape
  • 3.11 Trade statistics (Note: the trade statistics will be provided for key countries only)
    • 3.11.1 Major importing countries
    • 3.11.2 Major exporting countries
  • 3.12 Sustainability and Environmental Aspects
    • 3.12.1 Sustainable Practices
    • 3.12.2 Waste Reduction Strategies
    • 3.12.3 Energy Efficiency in Production
    • 3.12.4 Eco-friendly Initiatives
  • 3.13 Carbon Footprint Considerations

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 By region
      • 4.2.1.1 North America
      • 4.2.1.2 Europe
      • 4.2.1.3 Asia Pacific
      • 4.2.1.4 LATAM
      • 4.2.1.5 MEA
  • 4.3 Company matrix analysis
  • 4.4 Competitive analysis of major market players
  • 4.5 Competitive positioning matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New Product Launches
    • 4.6.4 Expansion Plans

Chapter 5 Market Estimates and Forecast, By Technology, 2021- 2034 (USD Million, Kilo Tons)

  • 5.1 Key trends
  • 5.2 Packed bed adsorbents
    • 5.2.1 Pressure swing adsorption applications
    • 5.2.2 Temperature swing adsorption systems
    • 5.2.3 Vacuum swing adsorption implementations
  • 5.3 Pure MOF membranes
  • 5.4 Mixed matrix membranes
  • 5.5 Structured adsorbents
    • 5.5.1 Monolith and honeycomb coating technologies
    • 5.5.2 Heat and mass transfer optimization

Chapter 6 Market Estimates and Forecast, By Application, 2021 - 2034 (USD Million, , Kilo Tons)

  • 6.1 Key trends
  • 6.2 CO? separation
    • 6.2.1 Post-combustion capture applications
    • 6.2.2 Pre-combustion and industrial process integration
    • 6.2.3 Direct air capture technology integration
  • 6.3 Hydrocarbon separation
    • 6.3.1 Natural gas sweetening and processing
    • 6.3.2 Olefin/paraffin separation technologies
    • 6.3.3 C2/C3 recovery and purification systems
  • 6.4 Light gas separation
    • 6.4.1 Hydrogen purification and recovery
    • 6.4.2 Oxygen/nitrogen separation technologies
    • 6.4.3 Noble gas recovery and recycling
  • 6.5 Specialty gas separation
    • 6.5.1 Toxic gas capture and neutralization
    • 6.5.2 Refrigerant recovery and recycling systems
    • 6.5.3 Trace contaminant removal technologies

Chapter 7 Market Estimates and Forecast, By End Use Industry, 2021 - 2034 (USD Million, , Kilo Tons)

  • 7.1 Key trends
  • 7.2 Power and utilities sector
    • 7.2.1 Coal-fired power plant retrofit applications
    • 7.2.2 Natural gas combined cycle integration
    • 7.2.3 Grid-scale energy storage applications
    • 7.2.4 Utility-scale direct air capture projects
  • 7.3 Oil, gas and petrochemicals sector
    • 7.3.1 Refinery gas processing applications
    • 7.3.2 Natural gas treatment and sweetening
    • 7.3.3 Petrochemical process integration
  • 7.4 Manufacturing industries sector
    • 7.4.1 Cement industry CO2 capture applications
    • 7.4.2 Steel and aluminum process integration
    • 7.4.3 Ammonia and hydrogen production purification
    • 7.4.4 Chemical manufacturing process optimization
  • 7.5 Electronics and specialty applications sector
    • 7.5.1 Semiconductor toxic gas handling
    • 7.5.2 Pharmaceutical process applications
    • 7.5.3 Research and laboratory systems
    • 7.5.4 Specialty chemical production

Chapter 8 Market Estimates and Forecast, By Region, 2021 - 2034 (USD Million, Kilo Tons)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 France
    • 8.3.4 Italy
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 Australia
    • 8.4.5 South Korea
    • 8.4.6 Rest of Asia Pacific
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
    • 8.5.4 Rest of Latin America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 South Africa
    • 8.6.3 UAE
    • 8.6.4 Rest of Middle East & Africa

Chapter 9 Company Profiles

  • 9.1 BASF SE
  • 9.2 Numat Technologies
  • 9.3 Daikin Industries
  • 9.4 Honeywell International
  • 9.5 Atomis Inc
  • 9.6 Air Liquide
  • 9.7 novoMOF AG
  • 9.8 Nuada (formerly MOF Technologies Ltd)
  • 9.9 Framergy Inc
  • 9.10 ProfMOF
  • 9.11 MOF Apps
  • 9.12 Immaterial Labs
  • 9.13 Mosaic Materials
  • 9.14 promethean particles
  • 9.15 MOFgen