封面
市场调查报告书
商品编码
1871107

汽车预测性维护感测器市场机会、成长驱动因素、产业趋势分析及2025-2034年预测

Automotive Predictive Maintenance Sensor Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 230 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球汽车预测性维护感测器市场价值为 7.357 亿美元,预计到 2034 年将以 7.3% 的复合年增长率增长至 14.5 亿美元。

汽车预测性维护感知器市场 - IMG1

市场成长的驱动力在于人们对车辆可靠性、运作安全性和成本效益日益增长的重视。预测性维护感测器在即时评估关键汽车零件的状况方面发挥着至关重要的作用,能够在故障发生前识别潜在问题。这种从被动或定期维护转向主动维护策略的转变,有助于减少车辆停机时间并降低营运成本。随着车辆日益复杂,整合了先进的机械和电子系统,对持续监控的需求也不断增长。政府安全法规也日益严格,促使製造商整合先进的诊断和监控系统。此外,物联网框架支援的联网车辆能够实现集中式资料撷取和分析,从而提高预测性维护的精度和响应速度。在车辆设计、製造和营运週期中更广泛地采用数据驱动的维护实践,将继续推动汽车预测性维护感测器市场的发展。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 7.357亿美元
预测值 14.5亿美元
复合年增长率 7.3%

2024年,温度感测器市占率达到35%,预计到2034年将以9.14%的复合年增长率成长。温度感测器是预测性维护中最广泛应用的技术之一,因为它们有助于监控引擎、电池和空调系统等关键系统。温度变化会导致过热或零件性能下降,因此这些感测器对于早期故障检测至关重要。透过提供即时温度资料,这些感测器使维修团队能够主动安排维修,最大限度地减少计划外停机时间,降低成本,并提高车辆的整体耐用性和可靠性。

2024年,引擎健康监测细分市场占据34%的市场份额,预计2025年至2034年间将以7.04%的复合年增长率成长。由于引擎的高价值及其在车辆性能中的核心作用,引擎监控仍然是预测性维护中最关键的应用之一。该细分市场中的预测感测器可追踪振动、温度和燃油效率等众多参数,有助于侦测异常情况,避免其演变为代价高昂的损坏。预测和预防潜在引擎故障的能力,为汽车製造商和车队营运商在保持最佳性能和延长使用寿命方面提供了显着的竞争优势。

亚太地区汽车预测性维护感测器市场占据44%的市场份额,预计2024年市场规模将达到3.237亿美元。该地区的领先地位主要归功于其强大的汽车生产基地,占全球汽车产量的一半以上。亚太地区一直是技术进步的中心,在电动车、连网汽车和自动驾驶汽车系统方面取得了快速发展。该地区的製造商正大力投资于智慧汽车平台,这些平台依靠即时感测器资料来准确预测维护需求。结构性成长、产业现代化和强劲的技术发展正在巩固亚太地区在全球市场的领先地位。

汽车预测性维护感测器市场的主要参与者包括海拉(Hella)、罗伯特·博世(Robert Bosch)、意法半导体(STMicroelectronics)、法雷奥(Valeo)、英飞凌科技(Infineon Technologies)、泰科电子(TE Con​​​​田nectivity)、大陆集团(Continental)、萨塔科技(Murata Technologies)製作(Murata Technologies)。为了巩固其在汽车预测性维护感测器市场的地位,领先企业正在采取多项策略措施。许多企业致力于开发更高精度、更耐用、整合能力更强的先进感测器技术,以满足连网汽车和电动车的需求。对研发的投入仍然是重中之重,旨在支持预测分析和资料处理领域的创新。与汽车製造商和技术供应商的策略合作与伙伴关係正在加速智慧维护系统的部署。此外,各企业也正在扩大产能并优化其全球供应链,以满足不断增长的区域需求。

目录

第一章:方法论

  • 市场范围和定义
  • 研究设计
    • 研究方法
    • 资料收集方法
  • 资料探勘来源
    • 全球的
    • 地区/国家
  • 基准估算和计算
    • 基准年计算
    • 市场估算的关键趋势
  • 初步研究和验证
    • 原始资料
  • 预报
  • 研究假设和局限性

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
    • 利润率分析
    • 成本结构
    • 每个阶段的价值增加
    • 影响价值链的因素
    • 中断
  • 产业影响因素
    • 成长驱动因素
      • 法规遵从要求(ISO 26262、联合国欧洲经济委员会法规)
      • 车队利用率优化要求
      • 电动车普及加速
      • 高级驾驶辅助系统集成
      • 维护营运成本削减压力
    • 产业陷阱与挑战
      • 前期实施成本高
      • 资料隐私和安全问题
    • 市场机会
      • 软体定义车辆架构的采用
      • 5G 和先进连线部署
      • 自动驾驶汽车开发
      • 循环经济和永续发展倡议
  • 成长潜力分析
  • 专利分析
  • 波特的分析
  • PESTEL 分析
  • 成本細項分析
  • 技术格局
    • 当前技术趋势
    • 新兴技术
  • 监管环境
  • 价格趋势
    • 按地区
    • 透过感测器
  • 投资报酬率和商业案例分析
    • 总拥有成本框架
    • 实施成本结构
    • 量化效益评估
  • 投资与融资趋势分析
  • 实施路线图框架
    • 分阶段部署策略
    • 整合复杂性分析
    • 变更管理要求
    • 成功因素识别
  • 性能基准测试框架
    • 关键绩效指标的定义与衡量
    • 产业最佳实务分析
    • 比较性能指标
    • 持续改进模式

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 战略展望矩阵
  • 关键进展
    • 併购
    • 合作伙伴关係与合作
    • 新应用程式上线
    • 扩张计划和资金

第五章:市场估算与预测:依感测器类型划分,2021-2034年

  • 主要趋势
  • 振动感测器
  • 温度感测器
  • 压力感测器
  • 湿度感测器
  • 声学感测器
  • 其他的

第六章:市场估算与预测:依应用领域划分,2021-2034年

  • 主要趋势
  • 引擎健康监测
  • 变速箱和变速箱监控
  • 电池和电气系统监控
  • 轮胎和车轮监测
  • 冷却系统监控
  • 其他的

第七章:市场估价与预测:依车辆类型划分,2021-2034年

  • 主要趋势
  • 搭乘用车
    • 掀背车
    • 轿车
    • SUV
  • 商业销售通路
    • 轻型商用车销售通路(LCV)
    • 中型商业销售通路(MCV)
    • 重型商用车销售通路(HCV)

第八章:市场估算与预测:依销售管道划分,2021-2034年

  • 主要趋势
  • OEM
  • 售后市场

第九章:市场估计与预测:依地区划分,2021-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 北欧
    • 俄罗斯
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 印尼
    • 菲律宾
    • 泰国
    • 韩国
    • 新加坡
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中东和非洲
    • 沙乌地阿拉伯
    • 南非
    • 阿联酋

第十章:公司简介

  • 全球参与者
    • Aptiv
    • Continental
    • Denso
    • Infineon Technologies
    • NXP Semiconductors
    • Robert Bosch
    • TE Connectivity
    • ZF Friedrichshafen
    • Murata
  • 区域玩家
    • Allegro MicroSystems
    • KEYENCE
    • Magna International
    • Melexis
    • NIRA Dynamics
    • Sensata Technologies
    • Siemens
    • Valeo
  • 新兴参与者/颠覆者
    • Augury Systems
    • C3.ai
    • Delphi Technologies
    • Predii
    • Presenso Analytics
    • Revvo Technologies
    • Samsara
    • Tactile Mobility
    • Uptake Technologies
简介目录
Product Code: 15052

The Global Automotive Predictive Maintenance Sensor Market was valued at USD 735.7 million in 2024 and is estimated to grow at a CAGR of 7.3% to reach USD 1.45 Billion by 2034.

Automotive Predictive Maintenance Sensor Market - IMG1

Market growth is driven by the growing emphasis on vehicle reliability, operational safety, and cost efficiency. Predictive maintenance sensors play a vital role in assessing the condition of critical automotive components in real time, identifying potential issues before failures occur. This shift from reactive or scheduled maintenance to proactive strategies is helping reduce vehicle downtime and lower operational costs. As vehicles become increasingly complex, incorporating advanced mechanical and electronic systems, the need for continuous monitoring is expanding. Government safety regulations are also getting stricter, pushing manufacturers to integrate advanced diagnostic and monitoring systems. Furthermore, connected vehicles supported by IoT frameworks enable centralized data gathering and analysis, improving the precision and responsiveness of predictive maintenance. The broader adoption of data-driven maintenance practices across vehicle design, manufacturing, and operation cycles continues to shape the evolution of the automotive predictive maintenance sensor market.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$735.7 million
Forecast Value$1.45 billion
CAGR7.3%

The temperature sensor category held a 35% share in 2024 and is expected to grow at a CAGR of 9.14% through 2034. Temperature sensors are among the most widely used technologies in predictive maintenance, as they help monitor essential systems such as engines, batteries, and HVAC units. Variations in temperature can lead to overheating or component degradation, making these sensors crucial for early fault detection. By delivering real-time temperature data, these sensors allow maintenance teams to schedule repairs proactively, minimizing unplanned downtime, reducing expenses, and enhancing the overall durability and reliability of vehicles.

The engine health monitoring segment held a 34% share in 2024 and is forecast to grow at a CAGR of 7.04% between 2025 and 2034. Engine monitoring remains one of the most critical applications within predictive maintenance due to the engine's high value and central role in vehicle performance. Predictive sensors in this segment track numerous parameters such as vibration, temperature, and fuel efficiency, helping detect irregularities before they escalate into costly damage. The ability to predict and prevent potential engine failures provides automakers and fleet operators with a significant competitive edge in maintaining optimal performance and longevity.

Asia Pacific Automotive Predictive Maintenance Sensor Market held a 44% share and generated USD 323.7 million in 2024. The region's dominance can be attributed to its strong automotive production base, accounting for over half of global vehicle output. Asia Pacific continues to be a hub for technological advancement, with rapid progress in electric, connected, and autonomous vehicle systems. Manufacturers in the region are heavily investing in smart vehicle platforms that rely on real-time sensor data to predict maintenance needs accurately. Structural growth, industrial modernization, and robust technological development are reinforcing Asia Pacific's leadership in the global market.

Prominent players in the Automotive Predictive Maintenance Sensor Market include Hella, Robert Bosch, STMicroelectronics, Valeo, Infineon Technologies, TE Connectivity, Continental, Sensata Technologies, and Murata. To strengthen their position in the automotive predictive maintenance sensor market, leading companies are adopting several strategic measures. Many are focusing on developing advanced sensor technologies with higher accuracy, durability, and integration capability to meet the demands of connected and electric vehicles. Investments in research and development remain a priority to support innovation in predictive analytics and data processing. Strategic collaborations and partnerships with automakers and technology providers are helping accelerate the deployment of smart maintenance systems. In addition, companies are expanding production capacities and optimizing their global supply chains to meet growing regional demand.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis, 2021 - 2034
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Sensor
    • 2.2.3 Application
    • 2.2.4 Vehicle
    • 2.2.5 Sales channel
  • 2.3 TAM analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future-outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin analysis
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factors affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Regulatory compliance requirements (ISO 26262, UNECE regulations)
      • 3.2.1.2 Fleet utilization optimization demands
      • 3.2.1.3 Electric vehicle adoption acceleration
      • 3.2.1.4 Advanced driver assistance system integration
      • 3.2.1.5 Cost reduction pressures in maintenance operations
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High initial implementation costs
      • 3.2.2.2 Data privacy and security concerns
    • 3.2.3 Market opportunities
      • 3.2.3.1 Software-defined vehicle architecture adoption
      • 3.2.3.2 5G and advanced connectivity deployment
      • 3.2.3.3 Autonomous vehicle development
      • 3.2.3.4 Circular economy and sustainability initiatives
  • 3.3 Growth potential analysis
  • 3.4 Patent analysis
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Cost breakdown analysis
  • 3.8 Technology landscape
    • 3.8.1 Current technological trends
    • 3.8.2 Emerging technologies
  • 3.9 Regulatory landscape
    • 3.9.1 North America
    • 3.9.2 Europe
    • 3.9.3 Asia Pacific
    • 3.9.4 Latin America
    • 3.9.5 Middle East and Africa
  • 3.10 Price trends
    • 3.10.1 By region
    • 3.10.2 By sensor
  • 3.11 ROI and business case analysis
    • 3.11.1 Total cost of ownership framework
    • 3.11.2 Implementation cost structure
    • 3.11.3 Quantified benefits assessment
  • 3.12 Investment & funding trends analysis
  • 3.13 Implementation roadmap framework
    • 3.13.1 Phased deployment strategies
    • 3.13.2 Integration complexity analysis
    • 3.13.3 Change management requirements
    • 3.13.4 Success factor identification
  • 3.14 Performance benchmarking framework
    • 3.14.1 KPI definition and measurement
    • 3.14.2 Industry best practice analysis
    • 3.14.3 Comparative performance metrics
    • 3.14.4 Continuous improvement models

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 Latin America
    • 4.2.5 Middle East & Africa
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New application launches
    • 4.6.4 Expansion plans and funding

Chapter 5 Market Estimates & Forecast, By Sensor, 2021 - 2034 (USD Mn, Units)

  • 5.1 Key trends
  • 5.2 Vibration sensor
  • 5.3 Temperature sensor
  • 5.4 Pressure sensor
  • 5.5 Humidity sensor
  • 5.6 Acoustic sensor
  • 5.7 Others

Chapter 6 Market Estimates & Forecast, By Application, 2021 - 2034 (USD Mn, Units)

  • 6.1 Key trends
  • 6.2 Engine health monitoring
  • 6.3 Transmission & gearbox monitoring
  • 6.4 Battery & electrical system monitoring
  • 6.5 Tire & wheel monitoring
  • 6.6 Cooling system monitoring
  • 6.7 Others

Chapter 7 Market Estimates & Forecast, By Vehicle, 2021 - 2034 (USD Mn, Units)

  • 7.1 Key trends
  • 7.2 Passenger cars
    • 7.2.1 Hatchback
    • 7.2.2 Sedan
    • 7.2.3 SUV
  • 7.3 Commercial sales channels
    • 7.3.1 Light commercial sales channels (LCV)
    • 7.3.2 Medium commercial sales channels (MCV)
    • 7.3.3 Heavy commercial sales channels (HCV)

Chapter 8 Market Estimates & Forecast, By Sales channel, 2021 - 2034 (USD Mn, Units)

  • 8.1 Key trends
  • 8.2 OEM
  • 8.3 Aftermarket

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2034 (USD Mn, Units)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Nordics
    • 9.3.7 Russia
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 Australia
    • 9.4.5 Indonesia
    • 9.4.6 Philippines
    • 9.4.7 Thailand
    • 9.4.8 South Korea
    • 9.4.9 Singapore
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
  • 9.6 Middle East and Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 South Africa
    • 9.6.3 UAE

Chapter 10 Company Profiles

  • 10.1 Global Players
    • 10.1.1 Aptiv
    • 10.1.2 Continental
    • 10.1.3 Denso
    • 10.1.4 Infineon Technologies
    • 10.1.5 NXP Semiconductors
    • 10.1.6 Robert Bosch
    • 10.1.7 TE Connectivity
    • 10.1.8 ZF Friedrichshafen
    • 10.1.9 Murata
  • 10.2 Regional Players
    • 10.2.1 Allegro MicroSystems
    • 10.2.2 KEYENCE
    • 10.2.3 Magna International
    • 10.2.4 Melexis
    • 10.2.5 NIRA Dynamics
    • 10.2.6 Sensata Technologies
    • 10.2.7 Siemens
    • 10.2.8 Valeo
  • 10.3 Emerging Players / Disruptors
    • 10.3.1 Augury Systems
    • 10.3.2 C3.ai
    • 10.3.3 Delphi Technologies
    • 10.3.4 Predii
    • 10.3.5 Presenso Analytics
    • 10.3.6 Revvo Technologies
    • 10.3.7 Samsara
    • 10.3.8 Tactile Mobility
    • 10.3.9 Uptake Technologies