封面
市场调查报告书
商品编码
1871226

原子层沉积(ALD)前驱体市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)

Atomic Layer Deposition (ALD) Precursors Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 190 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球原子层沉积 (ALD) 前驱体市值为 19 亿美元,预计到 2034 年将以 9% 的复合年增长率增长至 44 亿美元。

原子层沉积(ALD)前驱体市场 - IMG1

由于ALD前驱体在再生能源、电子和医疗保健领域的应用日益广泛,其需求量显着增长。在太阳能领域,ALD材料因其在钝化层、透明导电膜和抗反射涂层等方面的卓越作用而备受关注,这些作用能够显着提高太阳能係统的效率。在医疗技术领域,ALD涂层被应用于改善生物相容性、药物传输系统和诊断仪器,充分展现了该技术在高价值领域的多元化应用前景。不断扩展的应用领域持续为市场创新和成长创造新的机会。终端用户产业的多元化发展,透过开闢新的技术前沿,进一步提升了ALD前驱体的潜力。亚太地区拥有强大的生产基地,这得归功于完善的代工厂和半导体供应链。北美地区由于政府的大量投资和新建製造工厂而发展迅速,而欧洲则专注于推动汽车半导体、再生能源和研发驱动型发展。同时,拉丁美洲和中东及非洲地区正透过技术转移和外国投资逐步发展,旨在为ALD生态系统创造长期成长机会。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 19亿美元
预测值 44亿美元
复合年增长率 9%

2024年,金属卤化物市占率达到33.5%,预计到2034年将以8.5%的复合年增长率成长。由于金属卤化物在半导体製造中的广泛应用以及其在大批量生产环境中久经考验的可靠性,它们仍然是应用最广泛的前驱体类别。具有优异蒸气压和热稳定性的化合物对于沉积介电薄膜、氧化物和扩散阻挡层至关重要。儘管腐蚀和污染等挑战仍然存在,但提纯技术和封装效率的不断改进持续增强了它们的价值。其卓越的性能和经济的价格确保了金属卤化物在整个前驱体产品组合中保持着强大的地位。

2024年,半导体製造领域占据44.5%的市场份额,预计2025年至2034年间将以8.6%的复合年增长率成长。原子层沉积(ALD)前驱体在半导体製造中不可或缺,为向更小节点和更复杂架构的持续发展提供支援。它们对于製造高介电常数(高k)薄膜、金属阻挡层以及用于记忆体和逻辑装置的先进涂层至关重要,这些装置需要原子级精度。随着小型化进程的加速,ALD製程将继续作为实现下一代半导体元件可控沉积和均匀性的关键技术。

预计到2034年,北美原子层沉积(ALD)前驱体市场将以9.3%的复合年增长率成长。该地区的成长势头得益于政府对国内半导体生产的大量投资以及新建製造基地的建设。大规模的融资计划和全球技术製造商之间的合作正在推动先进技术节点对ALD前驱体的需求。这一区域成长凸显了建构强大的半导体製造基地对于确保供应链韧性和创新领先地位的战略重要性。

全球原子层沉积(ALD)前驱体市场的主要参与者包括Entegris Corporation、Air Liquide、SK Materials、Merck KGaA、ASM International、ADEKA Corporation、Lam Research Corporation、Materion Corporation、Applied Materials Inc.、Tokyo Electron Limited、Dockweiler Chemicals Gmbn、Stremin Gsunt Oy、Forge Nano、SparkNano和Maxima Sciences LLC。为了巩固其在全球原子层沉积(ALD)前驱体市场的地位,领导企业正积极推行以创新、合作和区域扩张为核心的策略。各公司正大力投资研发,以设计适用于新兴半导体技术的高纯度、低污染前驱体材料。与晶片製造商和设备供应商的合作正在提升製程相容性并加速产品认证。此外,各公司还在扩大产能、采用可持续的化学製程并签订长期供应协议,以确保可靠性和成本效益。

目录

第一章:方法论与范围

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
    • 利润率
    • 每个阶段的价值增加
    • 影响价值链的因素
    • 中断
  • 产业影响因素
    • 成长驱动因素
      • 半导体产业扩张
      • 技术节点推进
      • 政府支持与投资
    • 产业陷阱与挑战
      • 安全与环境问题
      • 供应链集中度
    • 市场机会
      • 更安全的替代原料
      • 技术平台开发
  • 成长潜力分析
  • 监管环境
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 波特的分析
  • PESTEL 分析
  • 价格趋势
    • 按地区
    • 依前驱化学类型
  • 未来市场趋势
  • 技术与创新格局
    • 当前技术趋势
    • 新兴技术
  • 专利格局
  • 贸易统计(HS编码)(註:仅提供重点国家的贸易统计资料)
    • 主要进口国
    • 主要出口国
  • 永续性和环境方面
    • 永续实践
    • 减少废弃物策略
    • 生产中的能源效率
    • 环保倡议
  • 碳足迹考量

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 按地区
      • 北美洲
      • 欧洲
      • 亚太地区
      • 拉丁美洲
      • MEA
  • 公司矩阵分析
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 关键进展
    • 併购
    • 合作伙伴关係与合作
    • 新产品发布
    • 扩张计划

第五章:市场估计与预测:依前驱体化学类型划分,2021-2034年

  • 主要趋势
  • 金属卤化物
  • 有机金属前驱物
  • 金属酰胺和脒基酸酯
  • 醇盐和β-二酮酸盐
  • 专业及新兴前驱

第六章:市场估算与预测:依应用领域划分,2021-2034年

  • 主要趋势
  • 半导体製造
    • DRAM 和记忆体应用
    • 逻辑元件和高阶节点
    • 3D NAND 及存储
    • 先进包装
  • 太阳能光电发电
  • 医疗器材和生物医学应用
  • 催化与能源应用
  • 新兴应用

第七章:市场估计与预测:依地区划分,2021-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 西班牙
    • 义大利
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
    • 亚太其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 南非
    • 阿联酋
    • 中东和非洲其他地区

第八章:公司简介

  • Air Liquide
  • Entegris Corporation
  • Merck KGaA
  • SK Materials
  • ADEKA Corporation
  • Materion Corporation
  • ASM International
  • Applied Materials Inc.
  • Lam Research Corporation
  • Tokyo Electron Limited
  • Dockweiler Chemicals GmbH
  • Strem Chemicals/Ascensus Specialties
  • Kokusai Electric Corporation (Japan)
  • Picosun Oy(欧洲/芬兰)
  • Beneq Oy(欧洲/芬兰)
  • Forge Nano (Spatial ALD Technology)
  • SparkNano (Roll-to-Roll ALD)
简介目录
Product Code: 15091

The Global Atomic Layer Deposition (ALD) Precursors Market was valued at USD 1.9 Billion in 2024 and is estimated to grow at a CAGR of 9% to reach USD 4.4 Billion by 2034.

Atomic Layer Deposition (ALD) Precursors Market - IMG1

The demand for ALD precursors is increasing significantly due to their growing use in renewable energy, electronics, and healthcare applications. Within the solar sector, ALD materials are gaining attention for their role in creating passivation layers, transparent conductive films, and anti-reflective coatings that enhance efficiency. In medical technology, ALD coatings are applied to improve biocompatibility, drug delivery systems, and diagnostic instruments, showcasing the diverse applicability of the technology across high-value sectors. This expanding application landscape continues to create new opportunities for market innovation and growth. The diversification of end-use industries is further enhancing the potential of ALD precursors by opening new technological frontiers. The Asia-Pacific region holds a strong production base supported by well-established foundries and semiconductor supply chains. North America is experiencing rapid progress due to substantial government investments and the establishment of new fabrication units, while Europe is focusing on advancing automotive semiconductors, renewable energy, and research-driven development. Meanwhile, Latin America and the Middle East & Africa are gradually developing through technology transfers and foreign investments that aim to create long-term growth opportunities in the ALD ecosystem.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$1.9 Billion
Forecast Value$4.4 Billion
CAGR9%

The metal halides segment held a 33.5% share in 2024 and is projected to grow at a CAGR of 8.5% through 2034. Metal halides remain the most widely used precursor category because of their extensive use in semiconductor manufacturing and their proven reliability in high-volume production environments. Compounds offering superior vapor pressure and thermal stability are essential for depositing dielectric films, oxides, and diffusion barriers. Although certain challenges, such as corrosion and contamination, persist, ongoing improvements in purification techniques and packaging efficiency continue to strengthen their relevance. Their established performance and affordability ensure that metal halides maintain a strong position in the overall precursor portfolio.

The semiconductor manufacturing segment held a share of 44.5% in 2024 and is expected to grow at a CAGR of 8.6% between 2025 and 2034. ALD precursors are indispensable in semiconductor fabrication, supporting continuous advancements toward smaller nodes and more complex architectures. They are essential for creating high-k dielectric films, metal barriers, and advanced coatings used in memory and logic devices that demand atomic-level precision. As miniaturization accelerates, ALD processes continue to serve as a cornerstone technology for achieving controlled deposition and uniformity in next-generation semiconductor components.

North America Atomic Layer Deposition (ALD) Precursors Market is anticipated to grow at a CAGR of 9.3% through 2034. The region's momentum is supported by substantial public investments in domestic semiconductor production and the establishment of new fabrication sites. Large-scale funding initiatives and partnerships among global technology manufacturers are propelling demand for ALD precursors across advanced technology nodes. This regional growth underscores the strategic importance of building a robust semiconductor manufacturing base to ensure supply chain resilience and innovation leadership.

Prominent players in the Global Atomic Layer Deposition (ALD) Precursors Market include Entegris Corporation, Air Liquide, SK Materials, Merck KGaA, ASM International, ADEKA Corporation, Lam Research Corporation, Materion Corporation, Applied Materials Inc., Tokyo Electron Limited, Dockweiler Chemicals GmbH, Strem Chemicals/Ascensus Specialties, Kokusai Electric Corporation, Beneq Oy, Picosun Oy, Forge Nano, SparkNano, and Maxima Sciences LLC. To strengthen their position in the Global Atomic Layer Deposition (ALD) Precursors Market, leading companies are pursuing strategies focused on innovation, partnerships, and regional expansion. Firms are investing heavily in research and development to design high-purity, low-contamination precursor materials suitable for emerging semiconductor technologies. Collaborations with chip manufacturers and equipment suppliers are enhancing process compatibility and accelerating product qualification. Additionally, companies are expanding manufacturing capacity, adopting sustainable chemical processes, and forming long-term supply agreements to ensure reliability and cost efficiency.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Precursor chemistry type
    • 2.2.3 Application
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future Outlook and Strategic Recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin
    • 3.1.3 Value addition at each stage
    • 3.1.4 Factor affecting the value chain
    • 3.1.5 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Semiconductor industry expansion
      • 3.2.1.2 Technology node advancement
      • 3.2.1.3 Government support & investment
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 Safety & environmental concerns
      • 3.2.2.2 Supply chain concentration
    • 3.2.3 Market opportunities
      • 3.2.3.1 Safer precursor alternatives
      • 3.2.3.2 Technology platform development
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Price trends
    • 3.7.1 By region
    • 3.7.2 By precursor chemistry type
  • 3.8 Future market trends
  • 3.9 Technology and Innovation landscape
    • 3.9.1 Current technological trends
    • 3.9.2 Emerging technologies
  • 3.10 Patent Landscape
  • 3.11 Trade statistics (HS code) ( Note: the trade statistics will be provided for key countries only)
    • 3.11.1 Major importing countries
    • 3.11.2 Major exporting countries
  • 3.12 Sustainability and environmental aspects
    • 3.12.1 Sustainable practices
    • 3.12.2 Waste reduction strategies
    • 3.12.3 Energy efficiency in production
    • 3.12.4 Eco-friendly initiatives
  • 3.13 Carbon footprint consideration

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 By region
      • 4.2.1.1 North America
      • 4.2.1.2 Europe
      • 4.2.1.3 Asia Pacific
      • 4.2.1.4 LATAM
      • 4.2.1.5 MEA
  • 4.3 Company matrix analysis
  • 4.4 Competitive analysis of major market players
  • 4.5 Competitive positioning matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New Product Launches
    • 4.6.4 Expansion Plans

Chapter 5 Market Estimates and Forecast, By Precursor Chemistry Type, 2021-2034 (USD Billion) (Kilo Tons)

  • 5.1 Key trends
  • 5.2 Metal halides
  • 5.3 Organometallic precursors
  • 5.4 Metal amides & amidinates
  • 5.5 Alkoxides & β-diketonates
  • 5.6 Specialty & emerging precursors

Chapter 6 Market Estimates and Forecast, By Application, 2021-2034 (USD Billion) (Kilo Tons)

  • 6.1 Key trends
  • 6.2 Semiconductor manufacturing
    • 6.2.1 DRAM & memory applications
    • 6.2.2 Logic devices & advanced nodes
    • 6.2.3 3D NAND & storage
    • 6.2.4 Advanced packaging
  • 6.3 Solar photovoltaics
  • 6.4 Medical devices & biomedical applications
  • 6.5 Catalysis & energy applications
  • 6.6 Emerging applications

Chapter 7 Market Estimates and Forecast, By Region, 2021-2034 (USD Billion) (Kilo Tons)

  • 7.1 Key trends
  • 7.2 North America
    • 7.2.1 U.S.
    • 7.2.2 Canada
  • 7.3 Europe
    • 7.3.1 Germany
    • 7.3.2 UK
    • 7.3.3 France
    • 7.3.4 Spain
    • 7.3.5 Italy
    • 7.3.6 Rest of Europe
  • 7.4 Asia Pacific
    • 7.4.1 China
    • 7.4.2 India
    • 7.4.3 Japan
    • 7.4.4 Australia
    • 7.4.5 South Korea
    • 7.4.6 Rest of Asia Pacific
  • 7.5 Latin America
    • 7.5.1 Brazil
    • 7.5.2 Mexico
    • 7.5.3 Argentina
    • 7.5.4 Rest of Latin America
  • 7.6 Middle East and Africa
    • 7.6.1 Saudi Arabia
    • 7.6.2 South Africa
    • 7.6.3 UAE
    • 7.6.4 Rest of Middle East and Africa

Chapter 8 Company Profiles

  • 8.1 Air Liquide
  • 8.2 Entegris Corporation
  • 8.3 Merck KGaA
  • 8.4 SK Materials
  • 8.5 ADEKA Corporation
  • 8.6 Materion Corporation
  • 8.7 ASM International
  • 8.8 Applied Materials Inc.
  • 8.9 Lam Research Corporation
  • 8.10 Tokyo Electron Limited
  • 8.11 Dockweiler Chemicals GmbH
  • 8.12 Strem Chemicals/Ascensus Specialties
  • 8.13 Kokusai Electric Corporation (Japan)
  • 8.14 Picosun Oy (Europe/Finland)
  • 8.15 Beneq Oy (Europe/Finland)
  • 8.16 Forge Nano (Spatial ALD Technology)
  • 8.17 SparkNano (Roll-to-Roll ALD)