封面
市场调查报告书
商品编码
1871292

电动汽车通讯控制器市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)

Electric Vehicle Communication Controller Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 220 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球电动车通讯控制器市场价值为 7.531 亿美元,预计到 2034 年将以 14.6% 的复合年增长率增长至 28.3 亿美元。

电动汽车通讯控制器市场 - IMG1

全球电动车的普及,以及充电基础设施、通讯协定和智慧电网整合技术的进步,正在推动对电动车充电桩(EVCC)的需求。这些系统对于实现电动车与充电站之间安全、高效和智慧的通讯至关重要。透过确保电动车、充电器和后端系统的兼容性,EVCC 在建立互联互通、节能高效的交通网路方面发挥核心作用。全球向碳中和转型以及公共和私人电动车充电网路的日益普及,进一步加速了 EVCC 的普及。随着 ISO 15118、OCPP 和 CHAdeMO 等通讯框架的标准化,双向能量传输和智慧充电功能正逐渐成为主流。这些技术提高了电网可靠性,支援动态能源管理,并为电动车车主、电力公司和充电营运商创造了新的经济机会。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 7.531亿美元
预测值 28.3亿美元
复合年增长率 14.6%

预计到2024年,电动车通讯控制器市占率将达到61%,反映出市场对交换器、路由器和闸道等先进网路设备的需求日益增长。这些系统对于实现车网互动至关重要,它允许电力在车辆和电力系统之间双向流动。这种双向通讯能够提高能源效率,支援电网平衡,并促进住宅、商业和车队应用中的智慧负载管理。透过改善运作控制和优化电力使用,这些控制器正成为智慧交通生态系统的基石。

有线通讯领域预计在2024年将占据59%的市场份额,这主要得益于其卓越的可靠性、低延迟和安全的资料传输能力。汽车乙太网路在电动车中的应用日益广泛,用于管理关键车辆系统之间的高容量资料传输。更高的频宽支援即时诊断、精准充电管理以及高效利用车联网(V2X)通讯技术。因此,随着汽车製造商将先进的资料通讯解决方案整合到其电动车架构中,有线电动车充电桩(EVCC)的重要性日益凸显。

预计到2024年,美国电动车通讯控制器市场规模将达到1.578亿美元。美国凭藉着强有力的政府激励措施、对电力技术的早期应用以及对电动车充电网路的巨额投资,在北美市场占据领先地位。主要汽车製造商对下一代充电通讯系统的投资进一步巩固了美国的市场主导地位。这些发展正在为提升全国电动车基础设施的互通性和可靠性铺平道路。

全球电动车通讯控制器市场的主要参与者包括施耐德电机、ABB、比亚迪、三菱电机、Vector Informatik、罗伯特·博世、特斯拉、Ficosa Internacional、LG Innotek 和 Efacec Power Solutions。这些企业正致力于实施以创新、标准化和全球扩张为核心的策略。主要参与者正大力投资研发,以提升电动车通讯控制器的互通性、网路安全性和即时通讯性能。与汽车原始设备製造商 (OEM)、能源供应商和充电基础设施开发商的合作是加强电动车生态系统整合的关键。各公司也正在努力使其解决方案符合 ISO 15118 和 OCPP 等国际标准,以确保在全球市场的兼容性。此外,企业也透过併购和合作来扩大生产规模、降低成本并拓展技术组合。

目录

第一章:方法论

  • 市场范围和定义
  • 研究设计
    • 研究方法
    • 资料收集方法
  • 资料探勘来源
    • 全球的
    • 地区/国家
  • 基准估算和计算
    • 基准年计算
    • 市场估算的关键趋势
  • 初步研究和验证
    • 原始资料
  • 预测模型
  • 研究假设和局限性

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
    • 利润率
    • 成本结构
    • 每个阶段的价值增加
    • 影响价值链的因素
    • 中断
  • 产业影响因素
    • 成长驱动因素
      • 电动车普及率不断提高,充电基础设施不断扩建
      • 整合标准化通讯协定和V2G功能
      • 智慧安全电动车充电桩解决方案的技术进步
      • 政府政策和区域投资推动电动出行生态系统发展
    • 产业陷阱与挑战
      • 先进电动车充电桩整合成本高且复杂
      • 网路安全与资料隐私风险
    • 市场机会
      • 扩展车网互动(V2G)与智慧充电生态系统
      • 快速和超快速充电网路的发展
      • 与智慧城市和物联网基础设施的集成
      • 软体定义和基于云端的电动车充电桩解决方案
  • 成长潜力分析
  • 监管环境
    • 全球的
      • 网路安全法规(ISO/SAE 21434)
      • 各区域的V2X部署策略
      • 充电基础设施标准(ISO 15118)
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 波特的分析
  • PESTEL 分析
  • 技术与创新格局
    • 当前技术趋势
      • 从 CAN 总线迁移到汽车乙太网路以实现高速资料传输
      • V2X通讯技术路线图,实现车对车和车对基础设施的连接
    • 新兴技术
      • 无线充电通讯协定开发
      • 边缘运算整合趋势,协助即时分析与控制
    • 技术采纳生命週期分析
  • 价格趋势
    • 控制器单元经济性
    • 整合和认证成本
    • 总拥有成本分析
  • 生产统计
    • 生产中心
    • 消费中心
    • 进出口
  • 成本細項分析
  • 专利分析
  • 永续性和环境方面
    • 永续实践
    • 减少废弃物策略
    • 生产中的能源效率
    • 环保倡议
    • 碳足迹考量
  • 投资与融资分析
    • 电动车充电桩解决方案领域的创投与私募股权活动
    • 政府为电动车普及提供资金和激励措施
    • 电动汽车通讯技术领域的企业研发投资趋势
  • 市场成熟度与渗透率分析
  • 客户行为与决策分析
  • 配销通路及市场进入策略分析

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • MEA
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 战略展望矩阵
  • 关键进展
    • 併购
    • 合作伙伴关係与合作
    • 新产品发布
    • 扩张计划和资金
  • 供应商选择标准
  • 竞争性因应策略

第五章:市场估算与预测:依系统划分,2021-2034年

  • 主要趋势
  • 电动汽车通讯控制器(EVCC)
  • 供电设备通讯控制器(SECC)

第六章:市场估算与预测:以收费方式划分,2021-2034年

  • 主要趋势
  • 有线
  • 无线的

第七章:市场估价与预测:依车辆类型划分,2021-2034年

  • 主要趋势
  • 搭乘用车
    • 纯电动车
    • 插电式混合动力汽车
    • 燃料电池电动车
  • 商用车辆
    • 纯电动车
    • 插电式混合动力汽车
    • 燃料电池电动车

第八章:市场估算与预测:依现况、2021年-2034年

  • 主要趋势
  • 交流电(AC)
  • 直流电 (DC)

第九章:市场估算与预测:依最终用途划分,2021-2034年

  • 主要趋势
  • 电动汽车製造商(OEM)
  • 充电站营运商
  • 公用事业供应商
  • 车队营运商

第十章:市场估计与预测:依应用领域划分,2021-2034年

  • 主要趋势
  • 住宅收费
  • 商业充电
  • 公共收费

第十一章:市场估计与预测:按地区划分,2021-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 北欧
    • 俄罗斯
    • 波兰
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳新银行
    • 越南
    • 泰国
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第十二章:公司简介

  • Global companies
    • ABB
    • Analog Devices
    • Infineon Technologies
    • LG Innotek
    • Mitsubishi Electric
    • NXP Semiconductors
    • Qualcomm Technologies
    • Schneider Electric
    • STMicroelectronics
    • Tesla
    • Texas Instruments
  • Regional companies
    • Aptiv
    • BYD
    • Continental
    • Denso
    • Ficosa Internacional
    • Hyundai Mobis
    • Magna International
    • Robert Bosch
    • Valeo
    • ZF Friedrichshafen
  • 新兴玩家
    • Cohda Wireless
    • Elektrobit Automotive
    • Efacec Power Solutions (or Efacec)
    • Vector Informatik
简介目录
Product Code: 10783

The Global Electric Vehicle Communication Controller Market was valued at USD 753.1 million in 2024 and is estimated to grow at a CAGR of 14.6% to reach USD 2.83 billion by 2034.

Electric Vehicle Communication Controller Market - IMG1

The expansion of electric mobility worldwide, combined with advances in charging infrastructure, communication protocols, and smart grid integration, is driving the demand for EVCCs. These systems are essential for enabling secure, efficient, and intelligent communication between electric vehicles and charging stations. By ensuring compatibility across EVs, chargers, and backend systems, EVCCs are central to the development of a connected and energy-optimized transportation network. The global transition toward carbon neutrality and the growing deployment of public and private EV charging networks are further accelerating adoption. With the standardization of communication frameworks such as ISO 15118, OCPP, and CHAdeMO, bidirectional energy transfer and smart charging capabilities are becoming mainstream. These technologies improve grid reliability, support dynamic energy management, and create new economic opportunities for EV owners, utilities, and charging operators.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$753.1 Million
Forecast Value$2.83 Billion
CAGR14.6%

The EV communication controller segment held a 61% share in 2024, reflecting the growing need for advanced networking devices like switches, routers, and gateways. These systems are vital in enabling vehicle-to-grid operations, allowing electricity to flow both ways between vehicles and power systems. This bidirectional communication enhances energy efficiency, supports grid balancing, and facilitates intelligent load management across residential, commercial, and fleet applications. By improving operational control and optimizing electricity use, these controllers are becoming a cornerstone of the smart transportation ecosystem.

The wired communication segment held a 59% share in 2024, driven by its superior reliability, low latency, and secure data transfer capabilities. Automotive Ethernet is increasingly being adopted in EVs to manage high-capacity data transmission between critical vehicle systems. The availability of greater bandwidth supports real-time diagnostics, precise charging management, and efficient use of vehicle-to-everything (V2X) communication technologies. As a result, wired EVCCs continue to gain prominence as automakers integrate advanced data communication solutions into their electric vehicle architectures.

United States Electric Vehicle Communication Controller Market reached USD 157.8 million in 2024. The U.S. leads the North American market due to strong government incentives, early adoption of electric power technologies, and substantial investment in EV charging networks. The presence of major automotive manufacturers investing in next-generation charging communication systems has reinforced the country's dominant position. These developments are paving the way for improved interoperability and reliability across the national EV infrastructure.

Key players active in the Global Electric Vehicle Communication Controller Market include Schneider Electric, ABB, BYD, Mitsubishi Electric, Vector Informatik, Robert Bosch, Tesla, Ficosa Internacional, LG Innotek, and Efacec Power Solutions. Companies in the Electric Vehicle Communication Controller Market are implementing strategies focused on innovation, standardization, and global expansion. Major players are heavily investing in R&D to enhance interoperability, cybersecurity, and real-time communication performance of EVCCs. Collaborations with automotive OEMs, energy providers, and charging infrastructure developers are key to strengthening integration across the EV ecosystem. Firms are also aligning their solutions with international standards like ISO 15118 and OCPP to ensure compatibility across global markets. Mergers and partnerships are being leveraged to scale production, reduce costs, and expand technology portfolios.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 System
    • 2.2.3 Charging
    • 2.2.4 Vehicle
    • 2.2.5 Current
    • 2.2.6 End use
    • 2.2.7 Application
  • 2.3 TAM analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook and recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Rising EV adoption and expansion of charging infrastructure
      • 3.2.1.2 Integration of standardized communication protocols and V2G capabilities
      • 3.2.1.3 Technological advancements in intelligent and secure EVCC solutions
      • 3.2.1.4 Government policies and regional investments driving e-mobility ecosystems
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High cost and complexity of advanced EVCC integration
      • 3.2.2.2 Cybersecurity and data privacy risks
    • 3.2.3 Market opportunities
      • 3.2.3.1 Expansion of vehicle-to-grid (V2G) and smart charging ecosystems
      • 3.2.3.2 Growth of fast and ultra-fast charging networks
      • 3.2.3.3 Integration with smart cities and IoT infrastructure
      • 3.2.3.4 Software-defined and cloud-based EVCC solutions
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 Global
      • 3.4.1.1 Cybersecurity regulations (ISO/SAE 21434)
      • 3.4.1.2 V2X deployment policies across regions
      • 3.4.1.3 Charging infrastructure standards (ISO 15118)
    • 3.4.2 North America
    • 3.4.3 Europe
    • 3.4.4 Asia Pacific
    • 3.4.5 Latin America
    • 3.4.6 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and innovation landscape
    • 3.7.1 Current technological trends
      • 3.7.1.1 Migration from CAN to automotive Ethernet for high-speed data transfer
      • 3.7.1.2 V2X communication technology roadmap enabling vehicle-to-vehicle and vehicle-to-infrastructure connectivity
    • 3.7.2 Emerging technologies
      • 3.7.2.1 Wireless charging communication protocols development
      • 3.7.2.2 Edge computing integration trends for real-time analytics and control
    • 3.7.3 Technology adoption lifecycle analysis
  • 3.8 Price trends
    • 3.8.1 Controller unit economics
    • 3.8.2 Integration and certification costs
    • 3.8.3 Total cost of ownership analysis
  • 3.9 Production statistics
    • 3.9.1 Production hubs
    • 3.9.2 Consumption hubs
    • 3.9.3 Export and import
  • 3.10 Cost breakdown analysis
  • 3.11 Patent analysis
  • 3.12 Sustainability and environmental aspects
    • 3.12.1 Sustainable practices
    • 3.12.2 Waste reduction strategies
    • 3.12.3 Energy efficiency in production
    • 3.12.4 Eco-friendly initiatives
    • 3.12.5 Carbon footprint considerations
  • 3.13 Investment & funding analysis
    • 3.13.1 Venture capital and private equity activity in EVCC solutions
    • 3.13.2 Government funding and incentives for EV adoption
    • 3.13.3 Corporate R&D investment trends in EV communication technologies
  • 3.14 Market maturity & penetration analysis
  • 3.15 Customer behavior & decision-making analysis
  • 3.16 Distribution channel & go-to-market analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 LATAM
    • 4.2.5 MEA
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans and funding
  • 4.7 Vendor selection criteria
  • 4.8 Competitive response strategies

Chapter 5 Market Estimates & Forecast, By System, 2021 - 2034 ($Mn, Units)

  • 5.1 Key trends
  • 5.2 EV communication controller (EVCC)
  • 5.3 Supply equipment communication controller (SECC)

Chapter 6 Market Estimates & Forecast, By Charging, 2021 - 2034 ($Mn, Units)

  • 6.1 Key trends
  • 6.2 Wired
  • 6.3 Wireless

Chapter 7 Market Estimates & Forecast, By Vehicle, 2021 - 2034 ($Mn, Units)

  • 7.1 Key trends
  • 7.2 Passenger cars
    • 7.2.1 BEV
    • 7.2.2 PHEV
    • 7.2.3 FCEV
  • 7.3 Commercial vehicles
    • 7.3.1 BEV
    • 7.3.2 PHEV
    • 7.3.3 FCEV

Chapter 8 Market Estimates & Forecast, By Current, 2021 - 2034 ($Mn, Units)

  • 8.1 Key trends
  • 8.2 Alternating current (AC)
  • 8.3 Direct current (DC)

Chapter 9 Market Estimates & Forecast, By End Use, 2021 - 2034 ($Mn, Units)

  • 9.1 Key trends
  • 9.2 Electric vehicle manufacturers (OEM)
  • 9.3 Charging station operators
  • 9.4 Utility providers
  • 9.5 Fleet operators

Chapter 10 Market Estimates & Forecast, By Application, 2021 - 2034 ($Mn, Units)

  • 10.1 Key trends
  • 10.2 Residential charging
  • 10.3 Commercial charging
  • 10.4 Public charging

Chapter 11 Market Estimates & Forecast, By Region, 2021 - 2034 ($Mn, Units)

  • 11.1 Key trends
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 France
    • 11.3.4 Italy
    • 11.3.5 Spain
    • 11.3.6 Nordics
    • 11.3.7 Russia
    • 11.3.8 Poland
  • 11.4 Asia Pacific
    • 11.4.1 China
    • 11.4.2 India
    • 11.4.3 Japan
    • 11.4.4 South Korea
    • 11.4.5 ANZ
    • 11.4.6 Vietnam
    • 11.4.7 Thailand
  • 11.5 Latin America
    • 11.5.1 Brazil
    • 11.5.2 Mexico
    • 11.5.3 Argentina
  • 11.6 MEA
    • 11.6.1 South Africa
    • 11.6.2 Saudi Arabia
    • 11.6.3 UAE

Chapter 12 Company Profiles

  • 12.1 Global companies
    • 12.1.1 ABB
    • 12.1.2 Analog Devices
    • 12.1.3 Infineon Technologies
    • 12.1.4 LG Innotek
    • 12.1.5 Mitsubishi Electric
    • 12.1.6 NXP Semiconductors
    • 12.1.7 Qualcomm Technologies
    • 12.1.8 Schneider Electric
    • 12.1.9 STMicroelectronics
    • 12.1.10 Tesla
    • 12.1.11 Texas Instruments
  • 12.2 Regional companies
    • 12.2.1 Aptiv
    • 12.2.2 BYD
    • 12.2.3 Continental
    • 12.2.4 Denso
    • 12.2.5 Ficosa Internacional
    • 12.2.6 Hyundai Mobis
    • 12.2.7 Magna International
    • 12.2.8 Robert Bosch
    • 12.2.9 Valeo
    • 12.2.10 ZF Friedrichshafen
  • 12.3 Emerging players
    • 12.3.1 Cohda Wireless
    • 12.3.2 Elektrobit Automotive
    • 12.3.3 Efacec Power Solutions (or Efacec)
    • 12.3.4 Vector Informatik