封面
市场调查报告书
商品编码
1876572

汽车乙太网路PHY晶片市场机会、成长驱动因素、产业趋势分析及2025-2034年预测

Automotive Ethernet PHY Chip Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 220 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球汽车乙太网路PHY 晶片市值为 8.078 亿美元,预计到 2034 年将以 16.5% 的复合年增长率增长至 40.9 亿美元。

汽车乙太网路PHY晶片市场 - IMG1

市场成长的驱动力在于车载电子架构的快速发展,这些架构对更快、更可靠的资料传输提出了更高的要求。这些实体层晶片能够透过单根非屏蔽双绞线,在复杂的汽车网路中实现可靠的通讯。这些晶片专为应对严苛的汽车环境而设计,例如极端温度、振动和电磁干扰,并符合AEC-Q100 1级和IEC 61508等严格的标准,以确保功能安全性和长期可靠性。随着车辆网路越来越多地采用IEEE 802.3bw和IEEE 802.3bp等标准化的IEEE乙太网路协议,汽车製造商正在实现更高的跨平台互通性和一致性。随着进阶驾驶辅助和自动驾驶技术的扩展,对高速、低延迟连线的需求持续成长。实体层晶片支援感测器、雷达、摄影机和资讯娱乐系统之间的无缝资料流,从而提升现代车辆的安全性和互联出行体验。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 8.078亿美元
预测值 40.9亿美元
复合年增长率 16.5%

2024年,低速车载乙太网路(最高100 Mbps)市占率达67%。该细分市场凭藉其庞大的用户基数和与广泛采用的乙太网路标准的兼容性,仍然保持领先地位。这些PHY晶片可透过单一双绞线实现高效的全双工100 Mbps资料传输,广泛应用于车辆的网关连接、资讯娱乐系统和基础网路应用。

预计2025年至2034年,乘用车市场将以16.7%的复合年增长率成长。包括轿车、掀背车、SUV和豪华车型在内的乘用车,仍然是乙太网路PHY晶片需求量最大的驱动力。其主导地位源自于电子系统整合度的不断提高、消费者对连网功能日益增长的兴趣,以及与商用车相比,乘用车更早采用了ADAS技术。

预计到2024年,中国汽车乙太网路PHY晶片市场规模将达2.466亿美元。作为全球领先的汽车生产国,中国在2023年生产了超过2,610万辆乘用车和400万辆商用车。如此庞大的生产规模为基于乙太网路的连接系统提供了有利的市场环境。政府大力推动智慧网联汽车的发展,加速了PHY晶片解决方案在国内车款的应用。此外,政府对自动驾驶、车载资讯服务和数位座舱等技术的监管鼓励,也进一步激励了国内汽车製造商将先进的网路架构整合到新的平台中。

汽车乙太网路PHY晶片市场的主要企业包括Analog Devices、Broadcom、Cadence Design Systems、Intel、Marvell/Infineon、Microchip Technology、MaxLinear、NXP Semiconductors、Qualcomm Technologies和Texas Instruments。这些企业正致力于透过多项策略措施来巩固其竞争优势。许多公司正大力投资研发,以开发高速、节能且乙太网路的PHY解决方案,从而支援不断发展的车辆架构。他们也积极寻求与汽车OEM厂商和一级供应商的策略合作,以加速产品整合和测试。此外,各公司也在扩大产能,并确保长期供应链的稳定,以满足日益增长的互联汽车需求。

目录

第一章:方法论

  • 市场范围和定义
  • 研究设计
    • 研究方法
    • 资料收集方法
  • 资料探勘来源
    • 全球的
    • 地区/国家
  • 基准估算和计算
    • 基准年计算
    • 市场估算的关键趋势
  • 初步研究和验证
    • 原始资料
  • 预报
  • 研究假设和局限性

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
    • 利润率分析
    • 成本结构
    • 每个阶段的价值增加
    • 影响价值链的因素
    • 中断
  • 产业影响因素
    • 成长驱动因素
      • 电动车和高级驾驶辅助系统(ADAS)的普及率不断提高。
      • 向软体定义车辆(SDV)转型
      • 新兴市场汽车产量不断成长
      • 对低延迟、安全资料传输的需求
    • 产业陷阱与挑战
      • 汽车级晶片的开发成本很高
      • 互联繫统中的网路安全漏洞
    • 市场机会
      • 自动驾驶和V2X生态系统的发展
      • 电动汽车电池管理和远端资讯处理技术的扩展
  • 成长潜力分析
  • 监管环境
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 波特的分析
  • PESTEL分析
  • 技术与创新格局
    • 当前技术趋势
    • 新兴技术
  • 价格趋势
    • 按地区
    • 副产品
  • 成本細項分析
  • 专利分析
  • 永续性和环境方面
    • 碳足迹评估
    • 循环经济一体化
    • 电子垃圾管理要求
    • 绿色製造倡议
  • 用例和应用
  • 最佳情况
  • 总拥有成本分析
  • 汽车产业资格认证流程及时间表
  • 供应链韧性与风险管理
  • 製造流程分析与良率最佳化
  • 品质和可靠性指标
  • 热管理解决方案及功耗分析
  • 互通性测试和认证要求
  • 过时管理与长期支援策略

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • MEA
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 战略展望矩阵
  • 关键进展
    • 併购
    • 合作伙伴关係与合作
    • 新产品发布
    • 扩张计划和资金

第五章:市场估算与预测:依产品划分,2021-2034年

  • 主要趋势
  • 低速汽车乙太网路(=100 Mbps)
    • 10BASE-T1S
    • 100BASE-T1
  • 十亿位元汽车乙太网路(1000BASE-T1)
  • 多千兆汽车乙太网路(>1 Gbps)
    • 2.5/5/10GBASE-T1
    • 未来标准(25G+)

第六章:市场估价与预测:依车辆类型划分,2021-2034年

  • 主要趋势
  • 搭乘用车
    • 掀背车
    • 轿车
    • SUV
  • 商用车辆
    • 轻型商用车(LCV)
    • 中型商用车(MCV)
    • 重型商用车辆(HCV)

第七章:市场估计与预测:依应用领域划分,2021-2034年

  • 主要趋势
  • 高级驾驶辅助系统和自动驾驶
    • 雷达系统
    • 光达感测器
    • 相机
    • 感测器融合
    • 网域控制器
  • 资讯娱乐和互联
    • 显示系统
    • 音讯系统
    • 车载资讯系统
    • 空中更新
    • 连线网关
  • 动力系统和车辆动力学
    • 引擎控制
    • 变速箱控制
    • 电池管理
    • 底盘控制
    • 热管理
  • 车身电子与舒适性
    • 门模组
    • 照明系统
    • 气候控制
    • 座椅控制
    • 存取控制
  • 网关和骨干网
    • 中央门户
    • 区域控制器
    • 乙太网路交换机
    • 诊断系统
    • 安全网关

第八章:市场估算与预测:依地区划分,2021-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 北欧
    • 俄罗斯
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
    • 东南亚
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第九章:公司简介

  • 全球参与者
    • Analog Devices
    • Broadcom
    • Marvell / Infineon
    • Intel
    • Marvell Technology
    • NXP Semiconductors
    • Qualcomm Technologies
    • Texas Instruments
  • 区域玩家
    • Cadence Design Systems (PHY IP)
    • MaxLinear
    • MediaTek
    • Onsemi
    • Realtek Semiconductor
    • Renesas Electronics
    • Rohm Semiconductor
    • STMicroelectronics
  • 新兴参与者/颠覆者
    • Alphawave IP
    • Aquantia
    • Canova Tech
    • Ethernovia
    • Kandou Bus
    • Valens Semiconductor
简介目录
Product Code: 15128

The Global Automotive Ethernet PHY Chip Market was valued at USD 807.8 million in 2024 and is estimated to grow at a CAGR of 16.5% to reach USD 4.09 billion by 2034.

Automotive Ethernet PHY Chip Market - IMG1

Market growth is driven by the rapid evolution of in-vehicle electronic architectures that demand faster and more reliable data transmission. These PHY chips enable dependable communication over single, unshielded twisted pair cables across intricate automotive networks. Built to endure rigorous automotive conditions such as extreme temperatures, vibration, and electromagnetic interference, these chips are designed to meet stringent standards like AEC-Q100 Grade 1 and IEC 61508 for functional safety and long-term reliability. As vehicle networks increasingly adopt standardized IEEE Ethernet protocols, such as IEEE 802.3bw and IEEE 802.3bp, automakers are achieving greater interoperability and consistency across platforms. With advanced driver-assistance and autonomous driving technologies expanding, the need for high-speed, low-latency connectivity continues to grow. PHY chips support seamless data flow between sensors, radar, cameras, and infotainment systems, contributing to enhanced safety and connected mobility experiences across modern vehicles.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$807.8 Million
Forecast Value$4.09 Billion
CAGR16.5%

In 2024, the low-speed automotive Ethernet (up to 100 Mbps) segment held a 67% share. This segment remains the market leader due to its extensive installed base and compatibility with widely adopted Ethernet standards. Offering efficient full-duplex 100 Mbps data transfer over a single twisted pair cable, these PHY chips are widely utilized for gateway connections, infotainment systems, and basic networking applications within vehicles.

The passenger car segment is anticipated to grow at a CAGR of 16.7% from 2025 to 2034. Passenger cars, including sedans, hatchbacks, SUVs, and luxury models, continue to drive the highest demand for Ethernet PHY chips. Their dominance stems from the growing integration of electronic systems, increasing consumer interest in connectivity features, and early adoption of ADAS technologies compared with commercial vehicles.

China Automotive Ethernet PHY Chip Market generated USD 246.6 million in 2024. As the leading global producer of automobiles, China manufactured over 26.1 million passenger vehicles and 4 million commercial vehicles in 2023. This production scale has created a favorable environment for implementing Ethernet-based connectivity systems. Government initiatives promoting intelligent and connected vehicles have accelerated the use of PHY chip solutions across domestic vehicle models. Regulatory encouragement for autonomous driving, telematics, and digital cockpit technologies has further motivated local automakers to integrate advanced networking architectures into new platforms.

Leading companies in the Automotive Ethernet PHY Chip Market include Analog Devices, Broadcom, Cadence Design Systems, Intel, Marvell / Infineon, Microchip Technology, MaxLinear, NXP Semiconductors, Qualcomm Technologies, and Texas Instruments. Major players in the Automotive Ethernet PHY Chip Market are focusing on several strategic initiatives to strengthen their competitive position. Many companies are investing heavily in R&D to develop high-speed, energy-efficient, and compact PHY solutions that support evolving vehicle architectures. Strategic collaborations with automotive OEMs and Tier 1 suppliers are being pursued to accelerate product integration and testing. Firms are also expanding production capabilities and securing long-term supply chains to meet the growing demand for connected vehicles.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2034
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Product
    • 2.2.3 Vehicle
    • 2.2.4 Application
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin analysis
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Increasing adoption of EVs and ADAS
      • 3.2.1.2 Shift to software-defined vehicles (SDV)
      • 3.2.1.3 Rising vehicle production in emerging markets
      • 3.2.1.4 Demand for low-latency, secure data transmission
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High development costs for automotive-grade chips
      • 3.2.2.2 Cybersecurity vulnerabilities in connected systems
    • 3.2.3 Market opportunities
      • 3.2.3.1 Growth in autonomous driving and V2X ecosystems
      • 3.2.3.2 Expansion of EV battery management and telematics
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 Pestel analysis
  • 3.7 Technology and innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
  • 3.8 Price trends
    • 3.8.1 By region
    • 3.8.2 By product
  • 3.9 Cost breakdown analysis
  • 3.10 Patent analysis
  • 3.11 Sustainability & environmental aspects
    • 3.11.1 Carbon Footprint Assessment
    • 3.11.2 Circular Economy Integration
    • 3.11.3 E-Waste Management Requirements
    • 3.11.4 Green Manufacturing Initiatives
  • 3.12 Use cases and applications
  • 3.13 Best-case scenario
  • 3.14 Total cost of ownership analysis
  • 3.15 Automotive qualification processes & timelines
  • 3.16 Supply chain resilience & risk management
  • 3.17 Manufacturing process analysis & yield optimization
  • 3.18 Quality & reliability metrics
  • 3.19 Thermal management solutions & power Consumption Analysis
  • 3.20 Interoperability Testing & Certification Requirements
  • 3.21 Obsolescence Management & Long-Term Support Strategies

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 LATAM
    • 4.2.5 MEA
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans and funding

Chapter 5 Market Estimates & Forecast, By Product, 2021 - 2034 ($Mn, units)

  • 5.1 Key trends
  • 5.2 Low-Speed Automotive Ethernet (=100 Mbps)
    • 5.2.1 10BASE-T1S
    • 5.2.2 100BASE-T1
  • 5.3 Gigabit Automotive Ethernet (1000BASE-T1)
  • 5.4 Multi-Gigabit Automotive Ethernet (>1 Gbps)
    • 5.4.1 2.5/5/10GBASE-T1
    • 5.4.2 Future Standards (25G+)

Chapter 6 Market Estimates & Forecast, By Vehicle, 2021 - 2034 ($Mn, Units)

  • 6.1 Key trends
  • 6.2 Passenger Cars
    • 6.2.1 Hatchback
    • 6.2.2 Sedan
    • 6.2.3 SUV
  • 6.3 Commercial Vehicles
    • 6.3.1 Light Commercial Vehicles (LCV)
    • 6.3.2 Medium Commercial Vehicles (MCV)
    • 6.3.3 Heavy Commercial Vehicles (HCV)

Chapter 7 Market Estimates & Forecast, By Application, 2021 - 2034 ($Mn, Units)

  • 7.1 Key trends
  • 7.2 ADAS and Autonomous Driving
    • 7.2.1 Radar Systems
    • 7.2.2 LiDAR Sensors
    • 7.2.3 Cameras
    • 7.2.4 Sensor Fusion
    • 7.2.5 Domain Controllers
  • 7.3 Infotainment and Connectivity
    • 7.3.1 Display Systems
    • 7.3.2 Audio Systems
    • 7.3.3 Telematics
    • 7.3.4 Over-the-Air Updates
    • 7.3.5 Connectivity Gateways
  • 7.4 Powertrain and Vehicle Dynamics
    • 7.4.1 Engine Control
    • 7.4.2 Transmission Control
    • 7.4.3 Battery Management
    • 7.4.4 Chassis Control
    • 7.4.5 Thermal Management
  • 7.5 Body Electronics and Comfort
    • 7.5.1 Door Modules
    • 7.5.2 Lighting Systems
    • 7.5.3 Climate Control
    • 7.5.4 Seat Control
    • 7.5.5 Access Control
  • 7.6 Gateway and Backbone
    • 7.6.1 Central Gateways
    • 7.6.2 Zone Controllers
    • 7.6.3 Ethernet Switches
    • 7.6.4 Diagnostic Systems
    • 7.6.5 Security Gateways

Chapter 8 Market Estimates & Forecast, By Region, 2021 - 2034 ($Mn, Units)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 France
    • 8.3.4 Italy
    • 8.3.5 Spain
    • 8.3.6 Nordics
    • 8.3.7 Russia
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 Australia
    • 8.4.5 South Korea
    • 8.4.6 Southeast Asia
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
  • 8.6 MEA
    • 8.6.1 South Africa
    • 8.6.2 Saudi Arabia
    • 8.6.3 UAE

Chapter 9 Company Profiles

  • 9.1 Global Players
    • 9.1.1 Analog Devices
    • 9.1.2 Broadcom
    • 9.1.3 Marvell / Infineon
    • 9.1.4 Intel
    • 9.1.5 Marvell Technology
    • 9.1.6 NXP Semiconductors
    • 9.1.7 Qualcomm Technologies
    • 9.1.8 Texas Instruments
  • 9.2 Regional Players
    • 9.2.1 Cadence Design Systems (PHY IP)
    • 9.2.2 MaxLinear
    • 9.2.3 MediaTek
    • 9.2.4 Onsemi
    • 9.2.5 Realtek Semiconductor
    • 9.2.6 Renesas Electronics
    • 9.2.7 Rohm Semiconductor
    • 9.2.8 STMicroelectronics
  • 9.3 Emerging Players/Disruptors
    • 9.3.1 Alphawave IP
    • 9.3.2 Aquantia
    • 9.3.3 Canova Tech
    • 9.3.4 Ethernovia
    • 9.3.5 Kandou Bus
    • 9.3.6 Valens Semiconductor