封面
市场调查报告书
商品编码
1892724

动态路线优化软体市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)

Dynamic Route Optimization Software Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 235 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球动态路线优化软体市场价值为 19 亿美元,预计到 2034 年将以 13.1% 的复合年增长率成长至 66 亿美元。

动态路线优化软体市场 - IMG1

现代物流营运需要即时重新计算路线,以应对订单量波动、交通中断、服务水准承诺以及途中突发情况——这些挑战是静态路线规划无法解决的。动态路线优化会持续重新计算最高效的路线,同时考虑车辆容量、驾驶员工作时间、配送时间窗口和即时路况。当发生交通事故或配送失败时,路线会自动更新,以维持生产效率和准时交货率。采用动态路线规划的公司报告称,准时交货率超过 90%,远高于传统的手动规划(通常为 70-80%)。对于寻求营运效率、客户满意度和竞争优势的电商和物流供应商而言,这项功能已变得至关重要,因为车队越来越依赖智慧的、人工智慧驱动的路线规划来应对复杂多变的路况。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 19亿美元
预测值 66亿美元
复合年增长率 13.1%

云端领域占据了 72% 的市场份额,预计到 2034 年将以 13.4% 的复合年增长率成长。云端基础设施能够即时摄取交通资料、远端资讯处理数据、天气更新和订单管理讯息,确保分散式车队的低延迟路线最佳化。

软体业务在2024年占66%,预计2025年至2034年间将以13.5%的复合年增长率成长。该业务板块包括人工智慧驱动的路线规划引擎、行动调度应用、优化演算法和管理介面的授权和订阅服务。服务板块涵盖实施、整合、培训、变更管理、持续支援、託管服务和咨询。

美国动态路线优化软体市场占 81% 的市场份额,预计到 2024 年将创造 6.223 亿美元的收入。美国的领先地位反映了国内主要参与者的营运规模和先进的物流需求,以及司机短缺带来的压力,而智慧装载计画正好可以解决这个问题。

目录

第一章:方法论

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
    • 利润率分析
    • 成本结构
    • 每个阶段的价值增加
    • 影响价值链的因素
    • 中断
  • 产业影响因素
    • 成长驱动因素
      • 电子商务交易量不断增长,以及人们对更快配送速度的期望日益提高。
      • AI/ML路由引擎的进步
      • 越来越重视降低成本和提高车队效率
      • 远端资讯处理、物联网和即时交通资料可用性的成长
    • 产业陷阱与挑战
      • 与TMS/WMS/ERP和传统车载资讯系统整合的复杂性
      • 交通/远端资料处理资料的许可成本和隐私限制
      • 供应商格局分散,投资报酬率衡量标准不明确。
    • 市场机会
      • 亚太、拉丁美洲和中东非地区最后一公里物流的扩张
      • 将DRO与TMS、视觉化和调度平台捆绑在一起
      • 对永续性和低碳路线的需求
  • 成长潜力分析
  • 监管环境
    • 北美洲
    • 欧洲
    • 亚太地区
    • 南美洲
    • 中东和非洲
  • 波特的分析
  • PESTEL 分析
  • 技术与创新格局
    • 当前技术趋势
    • 新兴技术
    • 技术采纳成熟度模型
      • 产业成熟度评估
      • 区域成熟度比较
      • 成熟度发展路线图
  • 价格趋势
    • 按地区
    • 副产品
  • 成本細項分析
  • 专利分析
  • 永续性和环境方面
    • 永续实践
    • 减少废弃物策略
    • 生产中的能源效率
    • 环保倡议
    • 碳足迹考量
    • 市场成熟度与采纳度分析
  • 投资与融资分析
    • 创投趋势(2019-2024)
    • 私募股权活动
    • 首次公开募股活动及公开市场表现
    • 企业创投参与
    • 政府拨款和补贴
    • 群众募资和另类融资
  • 用例分析及产业应用
    • 电子商务与零售应用案例
    • 食品饮料应用案例
    • 医疗保健和製药应用案例
    • 现场服务用例
  • 最佳实践框架与实施模型
    • 实施方法
    • 变革管理最佳实践
    • 数据品质与准备
    • 整合最佳实践

第四章:竞争格局

  • 介绍
  • 公司市占率分析
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 战略展望矩阵
  • 关键进展
    • 併购
    • 合作伙伴关係与合作
    • 新产品发布
    • 扩张计划和资金

第五章:市场估算与预测:依部署方式划分,2021-2034年

  • 本地部署

第六章:市场估算与预测:依组件划分,2021-2034年

  • 软体
    • 核心优化引擎
    • 使用者介面与体验设计
    • 行动应用程式和驱动程式工具
    • API 和整合功能
  • 服务
    • 专业服务
    • 託管服务
    • 支援与维护服务

第七章:市场估算与预测:依路由技术与演算法划分,2021-2034年

  • 动态路线规划
  • 混合路径规划(含动态元件)
  • 持续优化
  • 人工智慧和机器学习驱动的优化
  • 动态网路路由与多层最佳化

第八章:市场估算与预测:依应用领域划分,2021-2034年

  • 最后一公里配送优化
  • 现场服务管理
  • 货运与物流管理
  • 车队管理与调度
  • 大众运输和客运
  • 废弃物管理和市政服务
  • 交叉转运和整合
  • 可持续性和减排

第九章:市场估算与预测:依最终用途划分,2021-2034年

  • 运输与物流(第三方/第四方物流)
  • 零售与电子商务
  • 食品饮料分销
  • 医疗保健及医疗用品
  • 製造业及工业分销
  • 政府和公共部门
  • 公用事业和能源
  • 批发与分销

第十章:市场估计与预测:依组织规模划分,2021-2034年

  • 大型企业
  • 中小企业

第十一章:市场估计与预测:按地区划分,2021-2034年

  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 俄罗斯
    • 北欧
    • 波兰
    • 比荷卢经济联盟
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
    • 东南亚
  • 拉丁美洲
    • 巴西
    • 阿根廷
    • 墨西哥
  • MEA
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第十二章:公司简介

  • 全球参与者
    • Alpega
    • Blue Yonder
    • Descartes Systems
    • E2 open
    • Manhattan Associates
    • Omnitracs
    • Oracle
    • Paragon Software Systems (Aptean)
    • SAP
    • Shipwell
    • Trimble
    • Uber Freight
    • Verizon Connect
    • WorkWave
    • Optym
  • 区域玩家
    • DispatchTrack
    • HERE Technologies
    • OptimoRoute
    • Routific
    • Transporeon
  • 新兴参与者
    • Bringg
    • FarEye
    • Locus.sh
    • Onfleet
    • Route4 Me
    • Wise Systems
简介目录
Product Code: 15383

The Global Dynamic Route Optimization Software Market was valued at USD 1.9 billion in 2024 and is estimated to grow at a CAGR of 13.1% to reach USD 6.6 billion by 2034.

Dynamic Route Optimization Software Market - IMG1

Modern logistics operations demand real-time route recalculation to handle fluctuating order volumes, traffic disruptions, service-level commitments, and unexpected in-route insertions-challenges that static route planning cannot address. Dynamic route optimization continuously recalculates the most efficient routes, considering vehicle capacity, driver working hours, delivery time windows, and real-time traffic conditions. When traffic incidents occur or delivery attempts fail, routes are automatically updated to maintain productivity and on-time performance. Companies adopting dynamic routing report on-time delivery rates exceeding 90%, significantly higher than traditional manual planning, which typically achieves 70-80%. This capability has become essential for e-commerce and logistics providers seeking operational efficiency, customer satisfaction, and competitive advantage, as fleets increasingly rely on intelligent, AI-driven routing to navigate complex and rapidly changing conditions.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$1.9 Billion
Forecast Value$6.6 Billion
CAGR13.1%

The cloud segment held a 72% share and is expected to grow at a CAGR of 13.4% through 2034. Cloud infrastructure enables the real-time ingestion of traffic data, telematics feeds, weather updates, and order management information, ensuring low-latency route optimization across distributed fleets.

The software segment accounted for a 66% share in 2024 and is expected to grow at a CAGR of 13.5% between 2025 and 2034. This segment includes licenses and subscriptions for AI-driven route planning engines, mobile dispatch apps, optimization algorithms, and administrative interfaces. The services segment encompasses implementation, integration, training, change management, ongoing support, managed services, and consulting.

U.S. Dynamic Route Optimization Software Market held an 81% share, generating USD 622.3 million in 2024. Leadership in the U.S. reflects the operational scale and advanced logistics requirements of major domestic players, along with pressure from driver shortages, which intelligent load planning directly addresses.

Major players operating in the Global Dynamic Route Optimization Software Market include Bringg, Descartes Systems, Locus, Onfleet, OptimoRoute, Optym, Oracle, Route4Me, Routific, and Wise Systems. Companies in the dynamic route optimization software market are strengthening their presence by investing heavily in AI and machine learning to enhance real-time routing accuracy and predictive capabilities. Partnerships with fleet operators, logistics providers, and e-commerce firms help integrate solutions directly into operational workflows. Providers focus on cloud-native architectures for scalability, global deployment, and low-latency optimization across distributed fleets. Strategic acquisitions and alliances expand geographic reach and technology portfolios. Offering end-to-end solutions, including mobile applications, administrative dashboards, and managed services, helps companies retain clients and deliver measurable ROI. Continuous platform updates, customer support, and training services ensure adoption and satisfaction.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2034
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Deployment
    • 2.2.3 Component
    • 2.2.4 Routing Technology & Algorithm
    • 2.2.5 Application
    • 2.2.6 End Use
    • 2.2.7 Organization Size
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin analysis
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Rising e-commerce volumes and faster delivery expectations
      • 3.2.1.2 Advancements in AI/ML-based routing engines
      • 3.2.1.3 Increasing focus on cost reduction and fleet efficiency
      • 3.2.1.4 Growth in telematics, IoT, and real-time traffic data availability
    • 3.2.2 Industry pitfalls & challenges
      • 3.2.2.1 Integration complexity with TMS/WMS/ERP and legacy telematics
      • 3.2.2.2 Data licensing costs and privacy constraints for traffic/telematics data
      • 3.2.2.3 Fragmented vendor landscape and unclear ROI measurement
    • 3.2.3 Market opportunities
      • 3.2.3.1 Expansion of last-mile logistics in APAC, LATAM, and MEA
      • 3.2.3.2 Bundling DRO within TMS, visibility, and dispatch platforms
      • 3.2.3.3 Demand for sustainability and carbon-efficient routing
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 South America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and Innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
    • 3.7.3 Technology adoption maturity model
      • 3.7.3.1 Industry maturity assessment
      • 3.7.3.2 Regional maturity comparison
      • 3.7.3.3 Maturity progression roadmap
  • 3.8 Price trends
    • 3.8.1 By region
    • 3.8.2 By Products
  • 3.9 Cost breakdown analysis
  • 3.10 Patent analysis
  • 3.11 Sustainability and environmental aspects
    • 3.11.1 Sustainable practices
    • 3.11.2 Waste reduction strategies
    • 3.11.3 Energy efficiency in production
    • 3.11.4 Eco-friendly initiatives
    • 3.11.5 Carbon footprint considerations
    • 3.11.6 Market Maturity & Adoption Analysis
  • 3.12 Investment & funding analysis
    • 3.12.1 Venture capital investment trends (2019-2024)
    • 3.12.2 Private equity activity
    • 3.12.3 IPO activity & public market performance
    • 3.12.4 Corporate venture capital participation
    • 3.12.5 Government grants & subsidies
    • 3.12.6 Crowdfunding & alternative financing
  • 3.13 Use case analysis & industry applications
    • 3.13.1 E-commerce & retail use cases
    • 3.13.2 Food & beverage use cases
    • 3.13.3 Healthcare & pharmaceutical use cases
    • 3.13.4 Field service use cases
  • 3.14 Best practice frameworks & implementation models
    • 3.14.1 Implementation methodology
    • 3.14.2 Change management best practices
    • 3.14.3 Data quality & preparation
    • 3.14.4 Integration best practices

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 South America
    • 4.2.5 MEA
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New Product Launches
    • 4.6.4 Expansion Plans and funding

Chapter 5 Market Estimates & Forecast, By Deployment, 2021-2034 ($Bn)

  • 5.1 Key trends
  • 5.2 Cloud
  • 5.3 On-premise

Chapter 6 Market Estimates & Forecast, By Component, 2021-2034 ($Bn)

  • 6.1 Key trends
  • 6.2 Software
    • 6.2.1 Core optimization engines
    • 6.2.2 User interface & experience design
    • 6.2.3 Mobile applications & driver tools
    • 6.2.4 API & integration capabilities
  • 6.3 Services
    • 6.3.1 Professional services
    • 6.3.2 Managed services
    • 6.3.3 Support & maintenance services

Chapter 7 Market Estimates & Forecast, By Routing Technology & Algorithm, 2021-2034 ($Bn)

  • 7.1 Key trends
  • 7.2 Dynamic route planning
  • 7.3 Hybrid route planning (with dynamic components)
  • 7.4 Continuous optimization
  • 7.5 AI & machine learning-powered optimization
  • 7.6 Dynamic network routing & multi-tier optimization

Chapter 8 Market Estimates & Forecast, By Application, 2021-2034 ($Bn)

  • 8.1 Key trends
  • 8.2 Last-mile delivery optimization
  • 8.3 Field service management
  • 8.4 Freight & logistics management
  • 8.5 Fleet management & dispatch
  • 8.6 Public transit & passenger transportation
  • 8.7 Waste management & municipal services
  • 8.8 Cross-docking & consolidation
  • 8.9 Sustainability & emissions reduction

Chapter 9 Market Estimates & Forecast, By End Use, 2021-2034 ($Bn)

  • 9.1 Key trends
  • 9.2 Transportation & logistics (3pl/4pl)
  • 9.3 Retail & e-commerce
  • 9.4 Food & beverage distribution
  • 9.5 Healthcare & medical supply
  • 9.6 Manufacturing & industrial distribution
  • 9.7 Government & public sector
  • 9.8 Utilities & energy
  • 9.9 Wholesale & distribution

Chapter 10 Market Estimates & Forecast, By Organization Size, 2021-2034 ($Bn)

  • 10.1 Key trends
  • 10.2 Large enterprise
  • 10.3 Small & medium enterprises (SMEs)

Chapter 11 Market Estimates & Forecast, By Region, 2021 - 2034 ($Bn)

  • 11.1 Key trends
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 France
    • 11.3.4 Italy
    • 11.3.5 Spain
    • 11.3.6 Russia
    • 11.3.7 Nordics
    • 11.3.8 Poland
    • 11.3.9 Benelux
  • 11.4 Asia Pacific
    • 11.4.1 China
    • 11.4.2 India
    • 11.4.3 Japan
    • 11.4.4 Australia
    • 11.4.5 South Korea
    • 11.4.6 Southeast Asia
  • 11.5 Latin America
    • 11.5.1 Brazil
    • 11.5.2 Argentina
    • 11.5.3 Mexico
  • 11.6 MEA
    • 11.6.1 South Africa
    • 11.6.2 Saudi Arabia
    • 11.6.3 UAE

Chapter 12 Company Profiles

  • 12.1 Global Players
    • 12.1.1 Alpega
    • 12.1.2 Blue Yonder
    • 12.1.3 Descartes Systems
    • 12.1.4. E2 open
    • 12.1.5 Manhattan Associates
    • 12.1.6 Omnitracs
    • 12.1.7 Oracle
    • 12.1.8 Paragon Software Systems (Aptean)
    • 12.1.9 SAP
    • 12.1.10 Shipwell
    • 12.1.11 Trimble
    • 12.1.12 Uber Freight
    • 12.1.13 Verizon Connect
    • 12.1.14 WorkWave
    • 12.1.15 Optym
  • 12.2 Regional Players
    • 12.2.1 DispatchTrack
    • 12.2.2 HERE Technologies
    • 12.2.3 OptimoRoute
    • 12.2.4 Routific
    • 12.2.5 Transporeon
  • 12.3 Emerging Players
    • 12.3.1 Bringg
    • 12.3.2 FarEye
    • 12.3.3 Locus.sh
    • 12.3.4 Onfleet
    • 12.3.5. Route4 Me
    • 12.3.6 Wise Systems