3D 列印:材料和设备机会、趋势和市场
市场调查报告书
商品编码
1483213

3D 列印:材料和设备机会、趋势和市场

3D Printing: Material and Equipment Opportunities, Trends, and Markets

出版日期: | 出版商: Information Network | 英文 | 商品交期: 2-3个工作天内

价格

介绍

3D 列印产业正在彻底改变许多领域的製造和设计流程,提供前所未有的灵活性、效率和客製化。

本报告对这项创新的 3D 列印技术进行了全面分析,探讨了材料和设备的最新发展、最新的市场发展以及策略课题。它还研究了成长和投资的关键市场驱动因素和战略机会。

3D列印技术的发展趋势

3D列印产业在材料和设备方面都取得了显着进步,正在扩大应用范围并推动市场成长。最显着的趋势之一是新型和改进印刷材料的开发。3D列印所使用的材料最初主要是塑料,现已多样化,包括金属、陶瓷和复合材料。PEEK 和 PEKK 等高性能热塑性塑胶因其强度和生物相容性而在航空航太和医疗应用中越来越受欢迎。此外,钛和铝等金属粉末的使用正在扩大在汽车和航空航天等需要坚固、轻质零件的行业中。

另一个重要趋势是3D列印设备的演进。增材製造技术的进步正在提高 3D 列印机的准确性、速度和可扩展性。选择性雷射烧结 (SLS)、立体光刻 (SLA) 和直接金属雷射烧结 (DMLS) 等尖端技术正在突破 3D 列印的界限。结合积层製造和减材製造流程的混合製造系统也正在兴起,为製造复杂零件提供了更大的灵活性和效率。

3D列印与工业4.0技术的融合正在进一步改变製造业格局。将物联网、人工智慧和机器学习应用于 3D 列印流程,可实现生产工作流程的即时监控、预测性维护和最佳化。这些智慧製造功能使 3D 列印更加高效和可靠,使其成为原型製作和大规模生产的可行选择。

永续性也正成为 3D 列印产业的焦点。零件可以依需生产,减少浪费并最大限度地减少与传统製造方法相关的环境足迹。此外,可回收和可生物降解印刷材料的进步使该行业与全球永续发展目标保持一致,并吸引了具有环保意识的企业和消费者。

目录

第一章简介

第二章 3D列印概述

  • 3D列印的优点
  • 3D列印的局限性
  • 3D市场分类
    • 设计
    • 替代现有的製造工艺
    • 个性化家居3D列印
    • 材料
  • 各地区的趋势
    • 欧洲
    • 日本
    • 中国
    • 韩国
    • 全球研发 (R&D)

第三章市场分析

  • 介绍
  • 3D列印产业
  • 各地区3D列印产业
  • 3D印表机预测
  • 3D列印服务提供者预测
  • 3D列印产业:依应用分类
  • 材料

第四章 技术问题与趋势

  • 选择性雷射烧结(SLS)
  • 直接金属雷射烧结(DMLS)
  • 选择性雷射熔化(SLM)
  • 立体光刻 (SLA)
  • 熔融沈积建模 (FDM)
    • (FFF(熔融沈积建模))
  • 雷射粉末成型 (LPF)
  • 多射技术
  • MJF(多射流融合)
  • DLP(数位光处理)
  • 材料喷射方式(材料喷射)

第五章 设备供应商

  • 介绍
    • 原型设计
    • 大规模客製化
  • 主要印表机製造商简介
    • 3D Systems
    • Stratasys
    • ExOne Company
    • ProtoPlant
    • Mark Forged
    • Voxeljet AG (德国)
    • EOS GmbH (德国)
    • Arcam AB (瑞典)
    • EnvisionTEC GmbH (德国)
    • Renishaw plc (英国)
    • SLM Solutions GmbH (德国)
    • Concept Laser GmbH (德国)
    • Hoganas AB (瑞典)
    • Materialise NV (比利时)
    • Mcor Technologies Ltd. (爱尔兰)
    • Xact Metal
    • Cincinnati Inc.
    • Mitsubishi
    • Beijing TierTime (中国)
    • Shaanxi (中国)
    • Digital Wax Systems (DWS) (义大利)
    • Blue Printer
    • Organovo
    • Shapeways (荷兰)
    • Hewlett-Packard
    • XYZprinting
    • Evolve Additive Solutions
    • Origin
    • Carbon3D
    • Desktop Metal
    • Metal X
  • 製造商清单:依印表机类型
    • 熔融沈积建模 (FDM)
    • 喷墨方式
    • 雷射粉末成形(LPF)及相关技术
    • 基于光聚合物的方法
    • 选择性雷射烧结 (SLS)
    • 立体光刻 (SLA)
    • 金属印表机
  • 设备供应商、类型和价格
  • 开源 (RepRaps)

第六章 材料及材料供应商

  • 塑胶/热塑性塑料
    • PLA(聚乳酸)
    • ABS(丙烯□丁二烯苯乙烯)
    • 尼龙
    • ASA(丙烯□苯乙烯丙烯酸酯)
    • PVA(聚乙烯醇塑胶)
    • 高性能热塑性塑胶(PEEK、PEKK、PEK)
    • 聚碳酸酯材质
    • 高抗衝聚苯乙烯 HIPS 材料
    • 热塑性聚氨酯
    • 聚丙烯
    • PET和其他可生物降解材料
    • 透明塑胶材质
  • 粉末
    • 聚□胺
    • 铝化物
    • 树脂
    • 金属
    • 陶瓷
  • 先进材料
    • 导电碳吗林
    • 石墨烯
    • 奈米材料
  • 独立的材料基础设施
  • 基于设备供应商的物质基础设施

第七章 使用面积

  • 介绍
  • 电子/高科技
    • 太阳能
    • 射频识别
    • 电池
    • 引领
    • 数位纺织
    • OLED照明/显示
    • 智慧窗
    • 列印感应器
  • 医疗保健
    • 介绍
    • 骨骼
    • 牙科
    • 义肢
    • 投掷
    • 助听器
    • 组织
    • 个人化诊断/给药
    • 医疗微工厂
  • 汽车
  • 航天
  • 消费产品
  • 军事/国防
  • 工业产品
  • 教育

Introduction

The 3D printing industry is revolutionizing manufacturing and design processes across various sectors, offering unprecedented flexibility, efficiency, and customization. Our report, "3D Printing: Material and Equipment Opportunities, Trends, and Markets," provides a comprehensive analysis of this transformative technology, delving into the latest advancements in materials and equipment, emerging market trends, and strategic challenges. This detailed report is crafted for industry professionals seeking to understand the key drivers of the 3D printing market and to identify strategic opportunities for growth and investment.

Trends in 3D Printing Technology

The 3D printing industry is witnessing significant advancements in both materials and equipment, which are expanding its applications and driving market growth. One of the most notable trends is the development of new and improved printing materials. Initially dominated by plastics, the material landscape in 3D printing has diversified to include metals, ceramics, and composite materials. High-performance thermoplastics like PEEK and PEKK are gaining popularity in aerospace and medical applications due to their strength and biocompatibility. Additionally, the use of metal powders, such as titanium and aluminum, is expanding in industries that require robust and lightweight components, including automotive and aerospace.

Another key trend is the evolution of 3D printing equipment. Advances in additive manufacturing technologies are enhancing the precision, speed, and scalability of 3D printers. Selective laser sintering (SLS), stereolithography (SLA), and direct metal laser sintering (DMLS) are among the cutting-edge techniques that are pushing the boundaries of what can be achieved with 3D printing. Hybrid manufacturing systems, which combine additive and subtractive processes, are also emerging, offering greater flexibility and efficiency in producing complex parts.

The integration of 3D printing with Industry 4.0 technologies is further transforming the manufacturing landscape. The adoption of IoT, AI, and machine learning in 3D printing processes enables real-time monitoring, predictive maintenance, and optimized production workflows. These smart manufacturing capabilities are enhancing the efficiency and reliability of 3D printing, making it a viable option for large-scale production runs as well as prototyping.

Sustainability is also becoming a central focus in the 3D printing industry. The ability to produce parts on-demand reduces waste and minimizes the environmental footprint associated with traditional manufacturing methods. Additionally, advancements in recyclable and biodegradable printing materials are aligning the industry with global sustainability goals, appealing to environmentally-conscious businesses and consumers.

The Need to Purchase This Report

For businesses and professionals involved in or entering the 3D printing market, understanding the latest technological trends and market dynamics is crucial for making strategic decisions. This report provides an in-depth analysis of the opportunities and challenges in 3D printing materials and equipment, offering valuable insights into the factors driving market growth and innovation. By purchasing this report, stakeholders will gain a comprehensive understanding of the current state of the 3D printing industry, including detailed market forecasts and competitive landscape evaluations.

Our report offers strategic recommendations for leveraging 3D printing technologies to enhance product development, manufacturing efficiency, and market positioning. It includes an exhaustive examination of key industry players, technological advancements, and emerging market opportunities. Companies looking to invest in 3D printing or expand their capabilities will find this report indispensable for identifying growth areas, optimizing their strategies, and staying ahead of the competition.

In conclusion, "3D Printing: Material and Equipment Opportunities, Trends, and Markets" is an essential resource for industry professionals, engineers, researchers, and business leaders. It provides a thorough exploration of the technological advancements and market trends shaping the 3D printing industry, equipping readers with the knowledge needed to navigate this rapidly evolving field. This report is designed to inform strategic planning, investment decisions, and the development of innovative 3D printing solutions that will drive future success in the global market.

Table of Contents

Chapter 1. Introduction

Chapter 2. 3D Printing Overview

  • 2.1. Benefits Of 3D Printing
  • 2.2. Limitations Of 3D Printing
  • 2.3 3D Market Segmentation
    • 2.3.1. Design
    • 2.3.2. Replacement Of Current Manufacturing Processes
    • 2.3.3. Personalized And Home 3D Printing
    • 2.3.4. Materials
  • 2.4. Regional Activities
    • 2.4.1. Europe
    • 2.4.2. Japan
    • 2.4.3. China
    • 2.4.4. Korea
    • 2.4.5. Global Research And Development

Chapter 3. Market Analyses

  • 3.1. Introduction
  • 3.2. 3D Printing Industry
  • 3.3. 3D Printing Industry By Geographic Region
  • 3.4. 3D Printer Forecast
  • 3.5. 3D Printing Service Bureau Forecast
  • 3.6. 3D Printing Industry By Application
  • 3.7. Materials

Chapter 4. Technology Issues and Trends

  • 4.1. Selective laser sintering (SLS)
  • 4.2. Direct metal laser sintering (DMLS)
  • 4.4. Selective Laser Melting (SLM)
  • 4.4. Stereolithography (SLA)
  • 4.5. Fused Deposition Modeling (FDM)
    • [Fused Filament Fabrication (FFF)]
  • 4.6. Laser Powder Forming (LPF)
  • 4.7. PolyJet Technology
  • 4.8. Multi Jet Fusion
  • 4.9. Digital Light Processing (DLP)
  • 4.10. Material Jetting

Chapter 5. Equipment Suppliers

  • 5.1. Introduction
    • 5.1.1. Prototyping
    • 5.1.2. Mass Customization
  • 5.2. Profiles Of Major Printer Manufacturers
    • 5.2.1. 3D Systems
    • 5.2.2. Stratasys
    • 5.2.3. ExOne Company
    • 5.2.4. ProtoPlant
    • 5.2.5. Mark Forged
    • 5.2.6. Voxeljet AG (Germany)
    • 5.2.7. EOS GmbH (Germany)
    • 5.2.8. Arcam AB (Sweden)
    • 5.2.9. EnvisionTEC GmbH (Germany)
    • 5.2.10. Renishaw plc (UK)
    • 5.2.11. SLM Solutions GmbH (Germany)
    • 5.2.12. Concept Laser GmbH (Germany)
    • 5.2.13. Hoganas AB (Sweden)
    • 5.2.14. Materialise NV (Belgium)
    • 5.2.15. Mcor Technologies Ltd. (Ireland)
    • 5.2.16. Xact Metal
    • 5.2.17. Cincinnati Inc.
    • 5.2.18. Mitsubishi
    • 5.2.19. Beijing TierTime (China)
    • 5.2.20. Shaanxi (China)
    • 5.2.21. Digital Wax Systems (DWS) (Italy)
    • 5.2.22. Blue Printer
    • 5.2.23. Organovo
    • 5.2.24. Shapeways (The Netherlands)
    • 5.2.25. Hewlett-Packard
    • 5.2.26. XYZprinting
    • 5.2.27. Evolve Additive Solutions
    • 5.2.28. Origin
    • 5.2.29. Carbon3D
    • 5.2.30. Desktop Metal
    • 5.2.31. Metal X
  • 5.3. Manufacturers By Printer Type
    • 5.3.1. Fused Deposition Modeling
    • 5.3.2. Inkjet Methods
    • 5.3.3. Laser Powder Forming And Related Technologies
    • 5.3.4. Photopolymer-Based Methods
    • 5.3.5. Selective Laser Sintering
    • 5.3.6. Stereolithography
    • 5.3.7. Metal Printers
      • 5.3.7.1. Power Bed Fusion Metal 3D Printers
      • 5.3.7.2. Binder Jetting Metal 3D Printers
      • 5.3.7.3. Direct Energy Deposition Metal 3D Printers
      • 5.3.7.4. Material Jetting Metal 3D Printers
  • 5.4. Equipment Suppliers, Type, And Prices
  • 5.4. Open Source (RepRaps)

Chapter 6. Materials And Materials Suppliers

  • 6.1. Plastics/Thermoplastics
    • 6.1.1. PLA (Polylactic Acid)
    • 6.1.2. ABS (Acrylonitrile butadiene styrene)
    • 6.1.3. Nylon
    • 6.1.4. ASA (Aacrylonitrile styrene acrylate)
    • 6.1.5. PVA (Polyvinyl Alcohol Plastic)
    • 6.1.6. High Performance Thermoplastics (PEEK, PEKK, PEK)
    • 6.1.7. Polycarbonate Materials
    • 6.1.8. High Impact polystyrene HIPS Materials
    • 6.1.9. Thermoplastic Polyurethane
    • 6.1.10. Polypropylene
    • 6.1.11. PET and Other Biodegradables
    • 6.1.12. Transparent Plastic Materials
  • 6.2. Powders
    • 6.2.1. Polyamide
    • 6.2.2. Alumide
    • 6.2.3. Resins
      • 6.2.3.1. High Detail Resin
      • 6.2.3.2. Paintable Resin
      • 6.2.3.3. Transparent Resin
    • 6.2.4. Metals
      • 6.2.4.1. Titanium
      • 6.2.4.2. Stainless Steel
      • 6.2.4.3. Bronze
      • 6.2.4.4. Nitinol
      • 6.2.4.5. Aluminum
      • 6.2.4.6. Cobalt
      • 6.2.4.7. Nickel
      • 6.2.4.8. Copper
      • 6.2.4.9. Precious Metals
      • 6.2.4.10. Refractory Metals
    • 6.2.5. Ceramics
  • 6.3. Advanced Materials
    • 6.3.1. Conductive Carbomorph
    • 6.3.2. Graphene
    • 6.3.3. Nanomaterials
  • 6.4. Third Party Material Infrastructure
  • 6.5. Equipment Supplier Material Infrastructure

Chapter 7. Applications

  • 7.1. Introduction
  • 7.2. Electronics/High-Tech
    • 7.2.1. Photovoltaics
    • 7.2.2. Radio Frequency Identification (RFID)
    • 7.2.3. Batteries
    • 7.2.4. LEDs
    • 7.2.5. Digital Textiles
    • 7.2.6. OLED Lighting And Displays
    • 7.2.7. Smart Windows
    • 7.2.8. Printed Sensors
  • 7.3. Medical
    • 7.3.1. Introduction
    • 7.3.2. Bones
    • 7.3.3. Dental
    • 7.3.4. Prosthetics
    • 7.3.5. Casts
    • 7.3.6. Hearing Aids
    • 7.3.7. Tissue
    • 7.3.8. Personalized Diagnostics & Drug Delivery
    • 7.3.9. Medical Microfactories
  • 7.4. Automotive
  • 7.5. Aerospace
  • 7.6. Consumer Products
  • 7.7. Military/Defense
  • 7.7. Industrial Products
  • 7.9. Educational

List of Tables

  • 2.1. SWOT Analysis of 3D Printing
  • 2.2. Force Analysis of 3D Printing
  • 3.1. Advantages And Disadvantages Of Traditional And Subtractive Manufacturing
  • 3.2. Forecast Of 3D Printing Industry By Sector 2017-2022
  • 3.3. Global 3D Printing Market Forecast By Region 2017-2022
  • 3.4. Global Forecast For 3D Consumer/Industrial Printers 2017-2022
  • 3.5. Market Share By Printing Process
  • 3.6. Service Bureaus North America
  • 3.7. Service Bureaus Europe And Asia
  • 3.8. Market Forecast For The 3d Printing Industry By Application-2017-2022
  • 5.1. Classification Of Processes And Selective Developers
  • 5.2. Equipment Suppliers, Type, And Prices
  • 6.1. Material Cost per Pound by Technology
  • 7.1. Features Of Inks For The Manufacture Of Sensors
  • 7.2. Aerospace Application and Materials

List of Figures

  • 3.1. Global Forecast For 3D Printers-2013-2022
  • 3.2. Market Share Of 3D Printing Industry By Region-2018
  • 3.3. Market Share Of 3D Printing Industry By Region-2022
  • 3.4. Global Forecast For 3D Printers-2013-2022
  • 3.5. 3D Consumer Printer Market Shares
  • 3.6. 3D Industrial Printer Market Shares
  • 3.7. Global Forecast For 3DPrinting Service Bureaus-2013-2020
  • 3.8. Global Forecast For 3D Printing Materials-2013-2020
  • 3.9. 3D Printing Material Share by Type 2018
  • 4.1. Diagram of Selective Laser Sintering (SLS)
  • 4.2. Diagram of Direct Metal Laser Sintering (DMLS)
  • 4.3. Selective Laser Melting (SLM)
  • 4.4. Diagram of Stereolithography (SLA)
  • 4.5. Diagram of Fused Deposition Modeling (FDM)
  • 4.6. Diagram of Laser Powder Forming (LPF)
  • 4.7. Diagram of PolyJet Technology
  • 4.8. Diagram of Multi Jet Fusion Technology
  • 4.9. Diagram of Digital Light Processing Technology
  • 4.10. Diagram of Material Jetting Technology
  • 7.1. 3D Printed Quantum Dot LED
  • 7.2. Current And Future Applications For 3D Printing For Automobile Applications