封面
市场调查报告书
商品编码
1568918

2024-2032年全球燃料电池堆回收再利用市场预测

Global Fuel Cell Stack Recycling and Reuse Market Forecast 2024-2032

出版日期: | 出版商: Inkwood Research | 英文 298 Pages | 商品交期: 2-3个工作天内

价格

主要发现

预计到 2032 年,全球燃料电池堆回收再利用市场将达到 5.3254 亿美元,2024-2032 年预测期间复合年增长率为 22.36%。研究考虑的基准年是2023年,估计期间是2024年至2032年。这项市场研究还定性和定量分析了 COVID-19 对燃料电池堆回收和再利用市场的影响。

燃料电池是一种电化学装置,透过与氧气反应,将燃料(通常是氢)的化学能转化为电能,产生水和热作为单独的产品。与传统内燃机不同,燃料电池提供了更清洁的能源替代方案,仅排放水蒸气而不排放有害污染物。这使得它们在交通、固定发电和便携式电源等各个领域都非常有吸引力。

燃料电池运作的核心是燃料电池堆,基本上它是燃料电池系统的核心。燃料电池堆是多个单独的燃料电池堆迭在一起以产生更高功率的电力。每个燃料电池都包含一个发生电化学反应的膜电极组件 (MEA),由管理反应物流和电气连接的双极板隔开。中东和非洲的主要材料是铂族金属(PGM),尤其是铂,它在反应过程中充当催化剂。其他重要部件包括不銹钢和铝等材料,它们可提供结构稳定性。

由于燃料电池堆对铂等稀有且昂贵的金属的依赖,其回收和再利用已成为该行业的重点关注点。回收可以回收有价值的材料并减少对环境的影响,同时支持氢技术的可持续发展。随着氢经济的发展,企业越来越多地投资于这些关键部件的回收和再利用,以确保成本效率和资源安全。

市场洞察

全球燃料电池堆回收再利用市场成长的主要驱动力

  • 贵金属的稀有性
  • 各行业越来越多采用燃料电池汽车
  • 回收法的技术进步

燃料电池堆回收方面的技术进步对于提高这个不断发展的行业的可持续性至关重要。溶剂型回收製程和先进熔炼技术的开发等创新使得更有效地回收有价值的材料成为可能,特别是铂金和钯等铂族金属 (PGM)。

像 Umicore 这样的公司正在引入高温火法冶金工艺,其中加入钙盐来安全地捕获氟化氢等有害副产品,使回收过程更安全、更环保。这些工艺可以回收金属和非金属成分,减少对原始材料的需求并支持循环经济方法。

此外,庄信万丰等行业领导者开发的基于溶剂和表面活性剂的方法等替代方法提供了有前景的解决方案,无需焚烧。这些进步将使铂催化剂和其他材料从燃料电池膜中分离出来并重新利用,大大增加燃料电池回收的可行性。

此类创新不仅提高了材料回收率,还减少了与传统回收方法相关的环境影响,并帮助该行业满足对永续燃料电池技术不断增长的需求。

全球燃料电池堆回收再利用市场的主要成长阻碍因素

  • 回收成本高昂
  • 燃料电池回收的技术复杂性

燃料电池中复杂的设计和复杂材料的使用给拆卸带来了课题,也是高效回收的主要障碍。

成分的分离,尤其是铂催化剂,通常需要特殊的工艺,既耗时又昂贵,给回收工作带来了额外的课题。

燃料电池堆回收再利用的全球市场 | 主要趋势

  • 燃料电池製造商越来越多地采用创新方法来提高回收效率和成本效益。主要进步之一是燃料电池的模组化设计,这使得它们在生命週期结束时可以轻鬆拆卸。模组化组件可以更有效地回收铂族金属等关键材料,从而简化回收过程。
  • 政府法规和政策对于推动燃料电池回收技术的采用发挥着至关重要的作用。严格的环境法规和绿色技术激励措施相结合,正在推动企业专注于材料回收和减少废物。

细分分析

市场细分:按类型、按回收工艺、按最终用途行业

市场类型

  • 聚合物电解质燃料电池(PEMFC)
  • 固态氧化物燃料电池(SOFC)
  • 熔融碳酸盐燃料电池 (MCFC)
  • 磷酸燃料电池(PAFC)
  • 其他类型

依回收过程划分的市场

  • 干回收
  • 湿式冶金回收

湿式冶金製程使用水基化学物质从废燃料电池堆中回收有价值的金属。该过程通常涉及浸出,其中酸或其他溶剂溶解金属成分,然后透过沉淀、溶剂萃取和静电纺丝等步骤分离和纯化金属。

与依赖高温的火法冶炼不同,湿式冶炼在低温下进行,因此消耗的能源较少。该过程可以选择性地针对特定金属,例如铂、钯和燃料电池中常见的其他有价值的材料,使其成为回收这些有价值资源的有效方法。

由于其对环境影响小且金属回收效率高,湿式冶金製程在氢燃料电池回收中越来越受欢迎。由于化学环境可以精确控制,回收的金属纯度高,产率高。

此外,所需能源较低,使得湿式冶金方法具有成本效益,特别是随着对永续回收解决方案的需求增加。此製程产生的有害排放也比火法冶金更少,并且更符合环境法规和永续发展目标。

  • 机械回收
  • 其他回收流程

依最终用途行业划分的市场

  • 交通
  • 固定发电
  • 便携式发电

区域分析

基于四大区域的区域调查

  • 北美洲:美国、加拿大
  • 欧洲 德国、英国、法国、义大利、西班牙、波兰、比利时、其他欧洲
  • 亚太地区:中国、日本、韩国、澳洲/纽西兰、印度、新加坡、马来西亚和其他亚太地区。

亚太地区,尤其是日本、韩国和中国,处于燃料电池技术采用的前沿。燃料电池汽车 (FCV) 和固定电力系统的激增增加了对有效回收流程来管理废弃燃料电池循环的需求。

中国处于领先地位,尤其是在氢能汽车领域,长城汽车等公司将回收製程纳入其氢战略。到 2025 年,中国的目标是在国内基础设施的支持下,拥有超过 10,000 辆燃料电池汽车,以回收废弃燃料电池并回收铂等关键材料。

  • 世界其他地区:拉丁美洲、中东/非洲

竞争考量

全球燃料电池堆回收再利用市场的主要参与者

  • 巴拉德动力系统公司
  • 康明斯公司
  • 布鲁姆能源公司
  • 斗山公司
  • 甘农和斯科特公司
  • 庄信万丰公司

这些公司采取的主要策略

  • 2023 年,NedStack 与 ZBT 合作,共同开发氢燃料电池技术并实现产业化,旨在显着增强两家公司的能力。此次合作是 2027 年将燃料电池製造能力扩大到 1 吉瓦 (GW) 电堆策略努力的一部分。该合作伙伴关係利用了 ZBT 的燃料电池研究和测试专业知识以及 Nedstack 的先进製造基础设施,重点是开发用于固定和海上应用的固态聚合物 (PEM) 燃料电池。
  • 庄信万丰凭藉其 HyRefine 技术在燃料电池堆回收和再利用市场取得了重大进展。这项创新製程于 2023 年 11 月在实验室规模上宣布,可有效回收废燃料电池和电解槽中的铂族金属 (PGM) 和离聚物。这是世界上首次尝试实现这些关键部件的循环利用。回收材料也已被证明可以与新材料的性能相匹配,提供显着的可持续性效益并支持循环氢经济。

我们提供 10% 免费客製化和 3 个月的分析师支援。

常见问题(FAQ):

  • 燃料电池堆回收再利用的市场规模和成长率预测是多少?
  • 答:到 2032 年,全球燃料电池堆回收再利用市场预计将达到 5.3254 亿美元,预测期内复合年增长率为 22.36%。
  • 燃料电池堆回收回收的主要材料有哪些?

答:铂族金属 (PGM)、钯 (Pd) 和铑 (Rh) 等铂族金属、不銹钢、铝以及燃料电池堆中使用的其他结构材料在回收过程中得到回收。

  • 全球燃料电池堆回收再利用市场成长最快的地区在哪里?

答:亚太地区是全球燃料电池堆回收再利用市场成长最快的地区。

目录

第1章 调查范围和调查手法

第2章 摘要整理

  • 市场规模·估计
  • 市场概要
  • 调查范围
  • 危机情势分析
  • 主要市场调查结果

第3章 市场动态

  • 主要的促进因素
    • 贵金属的稀有性
    • 各行业越来越多采用燃料电池汽车
    • 回收法的技术进步
  • 主要的阻碍因素
    • 回收成本高昂
    • 燃料电池回收的技术复杂性

第4章 主要分析

  • 亲市场分析
  • 主要市场趋势
    • 开发适合回收的製造技术
    • 法规促进燃料电池回收并鼓励对材料回收和永续技术的投资
  • 波特的五力分析
  • 成长预测製图
    • 北美的成长预测製图
    • 欧洲的成长展望製图
    • 亚太地区的成长展望製图
    • 全球其他地区的成长前景图
  • 市场成熟度分析
  • 市场集中度分析
  • 价值链分析
  • 主要购买标准
    • 成本效益
    • 对环境的影响
    • 法规遵守
    • 技术和流程的效率性
    • 可靠性和一贯性
  • 燃料电池堆回收再利用市场监管框架

第5章 各类型市场

  • 固体高分子形燃料电池(PEMFC)
    • 市场预测图
    • 市场区隔分析
  • 固体氧化物燃料电池(SOFC)
    • 市场预测图
    • 市场区隔分析
  • 溶融碳酸盐燃料电池(MCFC)
    • 市场预测图
    • 市场区隔分析
  • 磷酸型燃料电池(PAFC)
    • 市场预测图
    • 市场区隔分析
  • 其他的类型
    • 市场预测图
    • 市场区隔分析

第6章 回收各流程市场

  • 干式回收
    • 市场预测图
    • 市场区隔分析
  • 湿式冶金回收
    • 市场预测图
    • 市场区隔分析
  • 机器式回收
    • 市场预测图
    • 市场区隔分析
  • 其他的回收流程
    • 市场预测图
    • 市场区隔分析

第7章 各最终用途产业市场

  • 运输
    • 市场预测图
    • 市场区隔分析
  • 固定式发电
    • 市场预测图
    • 市场区隔分析
  • 可携式发电
    • 市场预测图
    • 市场区隔分析

第8章 地区分析

  • 北美
    • 美国
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 波兰
    • 比利时
    • 其他欧洲
  • 亚太地区
    • 中国
    • 日本
    • 韩国
    • 澳洲·纽西兰
    • 印度
    • 新加坡
    • 马来西亚
    • 其他亚太地区
  • 全球其他地区
    • 南美
    • 中东·非洲

第9章 竞争情形

  • 主要策略的发展
    • MERGERS & ACQUISITIONS
    • PRODUCT LAUNCHES & DEVELOPMENTS
    • PARTNERSHIPS & AGREEMENTS
    • BUSINESS EXPANSIONS & DIVESTITURES
  • 企业简介
    • BALLARD POWER
    • BLOOM ENERGY
    • CUMINS INC
    • DOOSAN CORPORATION
    • GANNON & SCOTT
    • HENSEL RECYCLING
    • JOHNSON MATTHEY
    • NEDSTACK FUEL CELL TECHNOLOGY BV
    • PLUG POWER INC
    • ROBERT BOSCH GMBH
Product Code: 94848

KEY FINDINGS

The global fuel cell stack recycling and reuse market is expected to reach $532.54 million by 2032, growing at a CAGR of 22.36% during the forecast period, 2024-2032. The base year considered for the study is 2023, and the estimated period is between 2024 and 2032. The market study has also analyzed the impact of COVID-19 on the fuel cell stack recycling and reuse market qualitatively and quantitatively.

A fuel cell is an electrochemical device that converts chemical energy from a fuel, typically hydrogen, into electricity through a reaction with oxygen, with water and heat as by-products. Unlike traditional combustion engines, fuel cells offer a cleaner energy alternative, emitting only water vapor instead of harmful pollutants. This makes them highly attractive for various sectors, including transportation, stationary power generation, and portable power applications.

Central to the operation of a fuel cell is the fuel cell stack, which is essentially the heart of the fuel cell system. A fuel cell stack consists of multiple individual fuel cells layered together to generate a higher output of electricity. Each fuel cell contains a membrane electrode assembly (MEA), where the electrochemical reactions take place, separated by bipolar plates that manage the flow of reactants and electrical connections. The key materials involved in the MEA are platinum group metals (PGMs), especially platinum, which serve as catalysts in the reaction process. Other critical components include materials like stainless steel and aluminum that provide structural stability.

Given the reliance on rare and expensive metals like platinum, the recycling and reuse of fuel cell stacks have become a critical focus for the industry. Recycling recovers valuable materials and reduces environmental impacts, while supporting the sustainable scaling of hydrogen technologies. As the hydrogen economy grows, companies are increasingly investing in the recovery and reuse of these key components to ensure cost-efficiency and resource security.

MARKET INSIGHTS

Key enablers of the global fuel cell stack recycling and reuse market growth:

  • Scarcity of precious metals
  • Rising adoption of fuel cell vehicles across industries
  • Technological advancements in recycling methods

Technological advancements in recycling methods for fuel cell stacks are critical to enhancing the sustainability of this growing industry. Innovations such as the development of solvent-based recycling processes and advanced smelting techniques have allowed for more efficient recovery of valuable materials, particularly platinum group metals (PGMs) like platinum and palladium.

Companies like Umicore have implemented high-temperature pyrometallurgical processes, which incorporate calcium salts to safely capture hazardous by-products like hydrogen fluoride, making the recycling process safer and more environmentally friendly. These processes enable the recovery of both metals and non-metallic components, reducing the need for virgin materials and supporting a circular economy approach.

Moreover, alternative methods such as solvent and surfactant-based approaches, as developed by industry leaders like Johnson Matthey, offer promising solutions that avoid the need for incineration. These advancements allow for the separation and reuse of platinum catalysts and other materials from fuel cell membranes, significantly enhancing the viability of fuel cell recycling.

Such innovations not only improve material recovery rates but also reduce the environmental impact associated with traditional recycling methods, positioning the industry to meet the rising demand for sustainable fuel cell technologies.

Key growth restraining factors of the global fuel cell stack recycling and reuse market:

  • High costs associated with recycling
  • Technical complexity of recycling fuel cells

The intricate design and the use of complex materials in fuel cells create challenges for disassembly, posing a major obstacle to efficient recycling.

Separating the components, particularly the platinum catalyst, involves specialized processes that are often time-consuming and expensive, adding further difficulty to recycling efforts.

Global Fuel Cell Stack Recycling and Reuse Market | Top Trends

  • Fuel cell manufacturers are increasingly adopting innovative approaches to make recycling more efficient and cost-effective. One key advancement is the modular design of fuel cells, which allows for easier disassembly at the end of their lifecycle. Modular components simplify the recycling process by enabling the recovery of critical materials, such as platinum group metals, with greater efficiency.
  • Government regulations and policies are playing a pivotal role in driving the adoption of fuel cell recycling technologies. Stringent environmental regulations, coupled with incentives for green technologies, are pushing companies to focus on material recovery and the reduction of waste

SEGMENTATION ANALYSIS

Market Segmentation - Type, Recycling Process, and End Use Industry -

Market by Type:

  • Proton Exchange Membrane Fuel Cells (PEMFCs)
  • Solid Oxide Fuel Cells (SOFCs)
  • Molten Carbonate Fuel Cells (MCFCs)
  • Phosphoric Acid Fuel Cells (PAFCs)
  • Other Types

Market by Recycling Process:

  • Pyrometallurgical Recycling
  • Hydrometallurgical Recycling

The hydrometallurgical process involves the use of aqueous chemistry to recover valuable metals from spent fuel cell stacks. This process typically includes leaching, where acids or other solvents dissolve the metal components, followed by steps like precipitation, solvent extraction, and electro-winning to isolate and purify the metals.

Unlike pyrometallurgy, which relies on high temperatures, hydrometallurgy operates at lower temperatures, making it less energy-intensive. The process is capable of selectively targeting specific metals, such as platinum, palladium, and other precious materials commonly found in fuel cells, making it an effective method for recovering these valuable resources.

Hydrometallurgical processes are more popular in hydrogen fuel cell recycling due to their lower environmental impact and greater efficiency in metal recovery. The ability to precisely control the chemical environment allows for higher purity and better yields of recovered metals.

Additionally, the lower energy requirements make hydrometallurgy more cost-effective, especially as the demand for sustainable recycling solutions grows. The process also generates fewer hazardous emissions compared to pyrometallurgy, aligning better with environmental regulations and sustainability goals

  • Mechanical Recycling
  • Other Recycling Processes

Market by End Use Industry:

  • Transportation
  • Stationary Power Generation
  • Portable Power Generation

REGIONAL ANALYSIS

Geographical Study Based on Four Major Regions:

  • North America: The United States and Canada
  • Europe: Germany, the United Kingdom, France, Italy, Spain, Poland, Belgium, and Rest of Europe
  • Asia-Pacific: China, Japan, South Korea, Australia & New Zealand, India, Singapore, Malaysia, and Rest of Asia-Pacific.

The Asia-Pacific, particularly countries like Japan, South Korea, and China, is at the forefront of adopting fuel cell technology. This widespread deployment of fuel cell vehicles (FCVs) and stationary power systems leads to a growing need for efficient recycling processes to manage the end-of-life cycle of these cells.

China is leading the charge, particularly in the hydrogen vehicle sector, with companies like Great Wall Motor integrating recycling processes into their hydrogen strategy. By 2025, the country aims to have over 10,000 fuel cell vehicles on the road, underpinned by domestic infrastructure for recycling end-of-life fuel cells and recovering critical materials such as platinum.

  • Rest of World: Latin America, the Middle East & Africa

COMPETITIVE INSIGHTS

Major players in the global fuel cell stack recycling and reuse market:

  • Ballard Power Systems Inc
  • Cummins Inc
  • Bloom Energy Corporation
  • Doosan Corporation
  • Gannon & Scott Inc
  • Johnson Matthey Plc

Key strategies adopted by some of these companies:

  • In 2023, Nedstack partnered with ZBT to co-develop and industrialize hydrogen fuel cell technology, aiming to enhance their capabilities significantly. This collaboration is part of a strategic effort to scale up their fuel cell manufacturing capacity to a 1-gigawatt (GW) stack power rating by 2027. The partnership leverages ZBT's expertise in fuel cell research and testing alongside Nedstack's advanced manufacturing infrastructure, with a focus on developing Proton Exchange Membrane (PEM) fuel cells for stationary and maritime applications.
  • Johnson Matthey has demonstrated a significant advancement in the fuel cell stack recycling and reuse market with its HyRefine technology. This innovative process, shown at a lab scale in November 2023, effectively recycles both platinum group metals (PGMs) and ionomers from spent fuel cells and electrolyzers. This marks a world-first in achieving circularity for these critical components. Also, the recycled materials have been proven to match the performance of new materials, offering substantial sustainability benefits and supporting a circular hydrogen economy.

We Offer 10% Free Customization and 3 Months Analyst Support

Frequently Asked Questions (FAQs):

  • What is the projected fuel cell stack recycling and reuse market size and growth rate?
  • A: The global fuel cell stack recycling and reuse market is expected to reach $532.54 million by 2032, growing at a CAGR of 22.36% during the forecast period.
  • What are the key materials recovered in fuel cell stack recycling?

A: Platinum group metals (PGMs) and other PGMs like palladium (Pd) and rhodium (Rh), as well as stainless steel, aluminum, and other structural materials used in the fuel cell stack, are recovered during the recycling process.

  • Which is the fastest-growing region in the global fuel cell stack recycling and reuse market?

A: Asia-Pacific is the fastest-growing region in the global fuel cell stack recycling and reuse market.

TABLE OF CONTENTS

1. RESEARCH SCOPE & METHODOLOGY

  • 1.1. STUDY OBJECTIVES
  • 1.2. METHODOLOGY
  • 1.3. ASSUMPTIONS & LIMITATIONS

2. EXECUTIVE SUMMARY

  • 2.1. MARKET SIZE & ESTIMATES
  • 2.2. MARKET OVERVIEW
  • 2.3. SCOPE OF STUDY
  • 2.4. CRISIS SCENARIO ANALYSIS
    • 2.4.1. IMPACT OF COVID-19 ON THE FUEL CELL STACK RECYCLING AND REUSE MARKET
  • 2.5. MAJOR MARKET FINDINGS
    • 2.5.1. STANDARDIZATION AND DESIGN FOR RECYCLING
    • 2.5.2. PROTON EXCHANGE MEMBRANE FUEL CELLS ARE THE MOST COMMONLY RECYCLED AND REUSED TYPE OF FUEL CELL
    • 2.5.3. PYROMETALLURGICAL RECYCLING IS THE PRIMARY PROCESS UTILIZED FOR FUEL CELL STACK RECYCLING AND REUSE
    • 2.5.4. TRANSPORTATION IS THE LEADING END USE INDUSTRY FOR FUEL CELL STACK RECYCLING AND REUSE

3. MARKET DYNAMICS

  • 3.1. KEY DRIVERS
    • 3.1.1. SCARCITY OF PRECIOUS METALS
    • 3.1.2. RISING ADOPTION OF FUEL CELL VEHICLES ACROSS INDUSTRIES
    • 3.1.3. TECHNOLOGICAL ADVANCEMENTS IN RECYCLING METHODS
  • 3.2. KEY RESTRAINTS
    • 3.2.1. HIGH COSTS ASSOCIATED WITH RECYCLING
    • 3.2.2. TECHNICAL COMPLEXITY OF RECYCLING FUEL CELLS

4. KEY ANALYTICS

  • 4.1. PARENT MARKET ANALYSIS
  • 4.2. KEY MARKET TRENDS
    • 4.2.1. DEVELOPMENT OF RECYCLING-FRIENDLY MANUFACTURING TECHNOLOGIES
    • 4.2.2. REGULATIONS DRIVE FUEL CELL RECYCLING, ENCOURAGING MATERIAL RECOVERY AND SUSTAINABLE TECH INVESTMENTS
  • 4.3. PORTER'S FIVE FORCES ANALYSIS
    • 4.3.1. BUYERS POWER
    • 4.3.2. SUPPLIERS POWER
    • 4.3.3. SUBSTITUTION
    • 4.3.4. NEW ENTRANTS
    • 4.3.5. INDUSTRY RIVALRY
  • 4.4. GROWTH PROSPECT MAPPING
    • 4.4.1. GROWTH PROSPECT MAPPING FOR NORTH AMERICA
    • 4.4.2. GROWTH PROSPECT MAPPING FOR EUROPE
    • 4.4.3. GROWTH PROSPECT MAPPING FOR ASIA-PACIFIC
    • 4.4.4. GROWTH PROSPECT MAPPING FOR REST OF WORLD
  • 4.5. MARKET MATURITY ANALYSIS
  • 4.6. MARKET CONCENTRATION ANALYSIS
  • 4.7. VALUE CHAIN ANALYSIS
    • 4.7.1. RAW MATERIAL PROCUREMENT
    • 4.7.2. FUEL CELL MANUFACTURING
    • 4.7.3. FUEL CELL USAGE
    • 4.7.4. END-OF-LIFE MANAGEMENT
    • 4.7.5. DISMANTLING & RECYCLING
    • 4.7.6. SECONDARY MARKET AND REUSE
    • 4.7.7. DISPOSAL OF NON-RECYCLABLE MATERIALS
  • 4.8. KEY BUYING CRITERIA
    • 4.8.1. COST EFFECTIVENESS
    • 4.8.2. ENVIRONMENTAL IMPACT
    • 4.8.3. REGULATORY COMPLIANCE
    • 4.8.4. TECHNOLOGY AND PROCESS EFFICIENCY
    • 4.8.5. RELIABILITY AND CONSISTENCY
  • 4.9. FUEL CELL STACK RECYCLING AND REUSE MARKET REGULATORY FRAMEWORK

5. MARKET BY TYPE

  • 5.1. PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFCS)
    • 5.1.1. MARKET FORECAST FIGURE
    • 5.1.2. SEGMENT ANALYSIS
  • 5.2. SOLID OXIDE FUEL CELLS (SOFCS)
    • 5.2.1. MARKET FORECAST FIGURE
    • 5.2.2. SEGMENT ANALYSIS
  • 5.3. MOLTEN CARBONATE FUEL CELLS (MCFCS)
    • 5.3.1. MARKET FORECAST FIGURE
    • 5.3.2. SEGMENT ANALYSIS
  • 5.4. PHOSPHORIC ACID FUEL CELLS (PAFCS)
    • 5.4.1. MARKET FORECAST FIGURE
    • 5.4.2. SEGMENT ANALYSIS
  • 5.5. OTHER TYPES
    • 5.5.1. MARKET FORECAST FIGURE
    • 5.5.2. SEGMENT ANALYSIS

6. MARKET BY RECYCLING PROCESS

  • 6.1. PYROMETALLURGICAL RECYCLING
    • 6.1.1. MARKET FORECAST FIGURE
    • 6.1.2. SEGMENT ANALYSIS
  • 6.2. HYDROMETALLURGICAL RECYCLING
    • 6.2.1. MARKET FORECAST FIGURE
    • 6.2.2. SEGMENT ANALYSIS
  • 6.3. MECHANICAL RECYCLING
    • 6.3.1. MARKET FORECAST FIGURE
    • 6.3.2. SEGMENT ANALYSIS
  • 6.4. OTHER RECYCLING PROCESSES
    • 6.4.1. MARKET FORECAST FIGURE
    • 6.4.2. SEGMENT ANALYSIS

7. MARKET BY END USE INDUSTRY

  • 7.1. TRANSPORTATION
    • 7.1.1. MARKET FORECAST FIGURE
    • 7.1.2. SEGMENT ANALYSIS
  • 7.2. STATIONARY POWER GENERATION
    • 7.2.1. MARKET FORECAST FIGURE
    • 7.2.2. SEGMENT ANALYSIS
  • 7.3. PORTABLE POWER GENERATION
    • 7.3.1. MARKET FORECAST FIGURE
    • 7.3.2. SEGMENT ANALYSIS

8. GEOGRAPHICAL ANALYSIS

  • 8.1. NORTH AMERICA
    • 8.1.1. MARKET SIZE & ESTIMATES
    • 8.1.2. NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET DRIVERS
    • 8.1.3. NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET CHALLENGES
    • 8.1.4. KEY PLAYERS IN NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET
    • 8.1.5. COUNTRY ANALYSIS
      • 8.1.5.1. UNITED STATES
      • 8.1.5.1.1. UNITED STATES FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.1.5.2. CANADA
      • 8.1.5.2.1. CANADA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
  • 8.2. EUROPE
    • 8.2.1. MARKET SIZE & ESTIMATES
    • 8.2.2. EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET DRIVERS
    • 8.2.3. EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET CHALLENGES
    • 8.2.4. KEY PLAYERS IN EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET
    • 8.2.5. COUNTRY ANALYSIS
      • 8.2.5.1. GERMANY
      • 8.2.5.1.1. GERMANY FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.2. UNITED KINGDOM
      • 8.2.5.2.1. UNITED KINGDOM FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.3. FRANCE
      • 8.2.5.3.1. FRANCE FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.4. ITALY
      • 8.2.5.4.1. ITALY FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.5. SPAIN
      • 8.2.5.5.1. SPAIN FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.6. POLAND
      • 8.2.5.6.1. POLAND FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.7. BELGIUM
      • 8.2.5.7.1. BELGIUM FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.8. REST OF EUROPE
      • 8.2.5.8.1. REST OF EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
  • 8.3. ASIA-PACIFIC
    • 8.3.1. MARKET SIZE & ESTIMATES
    • 8.3.2. ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET DRIVERS
    • 8.3.3. ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET CHALLENGES
    • 8.3.4. KEY PLAYERS IN ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET
    • 8.3.5. COUNTRY ANALYSIS
      • 8.3.5.1. CHINA
      • 8.3.5.1.1. CHINA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.2. JAPAN
      • 8.3.5.2.1. JAPAN FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.3. SOUTH KOREA
      • 8.3.5.3.1. SOUTH KOREA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.4. AUSTRALIA & NEW ZEALAND
      • 8.3.5.4.1. AUSTRALIA & NEW ZEALAND FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.5. INDIA
      • 8.3.5.5.1. INDIA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.6. SINGAPORE
      • 8.3.5.6.1. SINGAPORE FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.7. MALAYSIA
      • 8.3.5.7.1. MALAYSIA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.8. REST OF ASIA-PACIFIC
      • 8.3.5.8.1. REST OF ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
  • 8.4. REST OF WORLD
    • 8.4.1. MARKET SIZE & ESTIMATES
    • 8.4.2. REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET DRIVERS
    • 8.4.3. REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET CHALLENGES
    • 8.4.4. KEY PLAYERS IN REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET
    • 8.4.5. REGIONAL ANALYSIS
      • 8.4.5.1. LATIN AMERICA
      • 8.4.5.1.1. LATIN AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.4.5.2. MIDDLE EAST & AFRICA
      • 8.4.5.2.1. MIDDLE EAST & AFRICA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES

9. COMPETITIVE LANDSCAPE

  • 9.1. KEY STRATEGIC DEVELOPMENTS
    • 9.1.1. MERGERS & ACQUISITIONS
    • 9.1.2. PRODUCT LAUNCHES & DEVELOPMENTS
    • 9.1.3. PARTNERSHIPS & AGREEMENTS
    • 9.1.4. BUSINESS EXPANSIONS & DIVESTITURES
  • 9.2. COMPANY PROFILES
    • 9.2.1. BALLARD POWER
      • 9.2.1.1. COMPANY OVERVIEW
      • 9.2.1.2. PRODUCTS
      • 9.2.1.3. STRENGTHS & CHALLENGES
    • 9.2.2. BLOOM ENERGY
      • 9.2.2.1. COMPANY OVERVIEW
      • 9.2.2.2. PRODUCTS
      • 9.2.2.3. STRENGTHS & CHALLENGES
    • 9.2.3. CUMINS INC
      • 9.2.3.1. COMPANY OVERVIEW
      • 9.2.3.2. PRODUCTS
      • 9.2.3.3. STRENGTHS & CHALLENGES
    • 9.2.4. DOOSAN CORPORATION
      • 9.2.4.1. COMPANY OVERVIEW
      • 9.2.4.2. PRODUCTS
      • 9.2.4.3. STRENGTHS & CHALLENGES
    • 9.2.5. GANNON & SCOTT
      • 9.2.5.1. COMPANY OVERVIEW
      • 9.2.5.2. PRODUCTS
      • 9.2.5.3. STRENGTHS & CHALLENGES
    • 9.2.6. HENSEL RECYCLING
      • 9.2.6.1. COMPANY OVERVIEW
      • 9.2.6.2. PRODUCTS
      • 9.2.6.3. STRENGTHS & CHALLENGES
    • 9.2.7. JOHNSON MATTHEY
      • 9.2.7.1. COMPANY OVERVIEW
      • 9.2.7.2. PRODUCTS
      • 9.2.7.3. STRENGTHS & CHALLENGES
    • 9.2.8. NEDSTACK FUEL CELL TECHNOLOGY BV
      • 9.2.8.1. COMPANY OVERVIEW
      • 9.2.8.2. PRODUCTS
      • 9.2.8.3. STRENGTHS & CHALLENGES
    • 9.2.9. PLUG POWER INC
      • 9.2.9.1. COMPANY OVERVIEW
      • 9.2.9.2. PRODUCTS
      • 9.2.9.3. STRENGTHS & CHALLENGES
    • 9.2.10. ROBERT BOSCH GMBH
      • 9.2.10.1. COMPANY OVERVIEW
      • 9.2.10.2. PRODUCTS
      • 9.2.10.3. STRENGTHS & CHALLENGES

LIST OF TABLES

  • TABLE 1: MARKET SNAPSHOT - FUEL CELL STACK RECYCLING
  • TABLE 2: REGULATORY FRAMEWORK
  • TABLE 3: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY TYPE, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 4: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY TYPE, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 5: GLOBAL PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFCS) MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 6: GLOBAL PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFCS) MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 7: GLOBAL SOLID OXIDE FUEL CELLS (SOFCS) MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 8: GLOBAL SOLID OXIDE FUEL CELLS (SOFCS) MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 9: GLOBAL MOLTEN CARBONATE FUEL CELLS (MCFCS) MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 10: GLOBAL MOLTEN CARBONATE FUEL CELLS (MCFCS) MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 11: GLOBAL PHOSPHORIC ACID FUEL CELLS (PAFCS) MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 12: GLOBAL PHOSPHORIC ACID FUEL CELLS (PAFCS) MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 13: GLOBAL OTHER TYPES MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 14: GLOBAL OTHER TYPES MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 15: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY RECYCLING PROCESS, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 16: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY RECYCLING PROCESS, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 17: GLOBAL PYROMETALLURGICAL RECYCLING MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 18: GLOBAL PYROMETALLURGICAL RECYCLING MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 19: GLOBAL HYDROMETALLURGICAL RECYCLING MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 20: GLOBAL HYDROMETALLURGICAL RECYCLING MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 21: GLOBAL MECHANICAL RECYCLING MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 22: GLOBAL MECHANICAL RECYCLING MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 23: GLOBAL OTHER RECYCLING PROCESSES MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 24: GLOBAL OTHER RECYCLING PROCESSES MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 25: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY END USE INDUSTRY, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 26: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY END USE INDUSTRY, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 27: GLOBAL TRANSPORTATION MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 28: GLOBAL TRANSPORTATION MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 29: GLOBAL STATIONARY POWER GENERATION MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 30: GLOBAL STATIONARY POWER GENERATION MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 31: GLOBAL PORTABLE POWER GENERATION MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 32: GLOBAL PORTABLE POWER GENERATION MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 33: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY GEOGRAPHY, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 34: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY GEOGRAPHY, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 35: NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 36: NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 37: KEY PLAYERS OPERATING IN NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET
  • TABLE 38: EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 39: EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, FORECAST YEARS, 2020-2032 (IN $ MILLION)
  • TABLE 40: KEY PLAYERS OPERATING IN EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET
  • TABLE 41: ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 42: ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 43: KEY PLAYERS OPERATING IN ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET
  • TABLE 44: REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 45: REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 46: KEY PLAYERS OPERATING IN REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET
  • TABLE 47: LIST OF MERGERS & ACQUISITIONS
  • TABLE 48: LIST OF PRODUCT LAUNCHES & DEVELOPMENTS
  • TABLE 49: LIST OF PARTNERSHIPS & AGREEMENTS
  • TABLE 50: LIST OF BUSINESS EXPANSIONS & DIVESTITURES

LIST OF FIGURES

  • FIGURE 1: KEY MARKET TRENDS
  • FIGURE 2: PORTER'S FIVE FORCES ANALYSIS
  • FIGURE 3: GROWTH PROSPECT MAPPING FOR NORTH AMERICA
  • FIGURE 4: GROWTH PROSPECT MAPPING FOR EUROPE
  • FIGURE 5: GROWTH PROSPECT MAPPING FOR ASIA-PACIFIC
  • FIGURE 6: GROWTH PROSPECT MAPPING FOR REST OF WORLD
  • FIGURE 7: MARKET MATURITY ANALYSIS
  • FIGURE 8: MARKET CONCENTRATION ANALYSIS
  • FIGURE 9: VALUE CHAIN ANALYSIS
  • FIGURE 10: KEY BUYING CRITERIA
  • FIGURE 11: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, GROWTH POTENTIAL, BY TYPE, IN 2023
  • FIGURE 12: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFCS), 2024-2032 (IN $ MILLION)
  • FIGURE 13: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY SOLID OXIDE FUEL CELLS (SOFCS), 2024-2032 (IN $ MILLION)
  • FIGURE 14: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY MOLTEN CARBONATE FUEL CELLS (MCFCS), 2024-2032 (IN $ MILLION)
  • FIGURE 15: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY PHOSPHORIC ACID FUEL CELLS (PAFCS), 2024-2032 (IN $ MILLION)
  • FIGURE 16: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY OTHER TYPES, 2024-2032 (IN $ MILLION)
  • FIGURE 17: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, GROWTH POTENTIAL, BY RECYCLING PROCESS, IN 2023
  • FIGURE 18: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY PYROMETALLURGICAL RECYCLING, 2024-2032 (IN $ MILLION)
  • FIGURE 19: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY HYDROMETALLURGICAL RECYCLING, 2024-2032 (IN $ MILLION)
  • FIGURE 20: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY MECHANICAL RECYCLING, 2024-2032 (IN $ MILLION)
  • FIGURE 21: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY OTHER RECYCLING PROCESSES, 2024-2032 (IN $ MILLION)
  • FIGURE 22: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, GROWTH POTENTIAL, BY END USE INDUSTRY, IN 2023
  • FIGURE 23: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY TRANSPORTATION, 2024-2032 (IN $ MILLION)
  • FIGURE 24: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY STATIONARY POWER GENERATION, 2024-2032 (IN $ MILLION)
  • FIGURE 25: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY PORTABLE POWER GENERATION, 2024-2032 (IN $ MILLION)
  • FIGURE 26: NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET, COUNTRY OUTLOOK, 2023 & 2032 (IN %)
  • FIGURE 27: UNITED STATES FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 28: CANADA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 29: EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET, COUNTRY OUTLOOK, 2023 & 2032 (IN %)
  • FIGURE 30: GERMANY FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 31: UNITED KINGDOM FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 32: FRANCE FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 33: ITALY FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 34: SPAIN FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 35: POLAND FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 36: BELGIUM FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 37: REST OF EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 38: ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET, COUNTRY OUTLOOK, 2023 & 2032 (IN%)
  • FIGURE 39: CHINA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 40: JAPAN FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 41: SOUTH KOREA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 42: AUSTRALIA & NEW ZEALAND FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 43: INDIA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 44: SINGAPORE FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 45: MALAYSIA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 46: REST OF ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 47: REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET, REGIONAL OUTLOOK, 2023 & 2032 (IN %)
  • FIGURE 48: LATIN AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 49: MIDDLE EAST & AFRICA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)