封面
市场调查报告书
商品编码
1589330

深度学习晶片组市场:按类型、最终用户划分 - 2025-2030 年全球预测

Deep Learning Chipset Market by Type (Application Specific Integrated Circuits, Central Processing Units, Field Programmable Gate Arrays), End-User (Aerospace & Defense, Automotive, Consumer Electronics) - Global Forecast 2025-2030

出版日期: | 出版商: 360iResearch | 英文 182 Pages | 商品交期: 最快1-2个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

2023年深度学习晶片组市场规模预计为102.3亿美元,预计2024年将达到118.2亿美元,复合年增长率为15.69%,预计到2030年将达到283.9亿美元。

深度学习晶片组市场涵盖人工智慧和硬体工程的动态交叉,推动运算效率、速度和功率的进步。这些晶片组(包括 GPU、TPU、神经型态晶片和 FPGA)可在汽车、医疗保健、金融和消费电子等多种行业中实现即时资料处理、复杂问题解决和自动化,为您的应用提供支援。对人工智慧主导解决方案不断增长的需求凸显了对深度学习晶片组的需求,这些解决方案可提高决策、预测分析和业务效率。最终用途范围广泛,涵盖自动驾驶系统、医学影像、个人化金融服务和智慧型设备,并受到物联网技术扩散和机器学习演算法进步的推动。对关键成长要素的考察表明,终端用户产业对人工智慧的采用增加、人工智慧研发投资的增加以及智慧基础设施的兴起正在产生关键影响。新的商机在于优化晶片结构以提高能源效率和速度,以及扩大深度学习和量子运算之间的相互作用,这有望使处理能力呈指数级增长。然而,市场面临开发成本高、技术复杂性以及需要可扩展基础设施来支援高阶人工智慧工作负载等挑战。此外,人们也担心资料隐私和安全,这可能会影响市场信誉。创新的关键领域包括改进特定人工智慧应用的晶片设计、提高训练神经网路的有效性,以及将深度学习功能融入提供利基市场和差异化潜力的边缘设备中。为了实现业务成长,公司应专注于利用协作伙伴关係关係的敏捷策略,并投资于开发尖端晶片设计和人工智慧部署的技能。这是一个竞争激烈但前景广阔的市场,适合解决人工智慧革命的技术限制和不断增长的需求的开创性解决方案。

主要市场统计
基准年[2023] 102.3亿美元
预测年份 [2024] 118.2亿美元
预测年份 [2030] 283.9亿美元
复合年增长率(%) 15.69%

市场动态:快速发展的深度学习晶片组市场的关键市场洞察

深度学习晶片组市场正因供需的动态交互作用而转变。透过了解这些不断变化的市场动态,公司可以准备好做出明智的投资决策、完善策略决策并抓住新的商机。全面了解这些趋势可以帮助企业降低政治、地理、技术、社会和经济领域的风险,同时也能帮助企业了解消费行为及其对製造业的影响。

  • 市场驱动因素
    • 更广泛地接受云端基础的技术
    • 扩大巨量资料分析在各产业的应用
    • 量子运算的兴起和深度学习晶片在机器人领域的增强实施
  • 市场限制因素
    • 缺乏熟练的专业知识和训练有素的专业人员
  • 市场机会
    • 持续需要开发具有人类意识的人工智慧系统
    • 自主机器人的开发
  • 市场挑战
    • 收益降低且可用结构资料有限

波特五力:驾驭深度学习晶片组市场的策略工具

波特的五力框架是理解市场竞争格局的重要工具。波特的五力框架为评估公司的竞争地位和探索策略机会提供了清晰的方法。该框架可帮助公司评估市场动态并确定新业务的盈利。这些见解使公司能够利用自己的优势,解决弱点并避免潜在的挑战,从而确保更强大的市场地位。

PESTLE分析:了解深度学习晶片组市场的外部影响

外部宏观环境因素在塑造深度学习晶片组市场的性能动态方面发挥着至关重要的作用。对政治、经济、社会、技术、法律和环境因素的分析提供了应对这些影响所需的资讯。透过调查 PESTLE 因素,公司可以更了解潜在的风险和机会。这种分析可以帮助公司预测法规、消费者偏好和经济趋势的变化,并帮助他们做出积极主动的决策。

市场占有率分析 了解深度学习晶片组市场的竞争格局

对深度学习晶片组市场的详细市场占有率分析可以对供应商绩效进行全面评估。公司可以透过比较收益、客户群和成长率等关键指标来揭示其竞争地位。该分析揭示了市场集中、分散和整合的趋势,为供应商提供了製定策略决策所需的洞察力,使他们能够在日益激烈的竞争中占有一席之地。

FPNV定位矩阵深度学习晶片组市场厂商表现评估

FPNV 定位矩阵是评估深度学习晶片组市场供应商的重要工具。此矩阵允许业务组织根据供应商的商务策略和产品满意度评估供应商,从而做出符合其目标的明智决策。这四个象限使您能够清晰、准确地划分供应商,并确定最能满足您的策略目标的合作伙伴和解决方案。

策略分析和建议描绘了深度学习晶片组市场的成功之路

对于旨在加强其在全球市场的影响力的公司来说,深度学习晶片组市场的策略分析至关重要。透过审查关键资源、能力和绩效指标,公司可以识别成长机会并努力改进。这种方法使您能够克服竞争环境中的挑战,利用新的商机,并取得长期成功。

本报告对市场进行了全面分析,涵盖关键重点领域:

1. 市场渗透率:详细检视当前市场环境、主要企业的广泛资料、评估其在市场中的影响力和整体影响力。

2. 市场开拓:辨识新兴市场的成长机会,评估现有领域的扩张潜力,并提供未来成长的策略蓝图。

3. 市场多元化:分析近期产品发布、开拓地区、关键产业进展、塑造市场的策略投资。

4. 竞争评估与情报:彻底分析竞争格局,检验市场占有率、业务策略、产品系列、认证、监理核准、专利趋势、主要企业的技术进步等。

5.产品开发与创新:重点关注可望推动未来市场成长的最尖端科技、研发活动和产品创新。

我们也回答重要问题,以帮助相关人员做出明智的决策:

1.目前的市场规模和未来的成长预测是多少?

2. 哪些产品、区隔市场和地区提供最佳投资机会?

3.塑造市场的主要技术趋势和监管影响是什么?

4.主要厂商的市场占有率和竞争地位如何?

5. 推动供应商市场进入和退出策略的收益来源和策略机会是什么?

目录

第一章 前言

第二章调查方法

第三章执行摘要

第四章市场概况

第五章市场洞察

  • 市场动态
    • 促进因素
      • 云端基础技术普及
      • 巨量资料分析的应用在各行业中不断增加
      • 量子运算的兴起和深度学习晶片在机器人领域的增强实施
    • 抑制因素
      • 缺乏熟练的专业知识和训练有素的专业人员
    • 机会
      • 开发识别人类的人工智慧系统的需求仍然存在
      • 自主机器人新进展
    • 任务
      • 收益降低且可用结构资料有限
  • 市场区隔分析
  • 波特五力分析
  • PESTEL分析
    • 政治的
    • 经济
    • 社群
    • 技术的
    • 合法地
    • 环境

第六章深度学习晶片组市场:依类型

  • 专用积体电路
  • 中央处理单元
  • 现场可程式闸阵列
  • 图形处理单元

第 7 章 深度学习晶片组市场:依最终用户划分

  • 航太和国防
  • 家电
  • 卫生保健
  • 产业

第八章美洲深度学习晶片组市场

  • 阿根廷
  • 巴西
  • 加拿大
  • 墨西哥
  • 美国

第九章亚太地区深度学习晶片组市场

  • 澳洲
  • 中国
  • 印度
  • 印尼
  • 日本
  • 马来西亚
  • 菲律宾
  • 新加坡
  • 韩国
  • 台湾
  • 泰国
  • 越南

第十章欧洲、中东和非洲深度学习晶片组市场

  • 丹麦
  • 埃及
  • 芬兰
  • 法国
  • 德国
  • 以色列
  • 义大利
  • 荷兰
  • 奈及利亚
  • 挪威
  • 波兰
  • 卡达
  • 俄罗斯
  • 沙乌地阿拉伯
  • 南非
  • 西班牙
  • 瑞典
  • 瑞士
  • 土耳其
  • 阿拉伯聯合大公国
  • 英国

第十一章竞争格局

  • 2023 年市场占有率分析
  • FPNV 定位矩阵,2023
  • 竞争情境分析
  • 战略分析和建议

公司名单

  • Advanced Micro Devices, Inc.
  • ARM Holdings
  • Google LLC
  • Graphcore
  • Huawei Technologies
  • Intel Corporation
  • International Business Machines Corporation
  • LG Electronics
  • Mythic AI
  • NVIDIA Corporation
  • Qualcomm Technologies, Inc.
  • Samsung Electronics Co., Ltd.
  • Taiwan Semiconductor Manufacturing Company
  • Xilinx, Inc.
  • Zero ASIC Corporation
Product Code: MRR-4348D129F9D1

The Deep Learning Chipset Market was valued at USD 10.23 billion in 2023, expected to reach USD 11.82 billion in 2024, and is projected to grow at a CAGR of 15.69%, to USD 28.39 billion by 2030.

The deep learning chipset market encompasses a dynamic intersection of artificial intelligence and hardware engineering, driving advancements in computational efficiency, speed, and capability. These chipsets, including GPUs, TPUs, neuromorphic chips, and FPGAs, power applications across diverse industries like automotive, healthcare, finance, and consumer electronics by enabling real-time data processing, complex problem solving, and automation. The necessity for deep learning chipsets is underscored by the escalating demand for AI-driven solutions that enhance decision-making, predictive analytics, and operational efficiency. End-use scope is broad, spanning autonomous driving systems, medical imaging diagnostics, personalized finance services, and smart devices, bolstered by the proliferation of IoT technologies and advancements in machine learning algorithms. Insights into key growth factors reveal that the increasing adoption of AI in end-user industries, growing investments in AI research and development, and the rise of smart infrastructures are pivotal influences. Emerging opportunities lie in the optimization of chip architectures for energy efficiency and speed, as well as the growing intersections between deep learning and quantum computing, which promise exponential improvements in processing power. However, the market faces challenges, including high development costs, technical complexities, and the need for a scalable infrastructure to support advanced AI workloads. Additionally, there are concerns over data privacy and security, which may impact market confidence. Critical areas of innovation include improving chip design for specific AI applications, enhancing neural network training efficacy, and embedding deep learning capabilities into edge devices, offering potential for niche markets and differentiation. For business growth, companies should focus on agile strategies that leverage collaborative partnerships and invest in skill development for cutting-edge chip design and AI deployment. The market's nature is competitive yet full of promise, with a landscape ripe for pioneering solutions that address both the technical limitations and growing demands of the AI revolution.

KEY MARKET STATISTICS
Base Year [2023] USD 10.23 billion
Estimated Year [2024] USD 11.82 billion
Forecast Year [2030] USD 28.39 billion
CAGR (%) 15.69%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Deep Learning Chipset Market

The Deep Learning Chipset Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Growing acceptance of cloud-based technology
    • Increasing application of big data analytics across industries
    • Rising quantum computing and enhanced implementation of deep learning chips in robotics
  • Market Restraints
    • Lack of skilled expertise and trained professional
  • Market Opportunities
    • Ongoing need to develop human-aware AI systems
    • Emerging development of autonomous robots
  • Market Challenges
    • Reduced return on investment and limited structural data available

Porter's Five Forces: A Strategic Tool for Navigating the Deep Learning Chipset Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Deep Learning Chipset Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Deep Learning Chipset Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Deep Learning Chipset Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Deep Learning Chipset Market

A detailed market share analysis in the Deep Learning Chipset Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Deep Learning Chipset Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Deep Learning Chipset Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Deep Learning Chipset Market

A strategic analysis of the Deep Learning Chipset Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Deep Learning Chipset Market, highlighting leading vendors and their innovative profiles. These include Advanced Micro Devices, Inc., ARM Holdings, Google LLC, Graphcore, Huawei Technologies, Intel Corporation, International Business Machines Corporation, LG Electronics, Mythic AI, NVIDIA Corporation, Qualcomm Technologies, Inc., Samsung Electronics Co., Ltd., Taiwan Semiconductor Manufacturing Company, Xilinx, Inc., and Zero ASIC Corporation.

Market Segmentation & Coverage

This research report categorizes the Deep Learning Chipset Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Type, market is studied across Application Specific Integrated Circuits, Central Processing Units, Field Programmable Gate Arrays, and Graphics Processing Units.
  • Based on End-User, market is studied across Aerospace & Defense, Automotive, Consumer Electronics, Healthcare, and Industrial.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Growing acceptance of cloud-based technology
      • 5.1.1.2. Increasing application of big data analytics across industries
      • 5.1.1.3. Rising quantum computing and enhanced implementation of deep learning chips in robotics
    • 5.1.2. Restraints
      • 5.1.2.1. Lack of skilled expertise and trained professional
    • 5.1.3. Opportunities
      • 5.1.3.1. Ongoing need to develop human-aware AI systems
      • 5.1.3.2. Emerging development of autonomous robots
    • 5.1.4. Challenges
      • 5.1.4.1. Reduced return on investment and limited structural data available
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Deep Learning Chipset Market, by Type

  • 6.1. Introduction
  • 6.2. Application Specific Integrated Circuits
  • 6.3. Central Processing Units
  • 6.4. Field Programmable Gate Arrays
  • 6.5. Graphics Processing Units

7. Deep Learning Chipset Market, by End-User

  • 7.1. Introduction
  • 7.2. Aerospace & Defense
  • 7.3. Automotive
  • 7.4. Consumer Electronics
  • 7.5. Healthcare
  • 7.6. Industrial

8. Americas Deep Learning Chipset Market

  • 8.1. Introduction
  • 8.2. Argentina
  • 8.3. Brazil
  • 8.4. Canada
  • 8.5. Mexico
  • 8.6. United States

9. Asia-Pacific Deep Learning Chipset Market

  • 9.1. Introduction
  • 9.2. Australia
  • 9.3. China
  • 9.4. India
  • 9.5. Indonesia
  • 9.6. Japan
  • 9.7. Malaysia
  • 9.8. Philippines
  • 9.9. Singapore
  • 9.10. South Korea
  • 9.11. Taiwan
  • 9.12. Thailand
  • 9.13. Vietnam

10. Europe, Middle East & Africa Deep Learning Chipset Market

  • 10.1. Introduction
  • 10.2. Denmark
  • 10.3. Egypt
  • 10.4. Finland
  • 10.5. France
  • 10.6. Germany
  • 10.7. Israel
  • 10.8. Italy
  • 10.9. Netherlands
  • 10.10. Nigeria
  • 10.11. Norway
  • 10.12. Poland
  • 10.13. Qatar
  • 10.14. Russia
  • 10.15. Saudi Arabia
  • 10.16. South Africa
  • 10.17. Spain
  • 10.18. Sweden
  • 10.19. Switzerland
  • 10.20. Turkey
  • 10.21. United Arab Emirates
  • 10.22. United Kingdom

11. Competitive Landscape

  • 11.1. Market Share Analysis, 2023
  • 11.2. FPNV Positioning Matrix, 2023
  • 11.3. Competitive Scenario Analysis
  • 11.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Advanced Micro Devices, Inc.
  • 2. ARM Holdings
  • 3. Google LLC
  • 4. Graphcore
  • 5. Huawei Technologies
  • 6. Intel Corporation
  • 7. International Business Machines Corporation
  • 8. LG Electronics
  • 9. Mythic AI
  • 10. NVIDIA Corporation
  • 11. Qualcomm Technologies, Inc.
  • 12. Samsung Electronics Co., Ltd.
  • 13. Taiwan Semiconductor Manufacturing Company
  • 14. Xilinx, Inc.
  • 15. Zero ASIC Corporation

LIST OF FIGURES

  • FIGURE 1. DEEP LEARNING CHIPSET MARKET RESEARCH PROCESS
  • FIGURE 2. DEEP LEARNING CHIPSET MARKET SIZE, 2023 VS 2030
  • FIGURE 3. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, 2018-2030 (USD MILLION)
  • FIGURE 4. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY REGION, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 5. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 6. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2023 VS 2030 (%)
  • FIGURE 7. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 8. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2023 VS 2030 (%)
  • FIGURE 9. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 10. AMERICAS DEEP LEARNING CHIPSET MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 11. AMERICAS DEEP LEARNING CHIPSET MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 12. UNITED STATES DEEP LEARNING CHIPSET MARKET SIZE, BY STATE, 2023 VS 2030 (%)
  • FIGURE 13. UNITED STATES DEEP LEARNING CHIPSET MARKET SIZE, BY STATE, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 14. ASIA-PACIFIC DEEP LEARNING CHIPSET MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 15. ASIA-PACIFIC DEEP LEARNING CHIPSET MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 16. EUROPE, MIDDLE EAST & AFRICA DEEP LEARNING CHIPSET MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 17. EUROPE, MIDDLE EAST & AFRICA DEEP LEARNING CHIPSET MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 18. DEEP LEARNING CHIPSET MARKET SHARE, BY KEY PLAYER, 2023
  • FIGURE 19. DEEP LEARNING CHIPSET MARKET, FPNV POSITIONING MATRIX, 2023

LIST OF TABLES

  • TABLE 1. DEEP LEARNING CHIPSET MARKET SEGMENTATION & COVERAGE
  • TABLE 2. UNITED STATES DOLLAR EXCHANGE RATE, 2018-2023
  • TABLE 3. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, 2018-2030 (USD MILLION)
  • TABLE 4. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 5. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 6. DEEP LEARNING CHIPSET MARKET DYNAMICS
  • TABLE 7. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 8. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY APPLICATION SPECIFIC INTEGRATED CIRCUITS, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 9. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY CENTRAL PROCESSING UNITS, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 10. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY FIELD PROGRAMMABLE GATE ARRAYS, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 11. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY GRAPHICS PROCESSING UNITS, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 12. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 13. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY AEROSPACE & DEFENSE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 14. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY AUTOMOTIVE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 15. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY CONSUMER ELECTRONICS, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 16. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY HEALTHCARE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 17. GLOBAL DEEP LEARNING CHIPSET MARKET SIZE, BY INDUSTRIAL, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 18. AMERICAS DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 19. AMERICAS DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 20. AMERICAS DEEP LEARNING CHIPSET MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 21. ARGENTINA DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 22. ARGENTINA DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 23. BRAZIL DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 24. BRAZIL DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 25. CANADA DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 26. CANADA DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 27. MEXICO DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 28. MEXICO DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 29. UNITED STATES DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 30. UNITED STATES DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 31. UNITED STATES DEEP LEARNING CHIPSET MARKET SIZE, BY STATE, 2018-2030 (USD MILLION)
  • TABLE 32. ASIA-PACIFIC DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 33. ASIA-PACIFIC DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 34. ASIA-PACIFIC DEEP LEARNING CHIPSET MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 35. AUSTRALIA DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 36. AUSTRALIA DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 37. CHINA DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 38. CHINA DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 39. INDIA DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 40. INDIA DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 41. INDONESIA DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 42. INDONESIA DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 43. JAPAN DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 44. JAPAN DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 45. MALAYSIA DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 46. MALAYSIA DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 47. PHILIPPINES DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 48. PHILIPPINES DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 49. SINGAPORE DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 50. SINGAPORE DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 51. SOUTH KOREA DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 52. SOUTH KOREA DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 53. TAIWAN DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 54. TAIWAN DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 55. THAILAND DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 56. THAILAND DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 57. VIETNAM DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 58. VIETNAM DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 59. EUROPE, MIDDLE EAST & AFRICA DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 60. EUROPE, MIDDLE EAST & AFRICA DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 61. EUROPE, MIDDLE EAST & AFRICA DEEP LEARNING CHIPSET MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 62. DENMARK DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 63. DENMARK DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 64. EGYPT DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 65. EGYPT DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 66. FINLAND DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 67. FINLAND DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 68. FRANCE DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 69. FRANCE DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 70. GERMANY DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 71. GERMANY DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 72. ISRAEL DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 73. ISRAEL DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 74. ITALY DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 75. ITALY DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 76. NETHERLANDS DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 77. NETHERLANDS DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 78. NIGERIA DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 79. NIGERIA DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 80. NORWAY DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 81. NORWAY DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 82. POLAND DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 83. POLAND DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 84. QATAR DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 85. QATAR DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 86. RUSSIA DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 87. RUSSIA DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 88. SAUDI ARABIA DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 89. SAUDI ARABIA DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 90. SOUTH AFRICA DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 91. SOUTH AFRICA DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 92. SPAIN DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 93. SPAIN DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 94. SWEDEN DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 95. SWEDEN DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 96. SWITZERLAND DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 97. SWITZERLAND DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 98. TURKEY DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 99. TURKEY DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 100. UNITED ARAB EMIRATES DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 101. UNITED ARAB EMIRATES DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 102. UNITED KINGDOM DEEP LEARNING CHIPSET MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 103. UNITED KINGDOM DEEP LEARNING CHIPSET MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 104. DEEP LEARNING CHIPSET MARKET SHARE, BY KEY PLAYER, 2023
  • TABLE 105. DEEP LEARNING CHIPSET MARKET, FPNV POSITIONING MATRIX, 2023