![]() |
市场调查报告书
商品编码
1862684
机器人输尿管镜市场按产品类型(可重复使用与一次性使用)、技术、最终用户和应用划分-2025年至2032年全球预测Robotic Ureteroscopy Market by Product Type, Reusable Vs Disposable, Technology, End User, Application - Global Forecast 2025-2032 |
||||||
※ 本网页内容可能与最新版本有所差异。详细情况请与我们联繫。
预计到 2032 年,机器人输尿管镜市场规模将达到 20.5905 亿美元,复合年增长率为 16.69%。
| 关键市场统计数据 | |
|---|---|
| 基准年 2024 | 5.9893亿美元 |
| 预计年份:2025年 | 6.972亿美元 |
| 预测年份 2032 | 2,059,050,000 美元 |
| 复合年增长率 (%) | 16.69% |
机器人输尿管镜手术结合了精密器械、先进的光学技术和不断发展的机器人驱动技术,正在重新定义内视镜泌尿系统,从而提高手术效率和临床疗效。随着临床医生寻求能够减轻疲劳、提高在复杂解剖结构中操作灵活性以及实现雷射碎石和治疗性介入精准控制的解决方案,机器人系统正逐渐成为传统内视镜手术的重要辅助手段。除了临床表现之外,诸如消毒物流、一次性器械使用流程以及影响医院吞吐量和单次手术成本的筹资策略等营运因素,也日益影响技术发展趋势。
本节透过描述定义目前应用模式的核心技术类别、设备配置和临床应用案例,为我们的分析奠定了基础。我们重点阐述了柔性内视镜和半刚性内视镜之间的相互作用,以及为降低交叉感染风险而日益增长的对一次性使用和可重复使用方案的需求,并探讨了不同消毒途径对医院运营的影响。此外,我们还介绍了主动式和半主动式机器人手术模式之间的区别,这种区别决定了系统的复杂性、控制精度以及与现有泌尿系统手术室的整合程度。
本导言面向手术室、门诊手术中心和研究机构的相关人员,探讨了关键的临床和商业性问题:针对诊断性切片检查、取石和治疗性消融等特定临床应用,最佳技术路径是什么?监理和采购环境如何影响科技的应用?医疗设备製造商、服务供应商和临床领导者在哪些方面能够创造关键价值?
机器人输尿管镜手术领域正经历技术、临床和商业性层面的多重变革。在技术方面,手术操作正从纯粹的手动内视镜操作转向采用动力或气动驱动、配备精密触觉介面和半自动功能的系统,从而加速提升手术精度并降低操作者差异。同时,光学、雷射传输和能量调製技术的进步也进一步拓展了结石清除和肿瘤消融的治疗范围。
临床上,医疗服务正朝着微创工作流程转变,优先考虑诊疗量、感染控制和一致的治疗效果。一次性医疗器材在需要减少交叉感染和高效週转的环境中越来越普遍,而可重复使用的平台则围绕着完善的消毒通讯协定和生命週期管理不断发展。在商业性,成熟的医疗器材原始设备製造商 (OEM)、专业的机器人公司以及能够规模化生产一次性医疗器材和复杂机电组件的契约製造合作伙伴正在形成差异化格局。这种转变正在推动新的合作模式、策略伙伴关係以及对临床证据产生的定向投资。
法规结构和支付方式也在不断调整,鼓励製造商更早投资于临床研究,以证明产品的相对疗效和手术效率。这些变化并非孤立存在,而是协同作用,共同重塑了采购决策、医院人员编制模式以及参与企业企业的竞争策略。
2025年关税和贸易政策调整的实施对医疗设备供应链、製造地选择以及与机器人输尿管镜相关的筹资策略产生了连锁反应。关键零件(例如精密塑胶、一次性内视镜专用特种聚合物和电子机械子系统)的关税带来的成本压力,促使采购部门重新评估供应商集中度,并探索替代来源以维持价格稳定和供应连续性。因此,一些製造商调整了其海外契约製造和区域分散式生产,以降低进口关税和运输中断带来的风险。
这些变化促使企业更加关注总落地成本而非仅仅是单位成本,从而优化库存管理实践,重新评估灭菌和分销模式,并探索关键耗材的近岸外包机会。对于依赖专有光学元件、操作模组或无菌一次性组件的设备,契约製造製造商组装组装和合格的二级供应商,在新贸易限制下维持生产规模。监管路径和认证时间表影响了采购变更后组件整合的速度,进一步增加了短期调整的复杂性。
临床医生和采购主管也感受到了间接影响,例如产品系列的变化、专业仪器前置作业时间的延长以及对服务网络韧性的重新重视。最终,关税环境强化了供应链多元化、策略供应商伙伴关係以及投资于製造灵活性以抵御贸易和物流波动等长期趋势。
细緻的市场区隔框架揭示了多样化的产品组合和临床路径如何影响商业化策略。按产品类型划分,市场涵盖软式和半硬式输尿管镜平台。软式输尿管镜进一步细分为可重复使用和一次性使用,半硬式输尿管镜也同样分为可重复使用和一次性使用。每种配置对消毒、资本支出和手术操作便利性的影响各不相同。从可重复使用/一次性使用的角度来看,市场生态系统分为一次性使用和可重复使用两种路径。一次性产品进一步细分为生物可吸收和塑胶两种亚型,而可重复使用的器械则依赖环氧乙烷或蒸气灭菌等消毒方法,这些方法会带来不同的操作和监管要求。
从技术角度出发的细分揭示了两种主要架构:主动式机器人和半主动式机器人。主动式机器人系统通常由电动和气动驱动系统驱动,这些系统决定了动态特性、系统尺寸和维护方案。而半主动式机器人则强调自主功能和手动辅助配置,在自动化和临床医师控制之间取得平衡。按最终用户分類的细分揭示了门诊手术中心、医院和研究机构在采购和使用模式上的差异。门诊手术中心分为医院附属中心和独立中心,医院分为私立医院和公立医院,研究机构分为学术型和商业型,它们在采用新型机器人平台方面有着不同的奖励机制。最后,基于应用领域的细分透过分析诊断、取石和治疗应用案例,阐明了临床专业化方向。诊断流程包括切片检查和影像学检查,取石主要采用雷射碎石和机械取石技术,治疗性介入包括支架置入术和肿瘤消融。
了解这些分割轴的交汇点对于客製化产品设计、临床检验方案、定价策略和分销模式至关重要。例如,一款针对门诊雷射碎石术优化的可重复使用软性内视镜,与一款用于三级私立医院复杂消融治疗的可重复使用半刚性内视镜相比,其消毒方法、报销依据和供应链策略都截然不同。
区域趋势对机器人输尿管镜解决方案的采用时机、采购模式和监管策略有显着影响。美洲地区对技术先进的平台需求旺盛,这主要得益于其强大的私立医院网络、完善的门诊手术中心体係以及对手术效率和感染控制通讯协定的高度重视。这些市场因素推动了对一次性耗材和整合机器人系统的投资,这些产品有望实现可预测的周转率并减少再处理负担,同时也有助于推动医保报销谈判所需的临床研究。
欧洲、中东和非洲地区的情况错综复杂,各国不同的报销体系、集中采购计画以及医院所有权的多样性都影响着医疗用品的采用模式。医疗体系集中的国家往往更注重长期成本效益,倾向选择可重复使用的医疗平台,前提是消毒和生命週期管理能够优化。而中东地区由于医院容量有限,可能更倾向于使用一次性产品,以减轻再处理负担并降低交叉感染风险。
亚太地区的特点是基础设施快速发展、中产阶级患者群体不断壮大,以及製造业和创新日益在地化。该地区的医疗技术应用路径正在多元化:大型三级医疗机构率先采用先进的机器人手术器械及相关培训项目,而门诊和私立医院则对经济实惠的一次性替代方案需求不断增长。在所有地区,监管协调、本地临床证据的累积以及供应链本地化将是决定机器人输尿管镜技术如何在特定医疗体系中推广应用的关键因素。
机器人输尿管镜领域的组织行为呈现出多元化的特征,既有成熟的医疗设备原始设备製造商 (OEM),也有新兴的机器人技术专家和契约製造合作伙伴,共同塑造着充满活力的竞争格局。成熟的设备製造商正利用产品系列。他们关注的重点是与现有影像和雷射系统的兼容性,以及满足医院的采购标准。同时,新兴企业的、专注于特定领域的机器人公司正在推出差异化的驱动机制、模组化控制平台和一次性设计,挑战人们对系统复杂性和成本结构的传统认知。
契约製造製造商和特殊塑胶供应商在批量生产一次性产品方面发挥着至关重要的作用,同时确保产品品质和无菌性。他们与临床团队紧密合作,不断改进人体工学、公差控制和材料选择,使其能够承受灭菌或满足生物可吸收性要求。与临床研究中心和商业机构建立策略联盟,能够加速临床证据的生成,这对于获得有利的采购决策以及顺利透过优先考虑患者获益的监管审批流程至关重要。
此外,众多相关人员正推行垂直整合策略,掌控从光学模组生产到灭菌网路等关键价值链环节,进而增强自身应对贸易政策变化和供应链中断的能力。智慧财产权策略、上市后监管能力以及能降低整体拥有成本的服务模式,都是企业积极建构的差异化优势,旨在赢得不同医疗机构的青睐。
产业领导者应采取积极主动、多管齐下的策略,使产品策略与营运实际情况和不断变化的报销预期相契合。优先考虑模组化系统结构,实现工作模组和光学元件的互换,从而加快产品迭代速度,并为客户提供清晰的升级路径。同时,设计一次性医疗器材时,应采用针对无菌製程优化的材料,或在临床适用的情况下使用生物可吸收材料,以减少临床操作的阻力,并符合机构的感染控制优先事项。
投资于关键零件的本地生产或合格的二级供应商,以降低贸易政策和物流风险;并制定灵活的前置作业时间承诺和紧急时应对计画,以建立商业协议。加强临床证据项目,重点关注真实世界的比较疗效、工作流程效率和以患者为中心的结果,因为支付方和采购决策除了安全性和有效性结果外,越来越需要可靠的营运数据。与高运转率的临床中心建立深度合作关係,以扶持早期采用者,并产生经同侪审查的临床促进者,从而支持广泛应用。
最后,采用能够减轻医院员工新进员工入职负担的服务和培训模式,例如整合模拟课程和远端监控功能。透过进行透明的上市后监测和基于临床医生回馈的持续改进,在产品生命週期内维护信任并展现持续的价值创造。
本分析的调查方法结合了定性和定量方法,以确保获得可靠且可操作的见解。主要研究包括对门诊手术中心、公立和私立医院、学术和商业研究机构的临床医生进行结构化访谈,以及与采购经理、消毒专家和医疗设备技术人员进行对话,以了解操作流程和技术要求。这些访谈探讨了他们对设备性能、消毒流程、采购标准和实施障碍的看法,提供了丰富的背景信息,并以此为基础进行了市场细分和区域分析。
我们的二次研究包括对监管指南、临床文献、专利申请和上市公司资讯披露的系统性回顾,检验技术趋势和竞争地位,而不依赖专有的市场预测。我们采用资料三角测量法来协调相互矛盾的讯息,并检验来自多个资讯来源的假设。情境分析评估了贸易政策变化和供应链中断对各类产品类型筹资策略和上市时间的影响。
最后,为确保调查方法的严谨性和实用性,我们透过同侪审查和由独立临床专家组成的咨询委员会进行了检验。其局限性包括不同医疗系统采购模式的差异以及监管路径的不断演变,这些都需要持续监测和迭代更新以保持其准确性。
机器人输尿管镜检查正从一项前景广阔的临床辅助手段过渡到一项成熟的技术,这需要精细的商业化策略和稳健的营运模式。一次性器材与可重复使用器材之间的互动、主动式和半主动式机器人架构的兴起,以及在地化生产的战略意义,都为製造商、医疗系统和临床创新者带来了挑战和机会。成功的关键在于:使产品设计符合消毒要求;提供能够引起支付方和采购团队共鸣的有力临床证据;以及建立一条足够灵活的供应链,以应对贸易和物流方面的压力。
临床医生将受益于更符合人体工学的设计、更高的可重复性和更精准的操作,而医院和门诊医疗机构则可透过将该技术与周全的培训和服务模式相结合,实现营运效率的提升。对于产业相关人员而言,未来的发展方向在于将技术差异化与对无菌工作流程、监管合规性和加速临床检验的伙伴关係模式的实际关注相结合。透过聚焦这些优先事项,相关人员将能够更好地应对短期挑战,并最终实现机器人输尿管镜检查的长期临床和商业性价值潜力。
The Robotic Ureteroscopy Market is projected to grow by USD 2,059.05 million at a CAGR of 16.69% by 2032.
| KEY MARKET STATISTICS | |
|---|---|
| Base Year [2024] | USD 598.93 million |
| Estimated Year [2025] | USD 697.20 million |
| Forecast Year [2032] | USD 2,059.05 million |
| CAGR (%) | 16.69% |
Robotic ureteroscopy is redefining endourology by combining precision instrumentation, advanced optics, and evolving robotic actuation to improve procedural ergonomics and clinical outcomes. As clinicians seek solutions that reduce fatigue, enhance dexterity within tortuous anatomies, and enable more consistent control of laser-based lithotripsy and therapeutic interventions, robotic systems are emerging as an important adjunct to traditional endoscopes and manual techniques. Beyond clinical performance, the technology narrative is increasingly shaped by operational considerations including sterilization logistics, single-use device workflows, and procurement strategies that affect hospital throughput and per-procedure cost drivers.
This section sets the stage for the analysis by describing the core technology categories, device configurations, and clinical use cases that define current adoption patterns. It emphasizes the interplay between flexible and semi-rigid scopes, the growing interest in single-use versus reusable options to mitigate cross-contamination risk, and how different sterilization pathways influence hospital operations. It also introduces the dichotomy between active and semi-active robotic paradigms, which determine system complexity, control fidelity, and integration with existing urology suites.
With an eye toward stakeholders across operating rooms, ambulatory surgical centers, and research institutions, the introduction frames the key clinical and commercial questions that follow: which technology pathways align best with specific clinical applications such as diagnostic biopsy, stone extraction, and therapeutic ablation; how regulatory and procurement landscapes shape adoption; and where value creation is concentrated for device manufacturers, service providers, and clinical leaders.
The robotic ureteroscopy landscape is undergoing multiple transformative shifts that are simultaneously technical, clinical, and commercial. On the technical front, the transition from purely manual endoscopic manipulation toward systems with electric or pneumatic actuation, refined haptic interfaces, and semi-autonomous features is accelerating procedural precision while reducing operator variability. These advances are complemented by improvements in optics, laser delivery, and energy modulation, which expand the therapeutic envelope for stone removal and tumor ablation.
Clinically, care delivery is moving toward minimally invasive workflows that prioritize throughput, infection control, and consistent outcomes. Single-use devices are gaining traction in environments that need to limit cross-contamination and streamline turnover, while reusable platforms continue to evolve around robust sterilization protocols and lifecycle management. Commercially, the ecosystem is fragmenting into established device OEMs, specialist robotics firms, and contract manufacturing partners that can scale production of both disposables and complex mechatronic assemblies. This shift fuels new collaboration models, strategic partnerships, and targeted investments in clinical evidence generation.
Regulatory frameworks and payer pathways are adapting as well, prompting manufacturers to invest earlier in clinical studies that demonstrate comparative effectiveness and procedural efficiency. Taken together, these shifts are not isolated; they compound to reshape procurement decisions, hospital staffing models, and the competitive calculus for entrants and incumbents alike.
The introduction of tariffs and trade policy adjustments in 2025 has had a cascading influence across the device supply chain, manufacturing footprint decisions, and sourcing strategies relevant to robotic ureteroscopy. Tariff-induced cost pressures on key components, including precision plastics, specialty polymers used in single-use scopes, and electromechanical subsystems, prompted procurement teams to reassess vendor concentration and pursue alternative sourcing to preserve price stability and supply continuity. In response, several manufacturers reconsidered the balance between offshore contract manufacturing and regionalized production to mitigate exposure to import levies and transportation disruptions.
These shifts intensified focus on total landed cost rather than unit price alone, motivating organizations to optimize inventory practices, reevaluate sterilization and distribution models, and explore nearshoring opportunities for critical consumables. For devices that rely on proprietary optics, actuation modules, or sterile disposable elements, contract manufacturers adapted by localizing assembly or qualifying secondary suppliers to maintain throughput under new trade constraints. Regulatory pathways and certification timelines affected the speed at which re-sourced components could be integrated, further complicating short-term adjustments.
Clinicians and procurement leaders experienced indirect effects through altered product portfolios, occasional lead-time elongation for specialized instruments, and renewed attention to the resilience of service networks. Ultimately, the tariff environment reinforced a longer-term trend toward supply chain diversification, strategic supplier partnerships, and investment in manufacturing flexibility to withstand episodic trade and logistics volatility.
A nuanced segmentation framework reveals the multiplicity of product configurations and clinical pathways influencing commercialization strategies. Based on product type the market encompasses both Flexible Ureteroscope and Semi Rigid Ureteroscope platforms; the Flexible Ureteroscope category further differentiates into Multi Use and Single Use designs while the Semi Rigid Ureteroscope similarly splits into Multi Use and Single Use variants, each configuration carrying distinct implications for sterilization, capital expenditure, and procedural ergonomics. When viewed through the lens of reusable versus disposable considerations the ecosystem divides into Disposable and Reusable pathways; Disposable options are further categorized into Bioabsorbable and Plastic subtypes whereas Reusable instruments rely on sterilization methodologies such as Ethylene Oxide and Steam Sterilization which impose different operational and regulatory requirements.
Technology-focused segmentation uncovers two principal architectures: Active Robotics and Semi Active Robotics. Active Robotics systems are commonly realized through Electric Actuation and Pneumatic Actuation approaches that define force profiles, system footprint, and maintenance regimes, while Semi Active Robotics emphasizes Autonomous features and Manual Assist configurations that balance automation with clinician control. End user segmentation highlights distinct procurement and utilization patterns across Ambulatory Surgical Center, Hospital, and Research Institute settings; Ambulatory Surgical Centers bifurcate into Hospital Affiliated and Standalone models, Hospitals split into Private Hospital and Public Hospital categories, and Research Institutes separate into Academic and Commercial types, each with unique incentive structures for adopting novel robotic platforms. Finally, application-based segmentation clarifies clinical specialization by parsing Diagnostic, Stone Removal, and Therapeutic use cases; Diagnostic workflows include Biopsy and Imaging subsets, Stone Removal is driven by Laser Lithotripsy and Mechanical Extraction techniques, and Therapeutic interventions encompass Stent Placement and Tumor Ablation procedures.
Understanding how these segmentation axes intersect is essential for tailoring product design, clinical validation programs, pricing strategies, and distribution models. For example, a single-use flexible scope optimized for laser lithotripsy in ambulatory settings will require a different sterilization narrative, reimbursement evidence, and supply chain approach compared with a reusable semi-rigid system designed for complex therapeutic ablation in a tertiary private hospital.
Regional dynamics exert a powerful influence on adoption timing, procurement modality, and regulatory strategy for robotic ureteroscopy solutions. The Americas demonstrates a pronounced appetite for technologically advanced platforms, driven by robust private hospital networks, an extensive ambulatory surgical center ecosystem, and an emphasis on procedural efficiency and infection control protocols. These market forces favor investments in single-use disposables and integrated robotic systems that promise predictable turnover and reduced reprocessing burden, while also supporting clinical studies needed for reimbursement conversations.
Europe Middle East & Africa presents a complex mosaic where national reimbursement frameworks, centralized procurement programs, and varied hospital ownership models shape adoption patterns. Countries with centralized health systems often prioritize long-term cost-effectiveness, which supports reusable platforms if sterilization and lifecycle management can be optimized. Meanwhile, regions grappling with constrained hospital capacity may favor disposables to alleviate reprocessing strain and limit cross-infection risk.
Asia-Pacific is characterized by rapid infrastructure development, a growing middle-class patient base, and a strong push to localize manufacturing and innovation. This region exhibits mixed adoption pathways: major tertiary centers drive early uptake of advanced robotic instruments and associated training programs, while ambulatory and private hospital segments increasingly demand cost-effective single-use alternatives. Across all regions, regulatory harmonization efforts, local clinical evidence generation, and supply chain localization are pivotal determinants of how and when robotic ureteroscopy technologies scale within specific healthcare systems.
Organizational behavior in the robotic ureteroscopy field is defined by a blend of incumbent medical device OEMs, emerging robotics specialists, and contract manufacturing partners that together construct a dynamic competitive landscape. Established device manufacturers are leveraging their clinical relationships and distribution networks to broaden their portfolios through internal development or strategic partnerships, focusing on compatibility with existing imaging and laser systems and on meeting hospital procurement criteria. At the same time, start-ups and niche robotics firms are introducing differentiated actuation schemes, modular control platforms, and single-use disposable designs that challenge legacy assumptions about system complexity and cost structures.
Contract manufacturers and specialized plastics suppliers play a critical role in scaling single-use offerings while maintaining consistent quality and sterility. They collaborate closely with clinical teams to refine ergonomics, tolerances, and material selections that withstand sterilization or fulfill bioabsorbable specifications. Strategic alliances between clinical research centers and commercial entities accelerate clinical evidence generation, which is increasingly necessary for favorable procurement decisions and for navigating regulatory pathways that prioritize demonstrable patient benefit.
Additionally, several actors are pursuing vertical integration strategies to control key value chain elements, from optical module production to sterilization networks, enhancing resilience to trade policy shifts and supply disruptions. Intellectual property strategies, post-market surveillance capabilities, and service models that reduce total cost of ownership are all differentiators that companies are actively cultivating to win adoption in diverse healthcare settings.
Industry leaders should adopt a proactive, multi-dimensional playbook that aligns product strategy with operational realities and evolving reimbursement expectations. Prioritize modular system architectures that allow for interchangeable actuation modules and optics, enabling faster product iterations and clearer upgrade paths for customers. Simultaneously, design single-use devices with materials optimized for sterilization pathways or bioabsorbable use where clinically appropriate, thereby reducing clinical friction and aligning with institutional infection control priorities.
Invest in localized manufacturing or qualified secondary suppliers for critical components to mitigate trade policy and logistics risks, and structure commercial agreements to include flexible lead-time commitments and contingency plans. Bolster clinical evidence programs that emphasize real-world comparative effectiveness, workflow efficiency, and patient-centered outcomes, since payer and procurement decisions increasingly require robust operational data in addition to safety and efficacy results. Cultivate deep collaborations with high-volume clinical centers to foster early adoption champions and generate peer-reviewed clinical narratives that support broader acceptance.
Finally, adopt service and training models that reduce the adoption burden on hospital staff, such as integrated simulation curricula and remote proctoring capabilities. Commit to transparent post-market surveillance and iterative improvements informed by clinician feedback to maintain trust and demonstrate continuous value creation over the product lifecycle.
The research methodology underpinning this analysis combines qualitative and quantitative approaches to ensure robust and actionable findings. Primary research consisted of structured interviews with clinicians across ambulatory surgical centers, private and public hospitals, and academic and commercial research institutes, along with conversations with procurement leaders, sterilization specialists, and device engineers to capture operational realities and technology requirements. These interviews explored device performance, sterilization workflows, purchasing criteria, and perceived barriers to adoption, providing rich contextual insights that informed segmentation and regional analysis.
Secondary research included a systematic review of regulatory guidelines, clinical literature, patent filings, and public company disclosures to validate technology trends and competitive positioning without relying on proprietary market estimates. Data triangulation methods were used to reconcile conflicting inputs and to test assumptions across multiple sources. Scenario analysis evaluated the implications of trade policy shifts and supply chain disruptions on sourcing strategies and time-to-market for various product categories.
Finally, findings were peer-reviewed by independent clinical experts and validated through advisory panels to ensure methodological rigor and practical relevance. Limitations include variability in procurement models across health systems and the evolving nature of regulatory pathways, which require ongoing monitoring and iterative updates to maintain contemporary accuracy.
Robotic ureteroscopy is transitioning from a promising clinical adjunct to a mature technology category that demands nuanced commercialization strategies and resilient operational models. The interplay between single-use and reusable device narratives, the rise of active and semi-active robotic architectures, and the strategic implications of localized manufacturing create both challenges and opportunities for manufacturers, health systems, and clinical innovators. Success will hinge on aligning product design with sterilization imperatives, delivering compelling clinical evidence that resonates with payers and procurement teams, and building supply chains that can flex in response to trade and logistics stresses.
Clinicians stand to benefit from improved ergonomics, reproducibility, and procedural precision, while hospitals and ambulatory providers can realize operational gains if technologies are integrated with thoughtful training and service models. For industry players, the pathway forward involves combining technological differentiation with practical attention to sterilization workflows, regulatory readiness, and partnership models that accelerate clinical validation. By focusing on these priorities, stakeholders can navigate near-term disruptions and position themselves to realize the long-term clinical and commercial potential of robotic ureteroscopy.