量子计算市场 - 预测 2023-2028
市场调查报告书
商品编码
1302954

量子计算市场 - 预测 2023-2028

Quantum Computing Market - Forecasts from 2023 to 2028

出版日期: | 出版商: Knowledge Sourcing Intelligence | 英文 144 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

预计2021年量子计算市场规模将达到5.9299亿美元,复合年增长率为49.34%,2028年将达到98.22347亿美元。

量子理论在计算机科学中的应用被称为量子计算。 量子计算利用电子和光子等亚原子粒子。 这些量子位或量子位允许这些粒子同时以两种状态存在。 传统计算机采用二进制电信号流将数据封装在位(1 和 0)中。 与量子计算相比,这限制了可以处理的信息量。 量子计算有能力筛选大量选项。 量子计算将对安全、银行、军事情报、药物发现、飞机设计、公用事业(核聚变)、聚合物设计、机器学习、人工智能(AI)、大数据搜索、数字製造、等正在给予 这些技术可用于改善信息的安全交换并提高雷达识别导弹和飞机的能力。

量子计算市场是由不断增加的支持数字化的联邦举措和创新合作推动的。

各国政府正在大力投资量子计算技术,反映出对该技术不断增长的需求。 例如,2021 年 11 月,德国政府宣布,作为 DLR(德国航空航天中心)量子计算计划的一部分,将在未来四年内製作基于多种架构的量子计算机原型。 通过这一过程,德国航天中心正在寻求公司、初创企业和其他研究机构的帮助,以推进量子计算机硬件、软件和应用的开发。 扩大战略合作还可能鼓励创建更先进的计算解决方案。 例如,来自芬兰的高层团队将于2022年12月访问位于浦那的先进计算开发中心(C-DAC),探讨双边在量子技术、高性能计算-量子集成及相关应用方面的合作机会。 C-DAC 发明了 HPC 中的主板、服务器和连接。

此外,离子阱计算机的开发于 2021 年 12 月获得了 BMBF(德国联邦教育和研究部)的 5030 万美元资助。 同样,美国能源部的研发机构之一阿贡国家实验室正在开展一个项目,旨在创建和提供硬件、固件和软件来读取和管理多量子位系统。 系统持续监控量子位故障并查询量子位状态。

该行业的扩张因稳定性和维护困难而受到阻碍。

量子计算机使用容易出错的实用量子位。 此外,量子计算机的实际应用是一项艰鉅的任务。 由于量子位很敏感,并且容易受到环境温度、声音和波长波动的干扰,因此很难长时间维持量子力学状态。 此外,一些基于区块链的解决方案使用 ECDSA,这是一种尚不具备量子安全性的数字签名方法。

市场趋势:

  • 2022 年 10 月,Uniseed 向澳大利亚研究委员会卓越工程量子系统中心 (EQUS) 的模拟量子电路 (AQC) 投资了 300 万美元,这是扩大量子计算规模所需的关键组件。协助创建。 AQC 扩大了由澳大利亚研究委员会 (ARC)、EQUS 和创始人未来奖学金资助的研究。
  • 2021 年 12 月,法国研究机构 CEA-Leti 和硅基量子计算顶尖团队 CNRS Neel 发表了两篇相关论文。 其中之一是一项受邀研究,概述了大规模硅量子计算面临的材料和集成问题。 第二篇论文提出了一种新颖的硅量子器件集成,该器件提供完全可控性,同时将一维 FD-SOI 量子点 (QD) 阵列中的有效栅极间距减少一半。

北美市场预计将在量子计算市场中占据很大份额。

北美市场扩张的一个主要因素是谷歌、英特尔和IBM公司等主要科技公司的存在。 此外,遍布该地区的成熟技术开发中心也推动了该行业的发展。 预计欧洲量子计算行业在预测期内将稳定增长。 市场进入者的大规模投资是推动该地区市场扩张的主要因素。 欧洲政府项目和贷款的增加预计也将影响该地区市场的发展。 此外,预计亚太地区的量子计算行业将出现最大的增长。 医药、交通、金融、化工等众多领域不断发展,印度、日本、韩国等国家IT产业蓬勃发展,支撑着市场的扩张。

内容

第一章简介

  • 市场概览
  • 市场定义
  • 市场细分

第二章研究方法

  • 调查数据
  • 调查过程

第 3 章执行摘要

  • 研究亮点

第 4 章市场动态

  • 市场驱动因素
  • 市场製约因素
  • 波特五力分析
    • 供应商的议价能力
    • 买方的谈判权
    • 替代品的威胁
    • 新进入者的威胁
    • 行业内竞争对手之间存在敌对关係
  • 行业价值链分析

第 5 章量子计算市场:通过产品

  • 简介
  • 硬件
  • 软件和服务

第 6 章量子计算市场:按部署方法

  • 简介
  • 本地
  • 基于云

第 7 章量子计算市场:按行业

  • 简介
  • BFSI
  • 汽车
  • 製造业
  • 医疗
  • IT/通信
  • 能源/电力
  • 其他

第 8 章按应用划分的量子计算市场:按应用

  • 简介
  • 人工智能和机器学习
  • 计算化学
  • 药物设计和开发
  • 网络安全和加密
  • 财务建模
  • 物流优化
  • 其他

第 9 章量子计算市场:按地区

  • 简介
  • 北美
    • 美国
    • 加拿大
    • 墨西哥
  • 南美洲
    • 巴西
    • 阿根廷
    • 其他
  • 欧洲
    • 德国
    • 法国
    • 英国
    • 西班牙
    • 其他
  • 中东和非洲
    • 沙特阿拉伯
    • 阿拉伯联合酋长国
    • 其他
  • 亚太地区
    • 中国
    • 日本
    • 印度
    • 韩国
    • 印度尼西亚
    • 台湾
    • 其他

第10章竞争环境与分析

  • 主要参与者和战略分析
  • 新兴公司和市场盈利能力
  • 合併、收购、协议与合作
  • 供应商竞争力矩阵

第11章公司简介

  • IBM
  • Microsoft
  • Quantum Computing Inc.
  • Intel Corporation
  • D-Wave Quantum Inc.
  • Quix Quantum BV
  • Alpine Quantum Technologies GmbH
  • ORCA Computing
  • Rigetti & Co, LLC.
  • Google LLC
简介目录
Product Code: KSI061615329

The quantum computing market was valued at US$592.99 million in 2021 and is expected to grow at a CAGR of 49.34% to reach US$9,822.347 million by 2028.

Computer science's application of quantum theory is known as quantum computing. Quantum computing makes use of subatomic particles like electrons or photons. These quantum bits or qubits allow these particles to exist concurrently in two states. Traditional computers employ a binary flow of electric signals to encapsulate data in bits (1 and 0). This restricts the amount of information they can process compared to quantum computing. Identifying potential solutions to challenging problems can be done using quantum computing, which has the power to sift through large volumes of choices. Quantum computing has a major impact on various industries, including security, banking, military intelligence, drug discovery, aircraft design, utilities (nuclear fusion), polymer design, machine learning, artificial intelligence (AI), big data search, and digital manufacturing. They can be utilized to improve secure information exchange or to increase radars' ability to identify missiles and airplanes.

The quantum computing market is driven by increasing federal initiatives and innovative collaborations to support digitization.

Governments are spending heavily on quantum computing technology, which reflects the growing demand for the technology. For instance, the German government announced in November 2021 that, within the next four years, quantum computer prototypes based on several architectures would be created as part of DLR's (German Aerospace Centre) Quantum Computing Initiative. Through this procedure, DLR is asking businesses, start-ups, and other research organizations to work together to further the creation of quantum computer hardware, software, and applications. The growth of strategic collaborations may also encourage the creation of higher-caliber computing solutions. For instance, a high-level Finnish team visited the Centre for Development of Advanced Computing (C-DAC), Pune, in December 2022 to explore opportunities for bilateral cooperation on quantum technologies, HPC-quantum integration, and related applications. C-DAC has invented its motherboard, server, and connection in HPC.

Additionally, the Ion Trap Computer development was funded in December 2021 with USD 50.3 million from the BMBF (German Federal Ministry of Education and Research). Similarly, one of the US Department of Energy's research and development facilities, Argonne National Laboratory, is engaged in a project to create and deliver hardware, firmware, and software to read out and manage a multi-qubit system. The system will continuously monitor qubit faults and query qubit statuses.

The expansion of this industry is hampered by stability and maintenance difficulties.

Quantum computers employ practical quantum bits that are prone to mistakes. Additionally, it is a difficult challenge to commercialize quantum computers. Since qubits are sensitive and quickly perturbed by fluctuations in the temperature, sound, and wavelength of their surroundings, retaining their quantum mechanical state for an extended length of time is challenging. Additionally, several blockchain-based solutions use the ECDSA, a digital signature method that is not yet quantum-safe.

Market Developments:

  • Uniseed invested US$3 million in the start-up Analog Quantum Circuits (AQC) of the Australian Research Council Centre of Excellence for Engineered Quantum Systems (EQUS) in October 2022 to support the creation of crucial parts needed for the scaling up of quantum computing. AQC expands the research funded by the Australian Research Council (ARC), EQUS, and Founders' Future Fellowships.
  • In December 2021, the French research institute CEA-Leti and the premier Si-based quantum computing team CNRS Neel published two papers on the subject, one of which was an invited study outlining the material and integration issues large-scale Si quantum computing faces. The second work introduced a novel Si quantum device integration that offers full controllability in 1D FD-SOI quantum dot (QD) arrays while reducing the effective gate pitch by half.

The North American market is anticipated to hold a sizeable share of the quantum computing market.

The main factor driving the expansion of the North American market is the presence of major technology companies like Google, Intel, and IBM Corporation, among others. In addition, the industry is primarily driven by established technological development centers spread in the region. The European quantum computing industry is anticipated to grow steadily in the forecast period. The large investments made by market participants are the main factor promoting the regional market's expansion. Additionally, it is anticipated that an increasing amount of projects and financing from governments across a range of European countries would impact the development of the local market. Further, the quantum computing industry is anticipated to expand the most in the Asia Pacific region. Numerous sectors, including medicine, transportation, finance, and chemicals, are growing, and countries like India, Japan, and South Korea have a thriving IT industry, supporting the market expansion.

Market Segmentation:

By Application

  • Hardware
  • Software and Service

By Deployment

  • On-Premises
  • Cloud-Based

By Industry Vertical

  • BFSI
  • Automotive
  • Manufacturing
  • Healthcare
  • IT & Telecom
  • Energy & Power
  • Others

By Applications

  • Artificial Intelligence & Machine Learning
  • Computational Chemistry
  • Drug Design & Development
  • Cybersecurity & Cryptography
  • Financial Modelling
  • Logistics Optimisation
  • Others

By Geography

  • North America
  • USA
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Spain
  • Others
  • Middle East And Africa
  • Saudi Arabia
  • UAE
  • Others
  • Asia Pacific
  • China
  • Japan
  • India
  • South Korea
  • Indonesia
  • Taiwan
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Market Segmentation

2. RESEARCH METHODOLOGY

  • 2.1. Research Data
  • 2.2. Research Process

3. EXECUTIVE SUMMARY

  • 3.1. Research Highlights

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porters Five Forces Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Powers of Buyers
    • 4.3.3. Threat of Substitutes
    • 4.3.4. The Threat of New Entrants
    • 4.3.5. Competitive Rivalry in Industry
  • 4.4. Industry Value Chain Analysis

5. QUANTUM COMPUTING MARKET BY APPLICATION

  • 5.1. Introduction
  • 5.2. Hardware
  • 5.3. Software and Service

6. QUANTUM COMPUTING MARKET BY DEPLOYMENT

  • 6.1. Introduction
  • 6.2. On-Premises
  • 6.3. Cloud-Based

7. QUANTUM COMPUTING MARKET BY INDUSTRY VERTICAL

  • 7.1. Introduction
  • 7.2. BFSI
  • 7.3. Automotive
  • 7.4. Manufacturing
  • 7.5. Healthcare
  • 7.6. IT & Telecom
  • 7.7. Energy & Power
  • 7.8. Others

8. QUANTUM COMPUTING MARKET BY APPLICATIONS

  • 8.1. Introduction
  • 8.2. Artificial Intelligence & Machine Learning
  • 8.3. Computational Chemistry
  • 8.4. Drug Design & Development
  • 8.5. Cybersecurity & Cryptography
  • 8.6. Financial Modelling
  • 8.7. Logistics Optimisation
  • 8.8. Others

9. QUANTUM COMPUTING MARKET BY GEOGRAPHY

  • 9.1. Introduction
  • 9.2. North America
    • 9.2.1. USA
    • 9.2.2. Canada
    • 9.2.3. Mexico
  • 9.3. South America
    • 9.3.1. Brazil
    • 9.3.2. Argentina
    • 9.3.3. Others
  • 9.4. Europe
    • 9.4.1. Germany
    • 9.4.2. France
    • 9.4.3. United Kingdom
    • 9.4.4. Spain
    • 9.4.5. Others
  • 9.5. Middle East And Africa
    • 9.5.1. Saudi Arabia
    • 9.5.2. UAE
    • 9.5.3. Others
  • 9.6. Asia Pacific
    • 9.6.1. China
    • 9.6.2. Japan
    • 9.6.3. India
    • 9.6.4. South Korea
    • 9.6.5. Indonesia
    • 9.6.6. Taiwan
    • 9.6.7. Others

10. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 10.1. Major Players and Strategy Analysis
  • 10.2. Emerging Players and Market Lucrativeness
  • 10.3. Mergers, Acquisition, Agreements, and Collaborations
  • 10.4. Vendor Competitiveness Matrix

11. COMPANY PROFILES

  • 11.1. IBM
  • 11.2. Microsoft
  • 11.3. Quantum Computing Inc.
  • 11.4. Intel Corporation
  • 11.5. D-Wave Quantum Inc.
  • 11.6. Quix Quantum BV
  • 11.7. Alpine Quantum Technologies GmbH
  • 11.8. ORCA Computing
  • 11.9. Rigetti & Co, LLC.
  • 11.10. Google LLC